applied-ai-018 commited on
Commit
139e0cf
·
verified ·
1 Parent(s): c040012

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/common.py +37 -0
  2. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/common.sh +126 -0
  3. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/debug.py +132 -0
  4. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/modeling/model_training_utils.py +491 -0
  5. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/modeling/performance.py +56 -0
  6. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/modeling/tf_utils.py +175 -0
  7. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/training/__init__.py +14 -0
  8. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/training/grad_utils.py +143 -0
  9. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/training/runnable.py +79 -0
  10. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/training/standard_runnable.py +184 -0
  11. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/training/utils.py +342 -0
  12. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/__init__.py +0 -0
  13. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/README.md +97 -0
  14. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/__init__.py +0 -0
  15. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_base.py +163 -0
  16. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_device.py +85 -0
  17. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_distribution.py +54 -0
  18. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/core.py +133 -0
  19. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/hyperparams_flags.py +119 -0
  20. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/__init__.py +0 -0
  21. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/cloud_lib.py +34 -0
  22. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/guidelines.md +58 -0
  23. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/hooks.py +130 -0
  24. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/hooks_helper.py +172 -0
  25. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/logger.py +423 -0
  26. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/metric_hook.py +97 -0
  27. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/mlperf_helper.py +192 -0
  28. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/__init__.py +0 -0
  29. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/callstack_sampler.py +62 -0
  30. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/distribution_utils.py +345 -0
  31. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/keras_utils.py +262 -0
  32. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/model_helpers.py +93 -0
  33. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/tpu_lib.py +34 -0
  34. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/__init__.py +0 -0
  35. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/benchmark_wrappers.py +83 -0
  36. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/integration.py +71 -0
  37. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/mock_lib.py +36 -0
  38. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/perfzero_benchmark.py +90 -0
  39. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/pylint.rcfile +168 -0
  40. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/scripts/builds_common.sh +64 -0
  41. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/scripts/ci_sanity.sh +132 -0
  42. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/scripts/presubmit.sh +73 -0
  43. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/configs/train_01x08x08.yaml +158 -0
  44. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/configs/train_02x08x08.yaml +158 -0
  45. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/configs/train_08x08x08.yaml +158 -0
  46. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/configs/train_32x08x08.yaml +156 -0
  47. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/ldm/data/base.py +76 -0
  48. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/ldm/data/utils.py +52 -0
  49. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/ldm/lr_scheduler.py +98 -0
  50. docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/ldm/models/autoencoder.py +227 -0
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/common.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ###############################################################################
2
+ # Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
3
+ ###############################################################################
4
+
5
+ import os
6
+ import logging
7
+ import subprocess
8
+ import sys
9
+ _log = logging.getLogger(__file__)
10
+
11
+
12
+ def setup_jemalloc() -> None:
13
+ """
14
+ Setup libjemalloc.so.1 or libjemalloc.so.1 (depending on the OS version)
15
+ by exporting LD_PRELOAD env variable.
16
+ """
17
+ _log.info("libjemalloc.so has been requested")
18
+ paths = {"LD_LIBRARY_PATH"}
19
+ env_vals = [os.environ[x] for x in paths if os.environ.get(x) is not None]
20
+ env_vals.extend(["/usr/lib/x86_64-linux-gnu"])
21
+ sep = ":"
22
+ final_path = None
23
+ locations = sep.join(env_vals).split(sep)
24
+ for path in locations:
25
+ if path:
26
+ libpath = f"{path}/libjemalloc.so.1"
27
+ if os.path.isfile(libpath):
28
+ final_path = os.path.realpath(libpath)
29
+ for path in locations:
30
+ if path:
31
+ libpath = f"{path}/libjemalloc.so.2"
32
+ if os.path.isfile(libpath):
33
+ final_path = os.path.realpath(libpath)
34
+ if final_path:
35
+ os.environ["LD_PRELOAD"] = f"{final_path}:{os.environ.get('LD_PRELOAD', '')}"
36
+ else:
37
+ raise FileExistsError("Neither libjemalloc.so.1 nor libjemalloc.so.2 found.")
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/common.sh ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ ###############################################################################
3
+ # Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
4
+ ###############################################################################
5
+
6
+ function print_error()
7
+ {
8
+ >&2 printf "\033[0;31mError: $1\n\033[0m"
9
+ }
10
+
11
+ function print_warning()
12
+ {
13
+ >&2 printf "\033[0;33mWarning: $1\n\033[0m"
14
+ }
15
+
16
+ function find_library()
17
+ {
18
+ local name="${1}"
19
+ local path
20
+ local libpath
21
+ local LOCATIONS
22
+
23
+ LOCATIONS="${LD_LIBRARY_PATH}:${BUILD_ROOT_LATEST}:${TF_MODULES_RELEASE_BUILD}:${TF_MODULES_DEBUG_BUILD}"
24
+
25
+ OLD_IFS="${IFS}"
26
+ IFS=":"
27
+ for path in ${LOCATIONS}; do
28
+ if [ ! -z "${path}" ]; then
29
+ libpath="${path}/${name}"
30
+ if [ -e "${libpath}" ]; then
31
+ readlink -f "${libpath}"
32
+ break
33
+ fi
34
+ fi
35
+ done
36
+ IFS="${OLD_IFS}"
37
+ }
38
+
39
+ function generate_mpi_hostfile()
40
+ {
41
+ echo "Generating MPI hostfile..."
42
+ local num_nodes=${2:-8}
43
+ local file_name="hostfile"
44
+ export MPI_HOSTFILE_PATH=$1/${file_name}
45
+
46
+ rm -rf ${MPI_HOSTFILE_PATH}
47
+ echo "PATH: ${MPI_HOSTFILE_PATH}"
48
+ touch ${MPI_HOSTFILE_PATH}
49
+
50
+ IFS=',' read -ra IPS <<< "$MULTI_HLS_IPS"
51
+ for i in "${IPS[@]}"; do
52
+ echo "$i slots=${num_nodes}" >> ${MPI_HOSTFILE_PATH}
53
+ done
54
+
55
+ echo "Config: "
56
+ cat ${MPI_HOSTFILE_PATH}
57
+ }
58
+
59
+ function run_per_ip()
60
+ {
61
+ if [ -n "$OMPI_COMM_WORLD_SIZE" ]; then
62
+ print_error "Function run_per_ip is not meant to be ran from within an OpenMPI context. It is intended to invoke mpirun by itelf."
63
+ exit 1
64
+ fi
65
+
66
+ _cmd="$@"
67
+
68
+ # Due to technical difficulties with the following solution, the _cmd stderr shall be redirected to stdout.
