peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tools
/openwebtext
/find_duplicates.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
import argparse | |
from functools import partial | |
import itertools | |
import json | |
from lsh import cache, minhash | |
import multiprocessing | |
import numpy as np | |
import time | |
import pickle | |
import sys | |
import os | |
# This function is adapted from: | |
# https://github.com/mattilyra/LSH/blob/master/examples/Introduction.ipynb | |
def shingles(text, char_ngram=5): | |
return set(text[head:head + char_ngram] | |
for head in range(0, len(text) - char_ngram)) | |
# This function is adapted from: | |
# https://github.com/mattilyra/LSH/blob/master/examples/Introduction.ipynb | |
def jaccard(set_a, set_b, args): | |
if len(set_a) < 1 or len(set_b) < 1: | |
return 0.0 | |
intersection = set_a & set_b | |
union = set_a | set_b | |
if args.jaccard == 'min': | |
return len(intersection) / min(len(set_a), len(set_b)) | |
elif args.jaccard == 'max': | |
return len(intersection) / max(len(set_a), len(set_b)) | |
else: | |
return len(intersection) / len(union) | |
def compute_fingerprint(line, key): | |
try: | |
myjson = json.loads(line) | |
url = myjson[key] | |
text = myjson['text'] | |
fingerprint = hasher.fingerprint(text) | |
except Exception as e: | |
print('Error:', e) | |
return None, None, None, False | |
return url, text, fingerprint, True | |
def url_pairs_to_remove(args, bucket_urls, url_doc): | |
remove_urls_list = [] | |
deduped_local, counter_local = 0, 0 | |
iteration = 0 | |
while len(bucket_urls) > 1: | |
if args.heuristic_iter != -1 and \ | |
iteration == args.heuristic_iter: | |
break | |
items = list(bucket_urls) | |
remove_urls = [] | |
main_url = items[np.random.randint(0, len(items))] | |
main_dhingles = shingles(url_doc[main_url]) | |
for i in range(0, len(items)): | |
counter_local += 1 | |
other_url = items[i] | |
if other_url == main_url: | |
continue | |
other_shingles = shingles(url_doc[other_url]) | |
try: | |
jaccard_sim = jaccard(main_dhingles, other_shingles, args) | |
except Exception as e: | |
print('Error:', e) | |
jaccard_sim = 0.0 | |
if jaccard_sim > 0.5: | |
remove_urls.append({other_url: jaccard_sim}) | |
deduped_local += 1 | |
bucket_urls.remove(other_url) | |
bucket_urls.remove(main_url) | |
if len(remove_urls) > 0: | |
remove_urls_list.append({main_url: remove_urls}) | |
iteration += 1 | |
return remove_urls_list, deduped_local, counter_local | |
def write_remove_urls_list(remove_urls_list, f_out): | |
if len(remove_urls_list) > 0: | |
for each_url_remove in remove_urls_list: | |
myjson = json.dumps(each_url_remove, ensure_ascii=False) | |
f_out.write(myjson.encode('utf-8')) | |
f_out.write('\n'.encode('utf-8')) | |
def compute_jaccard(each_bin, num_bins, start_time_local): | |
remove_urls_list = [] | |
deduped_local, counter_local, bucket_local = 0, 0, 0 | |
for bucket_id in each_bin: | |
bucket_local += 1 | |
if os.getpid() % num_bins == 0 and bucket_local % 100000 == 0: | |
print("Counter {}, progress {:.2f} time {:.2f}".\ | |
format(bucket_local, float(bucket_local)/float(len(each_bin)),\ | |
time.time() - start_time_local), flush=True) | |
if len(each_bin[bucket_id]) <= 1: | |
continue | |
bucket_urls = each_bin[bucket_id].copy() | |
remove_urls_list_sub, deduped_local_sub, counter_local_sub = \ | |
url_pairs_to_remove(args, bucket_urls, url_doc) | |
deduped_local += deduped_local_sub | |
counter_local += counter_local_sub | |
if len(remove_urls_list_sub) > 0: | |
remove_urls_list.extend(remove_urls_list_sub) | |
return remove_urls_list, deduped_local, counter_local | |
def find_pair_urls_parallel(args, lshcache, url_doc): | |
start_time = time.time() | |
f_out = open(args.output, 'wb') | |
deduped, counter = 0, 0 | |
# compute jaccards of buckets in bin in parallel (parallelism | |
# limited to # of bins) | |
num_bins = len(lshcache.bins) | |
pool = multiprocessing.Pool(num_bins) | |
compute_jaccard_partial = partial(compute_jaccard, num_bins=num_bins, \ | |
start_time_local=start_time) | |
# don't need to pass args and url_doc as they are already shared | |
compute_jaccard_iter = pool.imap(compute_jaccard_partial, lshcache.bins) | |
print("multiprocessing init took {:.2f}".format(time.time() - start_time),\ | |
flush=True) | |
for remove_urls_list, deduped_local, counter_local in compute_jaccard_iter: | |
deduped += deduped_local | |
counter += counter_local | |
write_remove_urls_list(remove_urls_list, f_out) | |
print(' [write]> processed {} documents in {:.2f} ' | |
'seoncds and deduped {} documents ...'.format(counter, time.time()\ | |
- start_time, deduped), flush=True) | |
pool.close() | |
pool.join() | |
f_out.close() | |
print(' Taken time for jaccard similariries {:.2f} seconds'.format(\ | |
time.time() - start_time), flush=True) | |
def find_pair_urls_sequential(args, lshcache, url_doc): | |
start_time = time.time() | |
f_out = open(args.output, 'wb') | |
deduped, counter = 0, 0 | |
for b in lshcache.bins: | |
for bucket_id in b: | |
if len(b[bucket_id]) <= 1: | |
continue | |
