|
|
|
|
|
from collections import defaultdict |
|
import glob |
|
import numpy as np |
|
import os |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from megatron import print_rank_0 |
|
from megatron.core import parallel_state |
|
|
|
from .external_libs import h5py |
|
|
|
|
|
def save_data(data_map, *args): |
|
'''Save map of numpy arrays to hdf5 file.''' |
|
|
|
|
|
if len(args) == 1: |
|
path = args[0] |
|
elif len(args) == 2: |
|
dir_path, file_name = args |
|
path = os.path.join(dir_path, file_name) |
|
else: |
|
raise Exception("specialize for len(args) == %d." % len(args)) |
|
|
|
|
|
if not os.path.isfile(path): |
|
f = h5py.File(path, "w") |
|
for k, v in data_map.items(): |
|
f.create_dataset(k, data=v) |
|
f.close() |
|
|
|
return path |
|
|
|
|
|
def load_data(paths): |
|
'''Load multiple hdf5 files to single numpy array.''' |
|
|
|
|
|
shape_map = defaultdict(lambda : (0, None)) |
|
for p in paths: |
|
f = h5py.File(p, "r") |
|
for k in f.keys(): |
|
shape = tuple(f[k].shape) |
|
shape_map[k] = (shape_map[k][0] + shape[0], shape[1]) |
|
f.close() |
|
|
|
|
|
data_map = { k : np.empty(s, dtype="f4") for k, s in shape_map.items() } |
|
start_map = { k : 0 for k in shape_map } |
|
|
|
|
|
for pi, p in enumerate(tqdm(paths, "load data")): |
|
f = h5py.File(p, "r") |
|
for k in f.keys(): |
|
i0 = start_map[k] |
|
i1 = i0 + len(f[k]) |
|
data_map[k][i0:i1] = f[k] |
|
start_map[k] += len(f[k]) |
|
f.close() |
|
|
|
return data_map |
|
|
|
|
|
def get_missing_blocks(workdir, n_samples, block_size, |
|
validate=lambda f : None): |
|
'''Divide range [0, num_samples) to sequence of block ranges. |
|
|
|
This is a core method within the concept of block processing. The idea |
|
is to divide a range (size n_samples) into a sequence of blocks. Each |
|
block corresponds to a file within 'workdir' with name |
|
'{start_idx}-{end_idx}.hdf5'. This method checks for the existence of |
|
these files, and returns a list of the ones that are missing. |
|
''' |
|
|
|
|
|
block_start_idxs = list(range(0, n_samples, block_size)) |
|
block_end_idxs = [ min(n_samples, i + block_size) for i in block_start_idxs ] |
|
block_ranges = list(zip(block_start_idxs, block_end_idxs)) |
|
|
|
|
|
n_digits = int(np.ceil(np.log(n_samples) / np.log(10)) + 1) |
|
all_blocks = [{ |
|
"range" : r, |
|
"path" : os.path.join( |
|
workdir, |
|
"%s-%s.hdf5" % tuple([ str(i).zfill(n_digits) for i in r ]), |
|
) |
|
} for r in block_ranges] |
|
all_block_path_set = set(block["path"] for block in all_blocks) |
|
|
|
|
|
if torch.distributed.get_rank() == 0: |
|
existing_block_paths = [block["path"] |
|
for block in all_blocks |
|
if os.path.exists(block["path"])] |
|
for index, path in enumerate( |
|
tqdm(existing_block_paths, "validating block.")): |
|
|
|
assert path in all_block_path_set, "unexpected filename, '%s'." % path |
|
|
|
try: |
|
f = h5py.File(path, "r") |
|
except: |
|
|
|
os.remove(path) |
|
continue |
|
|
|
try: |
|
validate(f) |
|
except: |
|
|
|
os.remove(path) |
|
finally: |
|
f.close() |
|
|
|
|
|
torch.distributed.barrier() |
|
|
|
|
|
missing_blocks = [block |
|
for block in all_blocks |
|
if not os.path.exists(block["path"])] |
|
|
|
return missing_blocks |
|
|
|
|
|
def get_missing_blocks_by_rank(workdir, n_samples, block_size, |
|
validate=lambda f : None): |
|
'''Divide missing blocks evenly across all ranks. |
|
|
|
See 'get_missing_blocks()' above for description. The returned list of |
|
missing blocks is split evenly across ranks via interleaving. This way, |
|
each rank has a roughly equal number of blocks to process for a |
|
downstream operation. |
|
''' |
|
|
|
missing_blocks = get_missing_blocks(workdir, n_samples, block_size, |
|
validate) |
|
|
|
|
|
data_parallel_rank = parallel_state.get_data_parallel_rank() |
|
data_parallel_world_size = parallel_state.get_data_parallel_world_size() |
|
rank_missing_blocks = missing_blocks[data_parallel_rank:len(missing_blocks):data_parallel_world_size] |
|
|
|
|
|
|
|
n_missing_tensor = torch.cuda.LongTensor([len(rank_missing_blocks)]) |
|
torch.distributed.all_reduce(n_missing_tensor, |
|
op=torch.distributed.ReduceOp.MAX) |
|
max_n_missing = n_missing_tensor.item() |
|
rank_missing_blocks += [None] * (max_n_missing - len(rank_missing_blocks)) |
|
|
|
return len(missing_blocks), rank_missing_blocks |
|
|
|
|
|
class BlockPathMap: |
|
'''Map an index to its containing block path. |
|
|
|
The common use for this class is to have a directory of files containing |
|
blocks of processed data, of uniform block size (e.g., 100k samples per |
|
file). Each file must follow a naming convention of 'startIdx-endIdx.[ext]', |
|
where 'endIdx' minus 'startIdx' must equal the block size, with the possible |
|
exception of the final block. Given an input index, this class maps the |
|
index to the containing block file. |
|
''' |
|
|
|
@classmethod |
|
def from_dir(cls, _dir, block_size, ext="hdf5"): |
|
'''Get list of block files, and create map.''' |
|
assert os.path.isdir(_dir), f"directory not found, '{_dir}'." |
|
return cls(sorted(glob.glob(_dir + f"/*.{ext}")), block_size) |
|
|
|
def __init__(self, block_paths, block_size): |
|
self.max_idx = 0 |
|
self.block_path_map = {} |
|
for block_path in block_paths: |
|
name = os.path.splitext(os.path.basename(block_path))[0] |
|
start_idx, end_idx = [ int(i) for i in name.split("-") ] |
|
self.block_path_map[start_idx] = block_path |
|
self.max_idx = max(self.max_idx, end_idx) |
|
self.block_size = block_size |
|
|
|
def __str__(self): |
|
return "%d paths" % len(self.block_path_map) |
|
|
|
def __getitem__(self, idx): |
|
'''Get block path from index.''' |
|
block_start_idx = self.block_size * (idx // self.block_size) |
|
block_path = self.block_path_map[block_start_idx] |
|
return block_path |
|
|