peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Model-References
/modifytrain.py
from datasets import concatenate_datasets, load_dataset, load_from_disk | |
import argparse | |
from tokenizers import Tokenizer, decoders, models, pre_tokenizers, processors, trainers | |
from transformers import GPT2TokenizerFast, AutoTokenizer | |
from datasets import config | |
import logging | |
def initialize_logger(log_file): | |
logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s: %(message)s') | |
def log_parameters(vocab_size, batch_size, fertility_score, proportion_continued_words, log_file='parameters.log'): | |
initialize_logger(log_file) | |
logging.info(f"Vocabulary Size: {vocab_size}, Batch Size: {batch_size}, Fertility Score: {fertility_score}, Proportion of Continued word: {proportion_continued_words}") | |
def parse_arguments(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--batch_size", | |
type=int, | |
required=True, | |
help="Batch size to use for training" | |
) | |
parser.add_argument( | |
"--vocab_size", | |
type=int, | |
required=True, | |
help="Vocabulary size to use for tokenizer" | |
) | |
parser.add_argument( | |
"--use_config", | |
choices=['xlm-roberta', 'vanilla'], | |
required=True, | |
help="Use XLM-RoBERTa config or Vanilla BPE" | |
) | |
parser.add_argument( | |
"--do_evaluate", | |
action='store_true', | |
help="Enable evaluation." | |
) | |
args = parser.parse_known_args() | |
return args | |
def calculate_proportion_continued_words(tokenizer, sentences): | |
total_continued_words = 0 | |
total_words = 0 | |
for sentence in sentences: | |
tok = tokenizer.encode_plus(sentence, return_tensors="pt") | |
input_ids = tok['input_ids'].squeeze(0) | |
continued_word = False | |
for i in range(1, len(input_ids)): | |
if input_ids[i] != tokenizer.pad_token_id: | |
if continued_word: | |
total_continued_words += 1 | |
continued_word = True | |
else: | |
continued_word = False | |
total_words += len(sentence.split()) | |
proportion_continued_words = total_continued_words / total_words if total_words > 0 else 0 | |
return proportion_continued_words | |
def train_tokenizer(args): | |
# configs = ['as', 'bd', 'bn', 'dg', 'en', 'gom', 'gu', 'hi', 'kha', 'kn', 'ks', 'mai', 'ml', 'mni', 'mr', 'ne', 'or', 'pa', 'sa', 'sat', 'sd', 'ta', 'te', 'ur'] | |
indic_datasets = [] | |
configs=['hi'] | |
# for c in configs: | |
# indic_dataset = load_dataset('satpalsr/indicCorpv2', c, split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/') | |
# indic_datasets.extend(indic_dataset) | |
# wikidataset= load_dataset('wiki40b', 'en', split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/') | |
indic_datasets_hi= load_dataset('satpalsr/indicCorpv2', 'hi', split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/') | |
indic_datasets_en= load_dataset('satpalsr/indicCorpv2', 'en', split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/') | |
# = wikidataset.remove_columns(['wikidata_id', 'version_id']) | |
print(indic_datasets) | |
# print(wikidataset) | |
dataset = concatenate_datasets([indic_datasets_en,indic_datasets_hi]) | |
#test_data = load_from_disk('samanantar_data') | |
#test_data = dataset['text'][:10000] | |
#print(f"[INFO] {len(test_data)}") | |
#print(f"[INFO] {len(dataset)}") | |
# print(f"[INFO] {test_data[:10]}") | |
def batch_iterator(): | |
for idx in range(0, len(dataset), args.batch_size): | |
yield dataset[idx: idx + args.batch_size]['text'] | |
if args.use_config == 'vanilla': | |
tokenizer = Tokenizer(models.BPE()) | |
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False) | |
print(f"[INFO] The brown fox jumped over the lazy dog\n{tokenizer.pre_tokenizer.pre_tokenize_str('The brown fox jumped over the lazy dog')}") | |
print(f"[INFO] Training...") | |
trainer = trainers.BpeTrainer(vocab_size=args.vocab_size, special_tokens=["<|endoftext|>"]) | |
tokenizer.train_from_iterator(batch_iterator(), trainer=trainer) | |
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False) | |
tokenizer.decoder = decoders.ByteLevel() | |
trained_tokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer) | |
elif args.use_config == 'xlm-roberta': | |
print("skipped") | |
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base') | |
trained_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(), vocab_size=args.vocab_size) | |
trained_tokenizer.save_pretrained('hi-bgpt-bpe-tokenizer1') | |
print(f"[INFO] Tokenizer saved to disk") | |
if args.do_evaluate: | |
print(f"[INFO] Running evaluation using fertility and fraction of continued words") | |
tokenizer = AutoTokenizer.from_pretrained('hi-bgpt-bpe-tokenizer1') | |
# tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base') | |
fertility = 0 | |
for sentence in test_data: | |
tok=tokenizer(sentence) | |
fertility += len(tok['input_ids']) / len(sentence.split()) | |
average_fertility = fertility / len(test_data) | |
proportion_continued_words = calculate_proportion_continued_words(tokenizer, test_data) | |
log_parameters(args.vocab_size, args.batch_size, average_fertility, proportion_continued_words) | |
def main(): | |
args, _ = parse_arguments() | |
train_tokenizer(args) | |
if __name__ == "__main__": | |
main() | |