69
+ if [[ -z ${MULTI_HLS_IPS} ]]; then
70
+ $_cmd 2>&1
71
+ else
72
+ if [ -n "$MPI_TPC_INCLUDE" ]; then
73
+ _option_btl_tcp_if_include="--mca btl_tcp_if_include ${MPI_TPC_INCLUDE}"
74
+ else
75
+ _option_btl_tcp_if_include=""
76
+ fi
77
+
78
+ mpirun --allow-run-as-root \
79
+ --mca plm_rsh_args -p3022 \
80
+ ${_option_btl_tcp_if_include} \
81
+ --tag-output \
82
+ --merge-stderr-to-stdout \
83
+ --prefix /usr/local/openmpi/ \
84
+ -H ${MULTI_HLS_IPS} \
85
+ bash -c "`declare`; `declare -x`; ($_cmd 2>&1)" 2>/dev/null
86
+ fi
87
+ }
88
+
89
+ function setup_libjemalloc()
90
+ {
91
+ local libjemalloc_1_lib="libjemalloc.so.1"
92
+ local libjemalloc_2_lib="libjemalloc.so.2"
93
+ local is_v2_not_present=`LD_PRELOAD=${libjemalloc_2_lib} head -0 2>&1 > /dev/null`
94
+
95
+ if [ -z "${is_v2_not_present}" ]; then
96
+ export LD_PRELOAD=${libjemalloc_2_lib}:$LD_PRELOAD
97
+ else
98
+ export LD_PRELOAD=${libjemalloc_1_lib}:$LD_PRELOAD
99
+ fi
100
+ }
101
+
102
+ function calc_optimal_cpu_resources_for_mpi()
103
+ {
104
+ # OpenMPI process bind resource type.
105
+ export MPI_MAP_BY=${MPI_MAP_BY:-"socket"}
106
+ echo MPI_MAP_BY=$MPI_MAP_BY
107
+
108
+ # Determine the optimal value of resources per process of OpenMPI binding based on local lscpu.
109
+ if [ "$MPI_MAP_BY" == "socket" ]; then
110
+ __mpi_map_by_pe=`lscpu | grep "CPU(s):" | python3 -c "print(int(input().split()[1])//${NUM_WORKERS_PER_HLS}//2)"`
111
+ elif [ "$MPI_MAP_BY" == "slot" ]; then
112
+ __mpi_map_by_pe=`lscpu | grep "CPU(s):" | python3 -c "print(int(input().split()[1])//${NUM_WORKERS_PER_HLS})"`
113
+ else
114
+ print_error "MPI_MAP_BY must be either 'socket' or 'slot'."
115
+ exit 1;
116
+ fi
117
+ export MPI_MAP_BY_PE=${MPI_MAP_BY_PE:-$__mpi_map_by_pe}
118
+ echo MPI_MAP_BY_PE=$MPI_MAP_BY_PE
119
+
120
+ if [ "$MPI_MAP_BY_PE" -gt "0" ]; then
121
+ __mpirun_args_map_by_pe=" --bind-to core --map-by $MPI_MAP_BY:PE=$MPI_MAP_BY_PE"
122
+ else
123
+ unset __mpirun_args_map_by_pe
124
+ fi
125
+ export MPIRUN_ARGS_MAP_BY_PE=$__mpirun_args_map_by_pe
126
+ }
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/debug.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ ###############################################################################
16
+ # Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
17
+ ###############################################################################
18
+
19
+ from absl import flags
20
+ from absl import logging
21
+ from tensorflow.core.protobuf import debug_event_pb2
22
+ from tensorflow.python.debug.lib import debug_events_writer
23
+ from tensorflow.python.framework import op_callbacks
24
+ from tensorflow.python.ops import gen_debug_ops
25
+ import tensorflow as tf
26
+ import re
27
+ import os
28
+ import json
29
+
30
+ try:
31
+ import horovod.tensorflow as hvd
32
+ except ImportError:
33
+ hvd = None
34
+
35
+
36
+ flags.DEFINE_string(name='dump_config', default=None,
37
+ help='Defines config for tensor dumping')
38
+
39
+
40
+ class _DumpCallback(object):
41
+ def __init__(self, dump_root, tensor_debug_mode, circular_buffer_size, op_regex, output_regex=None):
42
+ self._dump_root = dump_root
43
+ if hvd is not None and hvd.is_initialized():
44
+ self._dump_root = os.path.join(
45
+ self._dump_root, f"rank_{hvd.rank()}")
46
+ self._tensor_debug_mode = debug_event_pb2.TensorDebugMode.Value(
47
+ tensor_debug_mode)
48
+ self._circular_buffer_size = circular_buffer_size
49
+ self._op_regex = re.compile(op_regex) if isinstance(
50
+ op_regex, str) else op_regex
51
+ self._output_regex = re.compile(output_regex) if isinstance(
52
+ output_regex, str) else output_regex
53
+ self._tfdbg_run_id = ''
54
+ self._dump_op_counter = 0
55
+
56
+ debug_writer_args = {
57
+ "dump_root": self._dump_root,
58
+ "circular_buffer_size": self._circular_buffer_size
59
+ }
60
+
61
+ if not tf.__version__.startswith("2.2"):
62
+ debug_writer_args["tfdbg_run_id"] = self._tfdbg_run_id
63
+
64
+ self._writer = debug_events_writer.DebugEventsWriter(
65
+ **debug_writer_args)
66
+
67
+ def callback(self, op_type, inputs, attrs, outputs, op_name=None, graph=None):
68
+ if op_name is not None and self._op_regex.match(op_name):
69
+ graph_name = "missing-graph-name"
70
+ if graph is not None and hasattr(graph, "name"):
71
+ graph_name = graph.name
72
+
73
+ logging.info("Adding dump op for '%s' of type '%s' from graph '%s'" % (
74
+ op_name, op_type, graph_name))
75
+
76
+ new_outputs = []
77
+
78
+ for output_slot, output in enumerate(outputs):
79
+ if self._output_regex is not None and not self._output_regex.match(output.name):
80
+ logging.info("Skipped output: " + output.name)
81
+ new_outputs.append(output)
82
+ continue
83
+ debug_identity_op_kwargs = {
84
+ "tfdbg_context_id": graph_name,
85
+ "op_name": op_name,
86
+ "output_slot": output_slot,
87
+ "tensor_debug_mode": self._tensor_debug_mode,
88
+ "debug_urls": ["file://%s" % self._dump_root],
89
+ "name": "dump_%d" % self._dump_op_counter
90
+ }
91
+
92
+ if not tf.__version__.startswith("2.2"):
93
+ debug_identity_op_kwargs["circular_buffer_size"] = self._circular_buffer_size
94
+ debug_identity_op_kwargs["tfdbg_run_id"] = self._tfdbg_run_id
95
+
96
+ self._dump_op_counter = self._dump_op_counter + 1
97
+ new_outputs.append(gen_debug_ops.debug_identity_v2(
98
+ output, **debug_identity_op_kwargs))
99
+
100
+ return new_outputs
101
+ else:
102
+ return None
103
+
104
+ def __enter__(self, *args, **kwargs):
105
+ op_callbacks.add_op_callback(self.callback)
106
+ logging.info("Enabled tensor dumping")
107
+
108
+ def __exit__(self, *args, **kwargs):
109
+ op_callbacks.remove_op_callback(self.callback)
110
+ logging.info("Disabled tensor dumping")
111
+
112
+ def __del__(self):
113
+ self._writer.Close()
114
+
115
+
116
+ class _Dummy(object):
117
+ def __enter__(self, *args, **kwargs):
118
+ pass
119
+
120
