peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Model-References
/MLPERF3.1
/Inference
/code
/scenarios.yaml
benchmarks: | |
gptj-99: | |
"rouge1": 42.556635 | |
"rouge2": 19.922265 | |
"rougeL": 29.688219 | |
"gen_len": 3615191 | |
gptj-99.9: | |
"rouge1": 42.9435135 | |
"rouge2": 20.1033765 | |
"rougeL": 29.9581119 | |
"gen_len": 3615191 | |
gptj: | |
"rouge1": 42.9865 | |
"rouge2": 20.1235 | |
"rougeL": 29.9881 | |
"gen_len": 3615191 | |
scenarios: | |
gptj-99.9-bf16: | |
dataset: cnn_dailymail | |
code_dir: gpt-j | |
benchmark: gptj-99.9 | |
command: python main.py --device socket --num_workers 8 --user_conf configs/bf16.conf | |
precision: bf16 | |
batch_size: 12 | |
gptj-99-fp8: | |
dataset: cnn_dailymail | |
code_dir: gpt-j | |
benchmark: gptj-99 | |
command: PT_USE_FP8_143=1 UPDATE_MME_OUTPUT_PRECISION_FILTER="v_proj,matmul_av" ENABLE_EXPERIMENTAL_FLAGS=true python main.py -qf quantization/configuration/examples/quant_on.json --device socket --num_workers 8 --user_conf configs/fp8-99.conf --dtype float8 | |
precision: fp8 | |
batch_size: 32 | |
gptj-99.9-fp8: | |
dataset: cnn_dailymail | |
code_dir: gpt-j | |
benchmark: gptj-99.9 | |
command: PT_USE_FP8_143=1 UPDATE_MME_OUTPUT_PRECISION_FILTER="v_proj,matmul_av" ENABLE_EXPERIMENTAL_FLAGS=true python main.py -qf quantization/configuration/examples/quant_on.json --device socket --num_workers 8 --user_conf configs/fp8-99.conf --dtype float8 | |
precision: fp8 | |
batch_size: 32 | |