bucket_urls = b[bucket_id].copy() | |
remove_urls_list_sub, deduped_local_sub, counter_local_sub = \ | |
url_pairs_to_remove(args, bucket_urls, url_doc) | |
deduped += deduped_local_sub | |
counter += counter_local_sub | |
write_remove_urls_list(remove_urls_list_sub, f_out) | |
if counter % 10000 == 0: | |
print(' [write]> processed {} documents in {:.2f} ' | |
'seoncds and deduped {} documents ...'. | |
format(counter, time.time() - start_time, | |
deduped), flush=True) | |
f_out.close() | |
print(' [write]> processed {} documents in {:.2f} ' | |
'seoncds and deduped {} documents ...'. | |
format(counter, time.time() - start_time, | |
deduped), flush=True) | |
if __name__ == '__main__': | |
print('parsing the arguments ...') | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--seed', type=int, default=1234, | |
help='Random seed used for python, numpy') | |
parser.add_argument('--inputs', nargs = '*', default=None, help = \ | |
'Pairwise list of the input files and keys, ' | |
'e.g. --inputs cc.json cc_id news.json news_id') | |
parser.add_argument('--load-fingerprints', nargs = '*', default=None, | |
help='Load fingerprints from a list of pickle files,' | |
' e.g. cc.pkl news.pkl') | |
parser.add_argument('--save-fingerprints', type=str, default=None, | |
help='Save the fingerprints of the inputs.') | |
parser.add_argument('--output', type=str, default=None, | |
help='Output file name that consists of all ids' | |
' with matching similarities') | |
parser.add_argument('--jaccard', type=str, default='union', | |
choices=['union', 'min', 'max'], help='Jaccard'\ | |
' similarity computation') | |
parser.add_argument('--heuristic-iter', type=int, default=1, | |
help='Number of iterations to run the heuristics' | |
': use -1 for exact') | |
parser.add_argument('--num-bands', type=int, default=10, | |
help='Number of bands to use in cache') | |
parser.add_argument('--num-seeds', type=int, default=100, | |
help='Number of seeds to use for minhash. Note that' | |
' this value should be divisible by num-bands') | |
parser.add_argument('--jaccard-parallel', action='store_true', | |
help='Use this to process large number of documents.') | |
args = parser.parse_args() | |
print('finding possible duplicate content ...') | |
# set seed and get an array of seeds of 100 integers | |
np.random.seed(args.seed) | |
seeds = np.random.randint(0, 1e6, size=args.num_seeds) | |
# initialize minhash and lsh cache | |
hasher = minhash.MinHasher(seeds=seeds, char_ngram=5, hashbytes=4) | |
lshcache = cache.Cache(num_bands=args.num_bands, hasher=hasher) | |
url_doc = {} | |
# load fingerprints from pickle file if needed | |
if args.load_fingerprints is not None: | |
for count_fp, fp_file_name in enumerate(args.load_fingerprints): | |
print("Loading fingerprints from pickle file {}".format( | |
fp_file_name), flush=True) | |
fp = open(fp_file_name, "rb") | |
if count_fp == 0: | |
# assign directory for the first pkl | |
lshcache = pickle.load(fp) | |
url_doc = pickle.load(fp) | |
else: | |
# append these to lshcache and url_doc | |
local_lshcache = pickle.load(fp) | |
local_url_doc = pickle.load(fp) | |
for url in local_lshcache.fingerprints.keys(): | |
url_doc[url] = local_url_doc[url] | |
lshcache.add_fingerprint(local_lshcache.fingerprints[url], url) | |
fp.close() | |
counter = 0 | |
start_time = time.time() | |
# compute finger prints of the inputs if any | |
# input file and the key to use as id | |
if args.inputs is not None: | |
print("Computing fingerprints", flush=True) | |
assert len(args.inputs) % 2 == 0 | |
for input_file, key in zip(args.inputs[::2], args.inputs[1::2]): | |
print(' document processing {} with key {}'.format(input_file, key), | |
flush=True) | |
# compute fingerprints in parallel | |
num_workers = 40 | |
pool = multiprocessing.Pool(num_workers) | |
fin = open(input_file, 'r', encoding='utf-8') | |
compute_fingerprint_partial = partial(compute_fingerprint, key=key) | |
compute_fingerprint_iter = pool.imap(compute_fingerprint_partial, | |
fin, 512) | |
# traverse all the texts and add fingerprints | |
for url, text, fingerprint, flag in compute_fingerprint_iter: | |
counter += 1 | |
if flag: | |
url_doc[url] = text | |
lshcache.add_fingerprint(fingerprint, url) | |
if counter % 10000 == 0: | |
print(' [read]> processed {} documents in {:.2f} ' | |
'seconds ...'.format(counter, time.time() - \ | |
start_time), flush=True) | |
fin.close() | |
pool.close() | |
pool.join() | |
# Save the fingerprints if needed | |
if args.save_fingerprints is not None: | |
print("Saving fingerprints to pickle file {}".format( | |
args.save_fingerprints), flush=True) | |
with open(args.save_fingerprints, 'wb') as f_save: | |
pickle.dump(lshcache, f_save) | |
pickle.dump(url_doc, f_save) | |
# compute jaccard index of the input texts and write to file if needed | |
if args.output is not None: | |
print("Compute jaccard similarity", flush=True) | |
if args.jaccard_parallel: | |
find_pair_urls_parallel(args, lshcache, url_doc) | |
else: | |
find_pair_urls_sequential(args, lshcache, url_doc) | |
print('done :-)') | |