+ def __exit__(self, *args, **kwargs):
121
+ pass
122
+
123
+
124
+ def dump_callback(config_file=None):
125
+ if config_file is not None:
126
+ kwargs = json.load(open(config_file, 'r'))
127
+ return _DumpCallback(**kwargs)
128
+ try:
129
+ kwargs = json.load(open(flags.FLAGS.dump_config, 'r'))
130
+ return _DumpCallback(**kwargs)
131
+ except:
132
+ return _Dummy()
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/modeling/model_training_utils.py ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """A light weight utilities to train NLP models."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import json
22
+ import os
23
+ import tempfile
24
+
25
+ from absl import logging
26
+ import tensorflow as tf
27
+ from TensorFlow.common.training import grad_utils
28
+ from TensorFlow.utils.misc import distribution_utils
29
+
30
+ _SUMMARY_TXT = 'training_summary.txt'
31
+ _MIN_SUMMARY_STEPS = 10
32
+
33
+
34
+ def _should_export_checkpoint(strategy):
35
+ return (not strategy) or strategy.extended.should_checkpoint
36
+
37
+
38
+ def _should_export_summary(strategy):
39
+ return (not strategy) or strategy.extended.should_save_summary
40
+
41
+
42
+ def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
43
+ """Saves model to with provided checkpoint prefix."""
44
+
45
+ if _should_export_checkpoint(strategy):
46
+ checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
47
+ saved_path = checkpoint.save(checkpoint_path)
48
+ logging.info('Saving model as TF checkpoint: %s', saved_path)
49
+ else:
50
+ # In multi worker training we need every worker to save checkpoint, because
51
+ # variables can trigger synchronization on read and synchronization needs
52
+ # all workers to participate. To avoid workers overriding each other we save
53
+ # to a temporary directory on non-chief workers.
54
+ tmp_dir = tempfile.mkdtemp()
55
+ checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
56
+ tf.io.gfile.rmtree(tmp_dir)
57
+ return
58
+
59
+
60
+ def _get_input_iterator(input_fn, strategy):
61
+ """Returns distributed dataset iterator."""
62
+ # When training with TPU pods, datasets needs to be cloned across
63
+ # workers. Since Dataset instance cannot be cloned in eager mode, we instead
64
+ # pass callable that returns a dataset.
65
+ if not callable(input_fn):
66
+ raise ValueError('`input_fn` should be a closure that returns a dataset.')
67
+ iterator = iter(
68
+ strategy.experimental_distribute_datasets_from_function(input_fn))
69
+ return iterator
70
+
71
+
72
+ def _float_metric_value(metric):
73
+ """Gets the value of a float-value keras metric."""
74
+ return metric.result().numpy().astype(float)
75
+
76
+
77
+ def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
78
+ """Calculates steps to run on device."""
79
+ if steps_per_loop <= 0:
80
+ raise ValueError('steps_per_loop should be positive integer.')
81
+ if steps_per_loop == 1:
82
+ return steps_per_loop
83
+ remainder_in_epoch = current_step % steps_per_epoch
84
+ if remainder_in_epoch != 0:
85
+ return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
86
+ else:
87
+ return steps_per_loop
88
+
89
+
90
+ def write_txt_summary(training_summary, summary_dir):
91
+ """Writes a summary text file to record stats."""
92
+ summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
93
+ with tf.io.gfile.GFile(summary_path, 'wb') as f:
94
+ logging.info('Training Summary: \n%s', str(training_summary))
95
+ f.write(json.dumps(training_summary, indent=4))
96
+
97
+
98
+ def run_customized_training_loop(
99
+ # pylint: disable=invalid-name
100
+ _sentinel=None,
101
+ # pylint: enable=invalid-name
102
+ strategy=None,
103
+ model_fn=None,
104
+ loss_fn=None,
105
+ scale_loss=True,
106
+ model_dir=None,
107
+ train_input_fn=None,
108
+ steps_per_epoch=None,
109
+ steps_per_loop=1,
110
+ epochs=1,
111
+ eval_input_fn=None,
112
+ eval_steps=None,
113
+ metric_fn=None,
114
+ init_checkpoint=None,
115
+ custom_callbacks=None,
116
+ run_eagerly=False,
117
+ sub_model_export_name=None,
118
+ explicit_allreduce=False,
119
+ pre_allreduce_callbacks=None,
120
+ post_allreduce_callbacks=None):
121
+ """Run BERT pretrain model training using low-level API.
122
+
123
+ Arguments:
124
+ _sentinel: Used to prevent positional parameters. Internal, do not use.
125
+ strategy: Distribution strategy on which to run low level training loop.
126
+ model_fn: Function that returns a tuple (model, sub_model). Caller of this
127
+ function should add optimizer to the `model` via calling
128
+ `model.compile()` API or manually setting `model.optimizer` attribute.
129
+ Second element of the returned tuple(sub_model) is an optional sub model
130
+ to be used for initial checkpoint -- if provided.
131
+ loss_fn: Function with signature func(labels, logits) and returns a loss
132
+ tensor.
133
+ scale_loss: Whether to divide the raw loss by number of replicas before
134
+ gradients calculation.
135
+ model_dir: Model directory used during training for restoring/saving model
136
+ weights.
137
+ train_input_fn: Function that returns a tf.data.Dataset used for training.
138
+ steps_per_epoch: Number of steps to run per epoch. At the end of each
139
+ epoch, model checkpoint will be saved and evaluation will be conducted
140
+ if evaluation dataset is provided.
141
+ steps_per_loop: Number of steps per graph-mode loop. In order to reduce
142
+ communication in eager context, training logs are printed every
143
+ steps_per_loop.
144
+ epochs: Number of epochs to train.
145
+ eval_input_fn: Function that returns evaluation dataset. If none,
146
+ evaluation is skipped.
147
+ eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
148
+ is not none.
149
+ metric_fn: A metrics function that returns a Keras Metric object to record
150
+ evaluation result using evaluation dataset or with training dataset
151
+ after every epoch.
