peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tools
/retro
/db
/dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
import json | |
import numpy as np | |
import torch | |
from tqdm import tqdm | |
from megatron import get_args, print_rank_0 | |
from tools.retro.external_libs import h5py | |
from tools.retro.utils import get_gpt_tokenizer | |
class DBDataset(torch.utils.data.Dataset): | |
'''Dataset for iterating chunks. | |
Requires: | |
- List of indexed datasets | |
- Chunk index array, with format: | |
[dataset_idx, doc_id, start_idx, end_idx, bert_length]) | |
''' | |
def __init__(self, db_path, indexed_datasets, chunks, max_chunk_length): | |
assert chunks.shape[1] == 5, "expected 5 columns (dataset_idx, " \ | |
"doc_idx, token_start_idx, token_end_idx, bert_chunk_length); " \ | |
"found %d columns." % chunks.shape[1] | |
self.db_path = db_path | |
self.indexed_datasets = indexed_datasets | |
self.chunks = chunks | |
self.doc_chunk_map = None | |
self.max_chunk_length = max_chunk_length | |
self.eod_token_id = get_gpt_tokenizer().eod | |
def __len__(self): | |
return self.chunks.shape[0] | |
def __getitem__(self, chunk_id): | |
# Chunk start/end indexes. | |
indexed_dataset_id, doc_id, token_start_idx, token_end_idx, _ = \ | |
[ value.item() for value in self.chunks[chunk_id] ] | |
chunk_length = token_end_idx - token_start_idx | |
indexed_dataset = self.indexed_datasets[indexed_dataset_id] | |
# Chunk token ids. | |
token_ids = indexed_dataset.get(doc_id, | |
offset=token_start_idx, | |
length=chunk_length) | |
# Extend chunks to max_chunk_length by padding with EOD tokens. | |
if chunk_length != self.max_chunk_length: | |
assert chunk_length < self.max_chunk_length, "invalid chunk len." | |
token_ids = token_ids.tolist() | |
token_ids += [self.eod_token_id] * \ | |
(self.max_chunk_length - chunk_length) | |
return { | |
"doc_id" : doc_id, | |
"text" : np.array(token_ids, dtype=np.int64), | |
} | |
def load_doc_tuples(self): | |
'''Load the dataset & document ids. | |
Load the dataset id & document id of each chunk in the database, to | |
be used for causality filtering during querying. | |
''' | |
self.doc_tuples = np.zeros(shape=(len(self), 2), dtype="uint32") | |
block_size = int(1e6) | |
for start_idx in tqdm(range(0, len(self), block_size)): | |
end_idx = min(len(self), start_idx + block_size) | |
self.doc_tuples[start_idx:end_idx]=self.chunks[start_idx:end_idx,:2] | |