applied-ai-018's picture
Add files using upload-large-folder tool
0cd5102 verified
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sample Generate GPT"""
import deepspeed
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
os.path.pardir)))
from megatron import get_args
from megatron import print_rank_0
from megatron import get_tokenizer
from megatron.core import mpu
from megatron.checkpointing import load_checkpoint
from megatron.initialize import initialize_megatron
from megatron.model import GPTModel
from megatron.training import get_model
from megatron.text_generation_utils import generate_and_write_samples_unconditional
from megatron.text_generation_utils import generate_samples_input_from_file
from megatron.text_generation_utils import generate_samples_interactive
import deepspeed
import torch
from megatron.arguments import core_transformer_config_from_args
from megatron import get_args
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
args = get_args()
config = core_transformer_config_from_args(args)
print_rank_0('building GPT model ...')
model = GPTModel(config=config, num_tokentypes=0, parallel_output=False,
pre_process=pre_process, post_process=post_process,
return_moe_loss=False) # we need to set "return_moe_loss" for the inference_mode
return model
def add_text_generate_args(parser):
"""Text generation arguments."""
group = parser.add_argument_group(title='text generation')
group.add_argument("--temperature", type=float, default=1.0,
help='Sampling temperature.')
group.add_argument("--greedy", action='store_true', default=False,
help='Use greedy sampling.')
group.add_argument("--top_p", type=float, default=0.0,
help='Top p sampling.')
group.add_argument("--top_k", type=int, default=0,
help='Top k sampling.')
group.add_argument("--out-seq-length", type=int, default=1024,
help='Size of the output generated text.')
group.add_argument("--sample-input-file", type=str, default=None,
help='Get input from file instead of interactive mode, '
'each line is an input.')
group.add_argument("--sample-output-file", type=str, default=None,
help='Output file got from --sample-input-file')
group.add_argument("--num-samples", type=int, default=0,
help='Number of samples to generate unconditionally, '
'defaults to 0 and interactive conditional sampling')
group.add_argument("--genfile", type=str,
help='Output file when generating unconditionally')
group.add_argument("--recompute", action='store_true',
help='During generation recompute all attention '
'instead of using previously computed keys/values.')
group.add_argument("--local_rank", type=int, default=0,
help='local_rank')
return parser
def print_latency(latency_set, title=""):
# 10 warmup queries
latency_set = latency_set[10:]
count = len(latency_set)
if count > 0:
latency_set.sort()
n50 = (count - 1) * 0.5 + 1
n90 = (count - 1) * 0.9 + 1
n95 = (count - 1) * 0.95 + 1
n99 = (count - 1) * 0.99 + 1
n999 = (count - 1) * 0.999 + 1
avg = sum(latency_set) / count
p50 = latency_set[int(n50) - 1]
p90 = latency_set[int(n90) - 1]
p95 = latency_set[int(n95) - 1]
p99 = latency_set[int(n99) - 1]
p999 = latency_set[int(n999) - 1]
print("====== latency stats {0} ======", title)
print("\tAvg Latency: {0:8.2f} ms".format(avg * 1000))
print("\tP50 Latency: {0:8.2f} ms".format(p50 * 1000))
print("\tP90 Latency: {0:8.2f} ms".format(p90 * 1000))
print("\tP95 Latency: {0:8.2f} ms".format(p95 * 1000))
print("\tP99 Latency: {0:8.2f} ms".format(p99 * 1000))
print("\t999 Latency: {0:8.2f} ms".format(p999 * 1000))
def main():
"""Main program."""
latencies = []
model_latencies = []
single_token_latency = []
initialize_megatron(extra_args_provider=add_text_generate_args,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer',
'no_load_rng': True,
'no_load_optim': True})
args = get_args()
if args.num_layers_per_virtual_pipeline_stage is not None:
print("Interleaved pipeline schedule is not yet supported for text generation.")
exit()
# Set up model and load checkpoint.
model = get_model(model_provider)
if args.load is not None:
_ = load_checkpoint(model, None, None)
assert len(model) == 1, "Above condition should have caught this"
model = model[0]
if args.ds_inference:
model = ds_inference(model, args)
print('> DeepSpeed Inference engine initialized')
# Generate samples.
if args.num_samples == 0:
args.micro_batch_size = 1
if args.sample_input_file != None:
generate_samples_input_from_file(model)
else:
generate_samples_interactive(model)
else:
generate_and_write_samples_unconditional(model, latencies, single_token_latency, model_latencies)
#if torch.cuda.current_device() == 0:
if torch.distributed.get_rank() == 0:
print_latency(latencies)
print_latency(model_latencies, "model_latencies")
print_latency(single_token_latency, "single_token_latency")
def ds_inference(model, args):
import megatron.model as mm
engine = deepspeed.init_inference(model=model,
mp_size=args.tensor_model_parallel_size,
tensor_parallel={"mpu": mpu},
dtype=torch.half,
replace_with_kernel_inject=True,
moe_experts=args.num_experts,
moe_type=args.mlp_type)
return engine.module
if __name__ == "__main__":
main()