152
+ init_checkpoint: Optional checkpoint to load to `sub_model` returned by
153
+ `model_fn`.
154
+ custom_callbacks: A list of Keras Callbacks objects to run during
155
+ training. More specifically, `on_batch_begin()`, `on_batch_end()`,
156
+ methods are invoked during training.
157
+ run_eagerly: Whether to run model training in pure eager execution. This
158
+ should be disable for TPUStrategy.
159
+ sub_model_export_name: If not None, will export `sub_model` returned by
160
+ `model_fn` into checkpoint files. The name of intermediate checkpoint
161
+ file is {sub_model_export_name}_step_{step}.ckpt and the last
162
+ checkpint's name is {sub_model_export_name}.ckpt;
163
+ if None, `sub_model` will not be exported as checkpoint.
164
+ explicit_allreduce: Whether to explicitly perform gradient allreduce,
165
+ instead of relying on implicit allreduce in optimizer.apply_gradients().
166
+ default is False. For now, if training using FP16 mixed precision,
167
+ explicit allreduce will aggregate gradients in FP16 format. For TPU and
168
+ GPU training using FP32, explicit allreduce will aggregate gradients in
169
+ FP32 format.
170
+ pre_allreduce_callbacks: A list of callback functions that takes gradients
171
+ and model variables pairs as input, manipulate them, and returns a new
172
+ gradients and model variables paris. The callback functions will be
173
+ invoked in the list order and before gradients are allreduced.
174
+ With mixed precision training, the pre_allreduce_allbacks will be
175
+ applied on scaled_gradients. Default is no callbacks.
176
+ Only used when explicit_allreduce=True.
177
+ post_allreduce_callbacks: A list of callback functions that takes
178
+ gradients and model variables pairs as input, manipulate them, and
179
+ returns a new gradients and model variables paris. The callback
180
+ functions will be invoked in the list order and right before gradients
181
+ are applied to variables for updates. Default is no callbacks. Only used
182
+ when explicit_allreduce=True.
183
+
184
+ Returns:
185
+ Trained model.
186
+
187
+ Raises:
188
+ ValueError: (1) When model returned by `model_fn` does not have optimizer
189
+ attribute or when required parameters are set to none. (2) eval args are
190
+ not specified correctly. (3) metric_fn must be a callable if specified.
191
+ (4) sub_model_checkpoint_name is specified, but `sub_model` returned
192
+ by `model_fn` is None.
193
+ """
194
+
195
+ if _sentinel is not None:
196
+ raise ValueError('only call `run_customized_training_loop()` '
197
+ 'with named arguments.')
198
+
199
+ required_arguments = [
200
+ strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
201
+ ]
202
+ if [arg for arg in required_arguments if arg is None]:
203
+ raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
204
+ '`steps_per_loop` and `steps_per_epoch` are required '
205
+ 'parameters.')
206
+ if steps_per_loop > steps_per_epoch:
207
+ logging.error(
208
+ 'steps_per_loop: %d is specified to be greater than '
209
+ ' steps_per_epoch: %d, we will use steps_per_epoch as'
210
+ ' steps_per_loop.', steps_per_loop, steps_per_epoch)
211
+ steps_per_loop = steps_per_epoch
212
+ assert tf.executing_eagerly()
213
+
214
+ if run_eagerly:
215
+ if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
216
+ raise ValueError(
217
+ 'TPUStrategy should not run eagerly as it heavily relies on graph'
218
+ ' optimization for the distributed system.')
219
+
220
+ if eval_input_fn and (eval_steps is None or metric_fn is None):
221
+ raise ValueError(
222
+ '`eval_step` and `metric_fn` are required when `eval_input_fn ` '
223
+ 'is not none.')
224
+ if metric_fn and not callable(metric_fn):
225
+ raise ValueError(
226
+ 'if `metric_fn` is specified, metric_fn must be a callable.')
227
+
228
+ total_training_steps = steps_per_epoch * epochs
229
+ train_iterator = _get_input_iterator(train_input_fn, strategy)
230
+
231
+ with distribution_utils.get_strategy_scope(strategy):
232
+ # To correctly place the model weights on accelerators,
233
+ # model and optimizer should be created in scope.
234
+ model, sub_model = model_fn()
235
+ if not hasattr(model, 'optimizer'):
236
+ raise ValueError('User should set optimizer attribute to model '
237
+ 'inside `model_fn`.')
238
+ if sub_model_export_name and sub_model is None:
239
+ raise ValueError('sub_model_export_name is specified as %s, but '
240
+ 'sub_model is None.' % sub_model_export_name)
241
+
242
+ optimizer = model.optimizer
243
+
244
+ if init_checkpoint:
245
+ logging.info(
246
+ 'Checkpoint file %s found and restoring from '
247
+ 'initial checkpoint for core model.', init_checkpoint)
248
+ checkpoint = tf.train.Checkpoint(model=sub_model)
249
+ checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
250
+ logging.info('Loading from checkpoint file completed')
251
+
252
+ train_loss_metric = tf.keras.metrics.Mean(
253
+ 'training_loss', dtype=tf.float32)
254
+ eval_metrics = [metric_fn()] if metric_fn else []
255
+ # If evaluation is required, make a copy of metric as it will be used by
256
+ # both train and evaluation.
257
+ train_metrics = [
258
+ metric.__class__.from_config(metric.get_config())
259
+ for metric in eval_metrics
260
+ ]
261
+
262
+ # Create summary writers
263
+ if _should_export_summary(strategy):
264
+ summary_dir = os.path.join(model_dir, 'summaries')
265
+ else:
266
+ # In multi worker training we need every worker to write summary, because
267
+ # variables can trigger synchronization on read and synchronization needs
268
+ # all workers to participate.
269
+ summary_dir = tempfile.mkdtemp()
270
+ eval_summary_writer = tf.summary.create_file_writer(
271
+ os.path.join(summary_dir, 'eval'))
272
+ if steps_per_loop >= _MIN_SUMMARY_STEPS:
273
+ # Only writes summary when the stats are collected sufficiently over
274
+ # enough steps.
275
+ train_summary_writer = tf.summary.create_file_writer(
276
+ os.path.join(summary_dir, 'train'))
277
+ else:
278
+ train_summary_writer = None
279
+
280
+ # Collects training variables.
281
+ training_vars = model.trainable_variables
282
+
283
+ def _replicated_step(inputs):
284
+ """Replicated training step."""
285
+
286
+ inputs, labels = inputs
287
+ with tf.GradientTape() as tape:
288
+ model_outputs = model(inputs, training=True)
289
+ loss = loss_fn(labels, model_outputs)
290
+ # Raw loss is used for reporting in metrics/logs.
