peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tools
/generate_samples_gpt.py
# coding=utf-8 | |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Sample Generate GPT""" | |
import deepspeed | |
import os | |
import sys | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), | |
os.path.pardir))) | |
from megatron import get_args | |
from megatron import print_rank_0 | |
from megatron import get_tokenizer | |
from megatron.core import mpu | |
from megatron.checkpointing import load_checkpoint | |
from megatron.initialize import initialize_megatron | |
from megatron.model import GPTModel | |
from megatron.training import get_model | |
from megatron.text_generation_utils import generate_and_write_samples_unconditional | |
from megatron.text_generation_utils import generate_samples_input_from_file | |
from megatron.text_generation_utils import generate_samples_interactive | |
import deepspeed | |
import torch | |
from megatron.arguments import core_transformer_config_from_args | |
from megatron import get_args | |
def model_provider(pre_process=True, post_process=True): | |
"""Build the model.""" | |
args = get_args() | |
config = core_transformer_config_from_args(args) | |
print_rank_0('building GPT model ...') | |
model = GPTModel(config=config, num_tokentypes=0, parallel_output=False, | |
pre_process=pre_process, post_process=post_process, | |
return_moe_loss=False) # we need to set "return_moe_loss" for the inference_mode | |
return model | |
def add_text_generate_args(parser): | |
"""Text generation arguments.""" | |
group = parser.add_argument_group(title='text generation') | |
group.add_argument("--temperature", type=float, default=1.0, | |
help='Sampling temperature.') | |
group.add_argument("--greedy", action='store_true', default=False, | |
help='Use greedy sampling.') | |
group.add_argument("--top_p", type=float, default=0.0, | |
help='Top p sampling.') | |
group.add_argument("--top_k", type=int, default=0, | |
help='Top k sampling.') | |
group.add_argument("--out-seq-length", type=int, default=1024, | |
help='Size of the output generated text.') | |
group.add_argument("--sample-input-file", type=str, default=None, | |
help='Get input from file instead of interactive mode, ' | |
'each line is an input.') | |
group.add_argument("--sample-output-file", type=str, default=None, | |
help='Output file got from --sample-input-file') | |
group.add_argument("--num-samples", type=int, default=0, | |
help='Number of samples to generate unconditionally, ' | |
'defaults to 0 and interactive conditional sampling') | |
group.add_argument("--genfile", type=str, | |
help='Output file when generating unconditionally') | |
group.add_argument("--recompute", action='store_true', | |
help='During generation recompute all attention ' | |
'instead of using previously computed keys/values.') | |
group.add_argument("--local_rank", type=int, default=0, | |
help='local_rank') | |
return parser | |
def print_latency(latency_set, title=""): | |
# 10 warmup queries | |
latency_set = latency_set[10:] | |
count = len(latency_set) | |
if count > 0: | |
latency_set.sort() | |
n50 = (count - 1) * 0.5 + 1 | |
n90 = (count - 1) * 0.9 + 1 | |
n95 = (count - 1) * 0.95 + 1 | |
n99 = (count - 1) * 0.99 + 1 | |
n999 = (count - 1) * 0.999 + 1 | |
avg = sum(latency_set) / count | |
p50 = latency_set[int(n50) - 1] | |
p90 = latency_set[int(n90) - 1] | |
p95 = latency_set[int(n95) - 1] | |
p99 = latency_set[int(n99) - 1] | |
p999 = latency_set[int(n999) - 1] | |
print("====== latency stats {0} ======", title) | |
print("\tAvg Latency: {0:8.2f} ms".format(avg * 1000)) | |
print("\tP50 Latency: {0:8.2f} ms".format(p50 * 1000)) | |
print("\tP90 Latency: {0:8.2f} ms".format(p90 * 1000)) | |
print("\tP95 Latency: {0:8.2f} ms".format(p95 * 1000)) | |
print("\tP99 Latency: {0:8.2f} ms".format(p99 * 1000)) | |
print("\t999 Latency: {0:8.2f} ms".format(p999 * 1000)) | |
def main(): | |
"""Main program.""" | |
latencies = [] | |
model_latencies = [] | |
single_token_latency = [] | |
initialize_megatron(extra_args_provider=add_text_generate_args, | |
args_defaults={'tokenizer_type': 'GPT2BPETokenizer', | |
'no_load_rng': True, | |
'no_load_optim': True}) | |
args = get_args() | |
if args.num_layers_per_virtual_pipeline_stage is not None: | |
print("Interleaved pipeline schedule is not yet supported for text generation.") | |
exit() | |
# Set up model and load checkpoint. | |
model = get_model(model_provider) | |
if args.load is not None: | |
_ = load_checkpoint(model, None, None) | |
assert len(model) == 1, "Above condition should have caught this" | |
model = model[0] | |
if args.ds_inference: | |
model = ds_inference(model, args) | |
print('> DeepSpeed Inference engine initialized') | |
# Generate samples. | |
if args.num_samples == 0: | |
args.micro_batch_size = 1 | |
if args.sample_input_file != None: | |
generate_samples_input_from_file(model) | |
else: | |
generate_samples_interactive(model) | |
else: | |
generate_and_write_samples_unconditional(model, latencies, single_token_latency, model_latencies) | |
#if torch.cuda.current_device() == 0: | |
if torch.distributed.get_rank() == 0: | |
print_latency(latencies) | |
print_latency(model_latencies, "model_latencies") | |
print_latency(single_token_latency, "single_token_latency") | |
def ds_inference(model, args): | |
import megatron.model as mm | |
engine = deepspeed.init_inference(model=model, | |
mp_size=args.tensor_model_parallel_size, | |
tensor_parallel={"mpu": mpu}, | |
dtype=torch.half, | |
replace_with_kernel_inject=True, | |
moe_experts=args.num_experts, | |
moe_type=args.mlp_type) | |
return engine.module | |
if __name__ == "__main__": | |
main() | |