peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tools
/retro
/index
/build.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
import numpy as np | |
import os | |
import shutil | |
import torch | |
from tqdm import tqdm | |
from megatron import get_retro_args, print_rank_0 | |
from tools.bert_embedding import DiskDataParallelBertEmbedder | |
from tools.retro.db.utils import ( | |
get_indexed_dataset_infos, | |
get_merged_sampled_dataset, | |
get_merged_train_dataset, | |
) | |
from tools.retro.external_libs import h5py | |
from tools.retro.index.factory import IndexFactory | |
from tools.retro.utils import GPTToTextDataset | |
from .utils import ( | |
get_training_data_block_dir, | |
get_training_data_block_paths, | |
get_training_data_merged_path, | |
get_training_data_root_dir, | |
) | |
################################################## | |
# Train index. | |
################################################## | |
def get_empty_index_path(): | |
'''Path of empty index.''' | |
args = get_retro_args() | |
index = IndexFactory.get_index(args.retro_index_type) | |
empty_index_path = index.get_empty_index_path() | |
return empty_index_path | |
def get_block_nload(block_path, load_fraction): | |
with h5py.File(block_path) as fi: | |
return int(load_fraction * fi["data"].shape[0]) | |
def merge_embedding_blocks(): | |
if torch.distributed.get_rank() != 0: | |
return | |
args = get_retro_args() | |
# Get block, merged paths. | |
load_fraction = args.retro_index_train_load_fraction | |
block_paths = get_training_data_block_paths() | |
bin_path = get_training_data_merged_path() | |
# Skip, if already built. | |
if os.path.exists(bin_path): | |
return | |
# Merge blocks. | |
with open(bin_path, "wb") as fo: | |
byte_offset = 0 | |
for block_idx, block_path in \ | |
enumerate(tqdm(block_paths, "merge train embeddings")): | |
with h5py.File(block_path) as fi: | |
nload = get_block_nload(block_path, load_fraction) | |
block = np.array(fi["data"][:nload], copy = False) | |
fo.write(block.tobytes()) | |
byte_offset += block.size * block.itemsize | |
fo.seek(byte_offset) | |
def embed_db(): | |
'''Embed DB chunks. | |
Store chunks in blocks on disk. These blocks will later be merged into | |
a single dataset for training the index. | |
''' | |
args = get_retro_args() | |
merged_train_data_path = get_training_data_merged_path() | |
if os.path.exists(merged_train_data_path): | |
return | |
# Get db dataset. | |
gpt_dataset = get_merged_sampled_dataset() | |
text_dataset = GPTToTextDataset(gpt_dataset) | |
# Embed dataset. | |
embedder = DiskDataParallelBertEmbedder(args.retro_bert_batch_size, | |
args.retro_bert_max_chunk_length, | |
args.retro_block_size, | |
args.bert_embedder_type) | |
embedder.embed_text_dataset("index", | |
get_training_data_block_dir(), | |
text_dataset) | |
# Merge embeddings. | |
merge_embedding_blocks() | |
def train_on_embeddings(): | |
'''Train index on embedded DB chunks.''' | |
args = get_retro_args() | |
index = IndexFactory.get_index(args.retro_index_type) | |
index.train() | |
def remove_embeddings(): | |
'''Remove embeddings after training.''' | |
torch.distributed.barrier() | |
if torch.distributed.get_rank() != 0: | |
return | |
empty_index_path = get_empty_index_path() | |
assert os.path.isfile(empty_index_path) | |
shutil.rmtree(get_training_data_root_dir(), ignore_errors=True) | |
def train_index(): | |
'''Train index on DB chunks.''' | |
args = get_retro_args() | |
# Check if trained index already exists. | |
if not os.path.isfile(get_empty_index_path()): | |
# Embed training chunks. | |
embed_db() | |
# Train index on embeddings. | |
train_on_embeddings() | |
# Wait for (single-process) training to complete. | |
torch.distributed.barrier() | |
# Remove embeddings. | |
if args.retro_index_delete_training_embeddings: | |
remove_embeddings() | |
################################################## | |
# Add to index. | |
################################################## | |
def add_to_index(): | |
'''Add DB chunks to index.''' | |
args = get_retro_args() | |
# Get index. | |
index = IndexFactory.get_index(args.retro_index_type) | |
# Get text dataset. | |
gpt_dataset = get_merged_train_dataset() | |
text_dataset = GPTToTextDataset(gpt_dataset) | |
# Add to index. | |
output_index_path = index.add(text_dataset) | |
return output_index_path | |
################################################## | |
# Build index (train + add). | |
################################################## | |
def build_index(): | |
'''Build index. | |
Building index involves sequentially running stages above: | |
- Train index (on sampled training chunks). | |
- Add to index (on all training chunks). | |
''' | |
# Train index. | |
train_index() | |
# Add to index. | |
add_to_index() | |