291
+ raw_loss = loss
292
+ if scale_loss:
293
+ # Scales down the loss for gradients to be invariant from replicas.
294
+ loss = loss / strategy.num_replicas_in_sync
295
+
296
+ if explicit_allreduce:
297
+ grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
298
+ training_vars,
299
+ pre_allreduce_callbacks,
300
+ post_allreduce_callbacks)
301
+ else:
302
+ if isinstance(optimizer,
303
+ tf.keras.mixed_precision.experimental.LossScaleOptimizer):
304
+ with tape:
305
+ scaled_loss = optimizer.get_scaled_loss(loss)
306
+ scaled_grads = tape.gradient(scaled_loss, training_vars)
307
+ grads = optimizer.get_unscaled_gradients(scaled_grads)
308
+ else:
309
+ grads = tape.gradient(loss, training_vars)
310
+ optimizer.apply_gradients(zip(grads, training_vars))
311
+ # For reporting, the metric takes the mean of losses.
312
+ train_loss_metric.update_state(raw_loss)
313
+ for metric in train_metrics:
314
+ metric.update_state(labels, model_outputs)
315
+
316
+ @tf.function
317
+ def train_steps(iterator, steps):
318
+ """Performs distributed training steps in a loop.
319
+
320
+ Args:
321
+ iterator: the distributed iterator of training datasets.
322
+ steps: an tf.int32 integer tensor to specify number of steps to run
323
+ inside host training loop.
324
+
325
+ Raises:
326
+ ValueError: Any of the arguments or tensor shapes are invalid.
327
+ """
328
+ if not isinstance(steps, tf.Tensor):
329
+ raise ValueError('steps should be an Tensor. Python object may cause '
330
+ 'retracing.')
331
+
332
+ for _ in tf.range(steps):
333
+ strategy.run(_replicated_step, args=(next(iterator),))
334
+
335
+ def train_single_step(iterator):
336
+ """Performs a distributed training step.
337
+
338
+ Args:
339
+ iterator: the distributed iterator of training datasets.
340
+
341
+ Raises:
342
+ ValueError: Any of the arguments or tensor shapes are invalid.
343
+ """
344
+ strategy.run(_replicated_step, args=(next(iterator),))
345
+
346
+ def test_step(iterator):
347
+ """Calculates evaluation metrics on distributed devices."""
348
+
349
+ def _test_step_fn(inputs):
350
+ """Replicated accuracy calculation."""
351
+
352
+ inputs, labels = inputs
353
+ model_outputs = model(inputs, training=False)
354
+ for metric in eval_metrics:
355
+ metric.update_state(labels, model_outputs)
356
+
357
+ strategy.run(_test_step_fn, args=(next(iterator),))
358
+
359
+ if not run_eagerly:
360
+ train_single_step = tf.function(train_single_step)
361
+ test_step = tf.function(test_step)
362
+
363
+ def _run_evaluation(current_training_step, test_iterator):
364
+ """Runs validation steps and aggregate metrics."""
365
+ for _ in range(eval_steps):
366
+ test_step(test_iterator)
367
+
368
+ with eval_summary_writer.as_default():
369
+ for metric in eval_metrics + model.metrics:
370
+ metric_value = _float_metric_value(metric)
371
+ logging.info('Step: [%d] Validation %s = %f', current_training_step,
372
+ metric.name, metric_value)
373
+ tf.summary.scalar(
374
+ metric.name, metric_value, step=current_training_step)
375
+ eval_summary_writer.flush()
376
+
377
+ def _run_callbacks_on_batch_begin(batch):
378
+ """Runs custom callbacks at the start of every step."""
379
+ if not custom_callbacks:
380
+ return
381
+ for callback in custom_callbacks:
382
+ callback.on_batch_begin(batch)
383
+
384
+ def _run_callbacks_on_batch_end(batch, logs):
385
+ """Runs custom callbacks at the end of every step."""
386
+ if not custom_callbacks:
387
+ return
388
+ for callback in custom_callbacks:
389
+ callback.on_batch_end(batch, logs)
390
+
391
+ # Training loop starts here.
392
+ checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
393
+ sub_model_checkpoint = tf.train.Checkpoint(
394
+ model=sub_model) if sub_model_export_name else None
395
+
396
+ latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
397
+ if latest_checkpoint_file:
398
+ logging.info(
399
+ 'Checkpoint file %s found and restoring from '
400
+ 'checkpoint', latest_checkpoint_file)
401
+ checkpoint.restore(latest_checkpoint_file)
402
+ logging.info('Loading from checkpoint file completed')
403
+
404
+ current_step = optimizer.iterations.numpy()
405
+ checkpoint_name = 'ctl_step_{step}.ckpt'
406
+
407
+ while current_step < total_training_steps:
408
+ # Training loss/metric are taking average over steps inside micro
409
+ # training loop. We reset the their values before each round.
410
+ train_loss_metric.reset_states()
411
+ for metric in train_metrics + model.metrics:
412
+ metric.reset_states()
413
+
414
+ _run_callbacks_on_batch_begin(current_step)
415
+ # Runs several steps in the host while loop.
416
+ steps = steps_to_run(current_step, steps_per_epoch, steps_per_loop)
417
+
418
+ if tf.test.is_built_with_cuda():
419
+ # TODO(zongweiz): merge with train_steps once tf.while_loop
420
+ # GPU performance bugs are fixed.
421
+ for _ in range(steps):
422
+ train_single_step(train_iterator)
423
+ else:
424
+ # Converts steps to a Tensor to avoid tf.function retracing.
425
+ train_steps(train_iterator,
426
+ tf.convert_to_tensor(steps, dtype=tf.int32))
427
+ train_loss = _float_metric_value(train_loss_metric)
428
+ current_step += steps
429
+ _run_callbacks_on_batch_end(current_step - 1, {'loss': train_loss})
430
+
431
+ # Updates training logging.
432
+ training_status = 'Train Step: %d/%d / loss = %s' % (
433
+ current_step, total_training_steps, train_loss)
434
+
435
+ if train_summary_writer:
436
+ with train_summary_writer.as_default():
437
+ tf.summary.scalar(
438
+ train_loss_metric.name, train_loss, step=current_step)
439
+ for metric in train_metrics + model.metrics:
440
+ metric_value = _float_metric_value(metric)
441
+ training_status += ' %s = %f' % (metric.name, metric_value)
442
+ tf.summary.scalar(metric.name, metric_value, step=current_step)
443
+ train_summary_writer.flush()
444
+ logging.info(training_status)
445
+
446
+ # Saves model checkpoints and run validation steps at every epoch end.
447
+ if current_step % steps_per_epoch == 0:
448
+ # To avoid repeated model saving, we do not save after the last
449
+ # step of training.
450
+ if current_step < total_training_steps:
451
+ _save_checkpoint(strategy, checkpoint, model_dir,
452
+ checkpoint_name.format(step=current_step))
453
+ if sub_model_export_name:
454
+ _save_checkpoint(
455
+ strategy, sub_model_checkpoint, model_dir,
456
+ '%s_step_%d.ckpt' % (sub_model_export_name, current_step))
457
+ if eval_input_fn:
458
+ logging.info('Running evaluation after step: %s.', current_step)
459
+ _run_evaluation(current_step,
460
+ _get_input_iterator(eval_input_fn, strategy))
461
+ # Re-initialize evaluation metric.
462
+ for metric in eval_metrics + model.metrics:
463
+ metric.reset_states()
464
+
465
+ _save_checkpoint(strategy, checkpoint, model_dir,
466
+ checkpoint_name.format(step=current_step))
467
+ if sub_model_export_name:
468
+ _save_checkpoint(strategy, sub_model_checkpoint, model_dir,
469
+ '%s.ckpt' % sub_model_export_name)
470
+
471
+ if eval_input_fn:
472
+ logging.info('Running final evaluation after training is complete.')
473
+ _run_evaluation(current_step,
474
+ _get_input_iterator(eval_input_fn, strategy))
475
+
476
+ training_summary = {
477
+ 'total_training_steps': total_training_steps,
478
+ 'train_loss': _float_metric_value(train_loss_metric),
479
+ }
480
+ if eval_metrics:
481
+ # TODO(hongkuny): Cleans up summary reporting in text.
482
+ training_summary['last_train_metrics'] = _float_metric_value(
483
+ train_metrics[0])
484
+ training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
485
+
486
+ write_txt_summary(training_summary, summary_dir)
487
+
488
+ if not _should_export_summary(strategy):
489
+ tf.io.gfile.rmtree(summary_dir)
490
+
491
+ return model
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/modeling/performance.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Lint as: python3
2
+ # Copyright 2020 The TensorFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+ """Functions and classes related to training performance."""
17
+
18
+ import tensorflow as tf
19
+
20
+
21
+ def configure_optimizer(optimizer,
22
+ use_float16=False,
23
+ use_graph_rewrite=False,
24
+ loss_scale="dynamic"):
25
+ """Configures optimizer object with performance options."""
26
+ if use_float16:
27
+ # Wraps optimizer with a LossScaleOptimizer. This is done automatically
28
+ # in compile() with the "mixed_float16" policy, but since we do not call
29
+ # compile(), we must wrap the optimizer manually.
30
+ optimizer = (
31
+ tf.keras.mixed_precision.experimental.LossScaleOptimizer(
32
+ optimizer, loss_scale=loss_scale))
33
+ if use_graph_rewrite:
34
+ # Note: the model dtype must be 'float32', which will ensure
35
+ # tf.ckeras.mixed_precision and
36
+ # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
37
+ # up.
38
+ optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
39
+ optimizer)
40
+ return optimizer
41
+
42
+
43
+ def set_mixed_precision_policy(dtype, loss_scale=None):
44
+ """Sets mix precision policy."""
45
+ if dtype == tf.float16:
46
+ policy = tf.keras.mixed_precision.experimental.Policy(
47
+ 'mixed_float16', loss_scale=loss_scale)
48
+ tf.keras.mixed_precision.experimental.set_policy(policy)
49
+ elif dtype == tf.bfloat16:
50
+ policy = tf.keras.mixed_precision.experimental.Policy(
51
+ 'mixed_bfloat16')
52
+ tf.keras.mixed_precision.experimental.set_policy(policy)
53
+ elif dtype == tf.float32:
54
+ tf.keras.mixed_precision.experimental.set_policy('float32')
55
+ else:
56
+ raise ValueError("Unexpected dtype: %s" % dtype)
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/modeling/tf_utils.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Common TF utilities."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import six
22
+ import tensorflow as tf
23
+
24
+ from tensorflow.python.util import deprecation
25
+ from TensorFlow.common.modeling import activations
26
+
27
+
28
+ @deprecation.deprecated(
29
+ None,
30
+ "tf.keras.layers.Layer supports multiple positional args and kwargs as "
31
+ "input tensors. pack/unpack inputs to override __call__ is no longer "
32
+ "needed."
33
+ )
34
+ def pack_inputs(inputs):
35
+ """Pack a list of `inputs` tensors to a tuple.
36
+
37
+ Args:
38
+ inputs: a list of tensors.
39
+
40
+ Returns:
41
+ a tuple of tensors. if any input is None, replace it with a special constant
42
+ tensor.
43
+ """
44
+ inputs = tf.nest.flatten(inputs)
45
+ outputs = []
46
+ for x in inputs:
47
+ if x is None:
48
+ outputs.append(tf.constant(0, shape=[], dtype=tf.int32))
49
+ else:
50
+ outputs.append(x)
51
+ return tuple(outputs)
52
+
53
+
54
+ @deprecation.deprecated(
55
+ None,
56
+ "tf.keras.layers.Layer supports multiple positional args and kwargs as "
57
+ "input tensors. pack/unpack inputs to override __call__ is no longer "
58
+ "needed."
59
+ )
60
+ def unpack_inputs(inputs):
61
+ """unpack a tuple of `inputs` tensors to a tuple.
62
+
63
+ Args:
64
+ inputs: a list of tensors.
65
+
66
+ Returns:
67
+ a tuple of tensors. if any input is a special constant tensor, replace it
68
+ with None.
69
+ """
70
+ inputs = tf.nest.flatten(inputs)
71
+ outputs = []
72
+ for x in inputs:
73
+ if is_special_none_tensor(x):
74
+ outputs.append(None)
75
+ else:
76
+ outputs.append(x)
77
+ x = tuple(outputs)
78
+
79
+ # To trick the very pointless 'unbalanced-tuple-unpacking' pylint check
80
+ # from triggering.
81
+ if len(x) == 1:
82
+ return x[0]
83
+ return tuple(outputs)
84
+
85
+
86
+ def is_special_none_tensor(tensor):
87
+ """Checks if a tensor is a special None Tensor."""
88
+ return tensor.shape.ndims == 0 and tensor.dtype == tf.int32
89
+
90
+
91
+ # TODO(hongkuny): consider moving custom string-map lookup to keras api.
92
+ def get_activation(identifier):
93
+ """Maps a identifier to a Python function, e.g., "relu" => `tf.nn.relu`.
94
+
95
+ It checks string first and if it is one of customized activation not in TF,
96
+ the corresponding activation will be returned. For non-customized activation
97
+ names and callable identifiers, always fallback to tf.keras.activations.get.
98
+
99
+ Args:
100
+ identifier: String name of the activation function or callable.
101
+
102
+ Returns:
103
+ A Python function corresponding to the activation function.
104
+ """
105
+ if isinstance(identifier, six.string_types):
106
+ name_to_fn = {
107
+ "gelu": activations.gelu,
108
+ "simple_swish": activations.simple_swish,
109
+ "hard_swish": activations.hard_swish,
110
+ "identity": activations.identity,
111
+ }
112
+ identifier = str(identifier).lower()
113
+ if identifier in name_to_fn:
114
+ return tf.keras.activations.get(name_to_fn[identifier])
115
+ return tf.keras.activations.get(identifier)
116
+
117
+
118
+ def get_shape_list(tensor, expected_rank=None, name=None):
119
+ """Returns a list of the shape of tensor, preferring static dimensions.
120
+
121
+ Args:
122
+ tensor: A tf.Tensor object to find the shape of.
123
+ expected_rank: (optional) int. The expected rank of `tensor`. If this is
124
+ specified and the `tensor` has a different rank, and exception will be
125
+ thrown.
126
+ name: Optional name of the tensor for the error message.
127
+
128
+ Returns:
129
+ A list of dimensions of the shape of tensor. All static dimensions will
130
+ be returned as python integers, and dynamic dimensions will be returned
131
+ as tf.Tensor scalars.
132
+ """
133
+ if expected_rank is not None:
134
+ assert_rank(tensor, expected_rank, name)
135
+
136
+ shape = tensor.shape.as_list()
137
+
138
+ non_static_indexes = []
139
+ for (index, dim) in enumerate(shape):
140
+ if dim is None:
141
+ non_static_indexes.append(index)
142
+
143
+ if not non_static_indexes:
144
+ return shape
145
+
146
+ dyn_shape = tf.shape(tensor)
147
+ for index in non_static_indexes:
148
+ shape[index] = dyn_shape[index]
149
+ return shape
150
+
151
+
152
+ def assert_rank(tensor, expected_rank, name=None):
153
+ """Raises an exception if the tensor rank is not of the expected rank.
154
+
155
+ Args:
156
+ tensor: A tf.Tensor to check the rank of.
157
+ expected_rank: Python integer or list of integers, expected rank.
158
+ name: Optional name of the tensor for the error message.
159
+
160
+ Raises:
161
+ ValueError: If the expected shape doesn't match the actual shape.
162
+ """
163
+ expected_rank_dict = {}
164
+ if isinstance(expected_rank, six.integer_types):
165
+ expected_rank_dict[expected_rank] = True
166
+ else:
167
+ for x in expected_rank:
168
+ expected_rank_dict[x] = True
169
+
170
+ actual_rank = tensor.shape.ndims
171
+ if actual_rank not in expected_rank_dict:
172
+ raise ValueError(
173
+ "For the tensor `%s`, the actual tensor rank `%d` (shape = %s) is not "
174
+ "equal to the expected tensor rank `%s`" %
175
+ (name, actual_rank, str(tensor.shape), str(expected_rank)))
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/training/__init__.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/training/grad_utils.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Some gradient util functions to help users writing custom training loop."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ # from __future__ import google_type_annotations
20
+ from __future__ import print_function
21
+
22
+ from absl import logging
23
+
24
+ import tensorflow.compat.v2 as tf
25
+
26
+
27
+ def _filter_grads(grads_and_vars):
28
+ """Filter out iterable with grad equal to None."""
29
+ grads_and_vars = tuple(grads_and_vars)
30
+ if not grads_and_vars:
31
+ return grads_and_vars
32
+ filtered = []
33
+ vars_with_empty_grads = []
34
+ for grad, var in grads_and_vars:
35
+ if grad is None:
36
+ vars_with_empty_grads.append(var)
37
+ else:
38
+ filtered.append((grad, var))
39
+ filtered = tuple(filtered)
40
+ if not filtered:
41
+ raise ValueError("No gradients provided for any variable: %s." %
42
+ ([v.name for _, v in grads_and_vars],))
43
+ if vars_with_empty_grads:
44
+ logging.warning(
45
+ ("Gradients do not exist for variables %s when minimizing the loss."),
46
+ ([v.name for v in vars_with_empty_grads]))
47
+ return filtered
48
+
49
+
50
+ def _filter_and_allreduce_gradients(grads_and_vars,
51
+ allreduce_precision="float32"):
52
+ """Filter None grads and then allreduce gradients in specified precision.
53
+
54
+ This utils function is used when users intent to explicitly allreduce
55
+ gradients and customize gradients operations before and after allreduce.
56
+ The allreduced gradients are then passed to optimizer.apply_gradients(
57
+ experimental_aggregate_gradients=False).
58
+
59
+ Arguments:
60
+ grads_and_vars: gradients and variables pairs.
61
+ allreduce_precision: Whether to allreduce gradients in float32 or float16.
62
+
63
+ Returns:
64
+ pairs of allreduced non-None gradients and variables.
65
+ """
66
+ filtered_grads_and_vars = _filter_grads(grads_and_vars)
67
+ (grads, variables) = zip(*filtered_grads_and_vars)
68
+ if allreduce_precision == "float16":
69
+ grads = [tf.cast(grad, "float16") for grad in grads]
70
+ allreduced_grads = tf.distribute.get_replica_context().all_reduce(
71
+ tf.distribute.ReduceOp.SUM, grads)
72
+ if allreduce_precision == "float16":
73
+ allreduced_grads = [tf.cast(grad, "float32") for grad in allreduced_grads]
74
+ return allreduced_grads, variables
75
+
76
+
77
+ def _run_callbacks(callbacks, grads_and_vars):
78
+ for callback in callbacks:
79
+ grads_and_vars = callback(grads_and_vars)
80
+ return grads_and_vars
81
+
82
+
83
+ def minimize_using_explicit_allreduce(tape,
84
+ optimizer,
85
+ loss,
86
+ trainable_variables,
87
+ pre_allreduce_callbacks=None,
88
+ post_allreduce_callbacks=None):
89
+ """Minimizes loss for one step by updating `trainable_variables`.
90
+
91
+ Minimizes loss for one step by updating `trainable_variables`.
92
+ This explicitly performs gradient allreduce, instead of relying on implicit
93
+ allreduce in optimizer.apply_gradients(). If training using FP16 mixed
94
+ precision, explicit allreduce will aggregate gradients in FP16 format.
95
+ For TPU and GPU training using FP32, explicit allreduce will aggregate
96
+ gradients in FP32 format.
97
+
98
+ Arguments:
99
+ tape: An instance of `tf.GradientTape`.
100
+ optimizer: An instance of `tf.keras.optimizers.Optimizer`.
101
+ loss: the loss tensor.
102
+ trainable_variables: A list of model Variables.
103
+ pre_allreduce_callbacks: A list of callback functions that takes gradients
104
+ and model variables pairs as input, manipulate them, and returns a new
105
+ gradients and model variables pairs. The callback functions will be
106
+ invoked in the list order and before gradients are allreduced.
107
+ With mixed precision training, the pre_allreduce_allbacks will be
108
+ applied on scaled_gradients. Default is no callbacks.
109
+ post_allreduce_callbacks: A list of callback functions that takes
110
+ gradients and model variables pairs as input, manipulate them, and
111
+ returns a new gradients and model variables paris. The callback
112
+ functions will be invoked in the list order and right before gradients
113
+ are applied to variables for updates. Default is no callbacks.
114
+ """
115
+ if isinstance(optimizer,
116
+ tf.keras.mixed_precision.experimental.LossScaleOptimizer):
117
+ # FP16 GPU code path
118
+ with tape:
119
+ scaled_loss = optimizer.get_scaled_loss(loss)
120
+ scaled_grads = tape.gradient(scaled_loss, trainable_variables)
121
+ grads_and_vars = zip(scaled_grads, trainable_variables)
122
+ if pre_allreduce_callbacks:
123
+ grads_and_vars = _run_callbacks(pre_allreduce_callbacks, grads_and_vars)
124
+ (allreduced_scaled_grads,
125
+ filtered_training_vars) = _filter_and_allreduce_gradients(
126
+ grads_and_vars, allreduce_precision="float16")
127
+ allreduced_unscaled_grads = optimizer.get_unscaled_gradients(
128
+ allreduced_scaled_grads)
129
+ grads_and_vars = zip(allreduced_unscaled_grads, filtered_training_vars)
130
+ else:
131
+ # TPU or FP32 GPU code path
132
+ grads = tape.gradient(loss, trainable_variables)
133
+ grads_and_vars = zip(grads, trainable_variables)
134
+ if pre_allreduce_callbacks:
135
+ grads_and_vars = _run_callbacks(pre_allreduce_callbacks, grads_and_vars)
136
+ (allreduced_grads,
137
+ filtered_training_vars) = _filter_and_allreduce_gradients(
138
+ grads_and_vars, allreduce_precision="float32")
139
+ grads_and_vars = zip(allreduced_grads, filtered_training_vars)
140
+ if post_allreduce_callbacks:
141
+ grads_and_vars = _run_callbacks(post_allreduce_callbacks, grads_and_vars)
142
+ optimizer.apply_gradients(
143
+ grads_and_vars, experimental_aggregate_gradients=False)
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/training/runnable.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """An abstraction that users can easily handle their custom training loops."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ # from __future__ import google_type_annotations
20
+ from __future__ import print_function
21
+
22
+ import abc
23
+ import six
24
+ import tensorflow.compat.v2 as tf
25
+ from typing import Dict, Optional, Text
26
+
27
+
28
+ @six.add_metaclass(abc.ABCMeta)
29
+ class AbstractTrainable(tf.Module):
30
+ """An abstract class defining the APIs required for training."""
31
+
32
+ @abc.abstractmethod
33
+ def train(self,
34
+ num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]:
35
+ """Implements model training with multiple steps.
36
+
37
+ In training, it is common to break the total training steps into several
38
+ training loops, so users can do checkpointing, write summaries and run some
39
+ python callbacks. This is necessary for getting good performance in TPU
40
+ training, as the overhead for launching a multi worker tf.function may be
41
+ large in Eager mode. It is usually encouraged to create a host training loop
42
+ (e.g. using a `tf.range` wrapping `strategy.run` inside a
43
+ `tf.function`) in the TPU case. For the cases that don't require host
44
+ training loop to acheive peak performance, users can just implement a simple
45
+ python loop to drive each step.
46
+
47
+ Args:
48
+ num_steps: A guideline for how many training steps to run. Note that it is
49
+ up to the model what constitutes a "step" (this may involve more than
50
+ one update to model parameters, e.g. if training a GAN).
51
+
52
+ Returns:
53
+ The function may return a dictionary of `Tensors`, which will be
54
+ written to logs and as TensorBoard summaries.
55
+ """
56
+ pass
57
+
58
+
59
+ @six.add_metaclass(abc.ABCMeta)
60
+ class AbstractEvaluable(tf.Module):
61
+ """An abstract class defining the APIs required for evaluation."""
62
+
63
+ @abc.abstractmethod
64
+ def evaluate(
65
+ self, num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]:
66
+ """Implements model evaluation.
67
+
68
+ Args:
69
+ num_steps: A guideline for how many evaluation steps to run. Note that it
70
+ is up to the model what constitutes a "step". Generally, it may be
71
+ desirable to support both a limited number of eval steps and iterating
72
+ over a full dataset (however many steps are required) when `num_steps`
73
+ is `None`.
74
+
75
+ Returns:
76
+ The function may return a dictionary of `Tensors`, which will be
77
+ written to logs and as TensorBoard summaries.
78
+ """
79
+ pass
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/training/standard_runnable.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """An abstraction that users can easily handle their custom training loops."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ # from __future__ import google_type_annotations
20
+ from __future__ import print_function
21
+
22
+ import abc
23
+ import six
24
+ import tensorflow.compat.v2 as tf
25
+ from typing import Dict, Optional, Text
26
+
27
+ from TensorFlow.common.training import runnable
28
+ from TensorFlow.common.training import utils
29
+
30
+
31
+ @six.add_metaclass(abc.ABCMeta)
32
+ class StandardTrainable(runnable.AbstractTrainable):
33
+ """Implements the standard functionality of AbstractTrainable APIs."""
34
+
35
+ def __init__(self, use_tf_while_loop=True, use_tf_function=True):
36
+ if use_tf_while_loop and not use_tf_function:
37
+ raise ValueError("`use_tf_while_loop=True` and `use_tf_function=False` "
38
+ "is not supported")
39
+ self.use_tf_while_loop = use_tf_while_loop
40
+ self.use_tf_function = use_tf_function
41
+ self.train_dataset = None
42
+ self.train_iter = None
43
+ self.train_loop_fn = None
44
+
45
+ @abc.abstractmethod
46
+ def build_train_dataset(self):
47
+ """Builds the training datasets.
48
+
49
+ Returns:
50
+ A tf.nest-compatible structure of tf.data.Dataset or DistributedDataset.
51
+ """
52
+ pass
53
+
54
+ def train(self,
55
+ num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]:
56
+ """See base class."""
57
+ if self.train_dataset is None:
58
+ # Build train input dataset
59
+ self.train_dataset = self.build_train_dataset()
60
+ self.train_iter = tf.nest.map_structure(iter, self.train_dataset)
61
+
62
+ if self.train_loop_fn is None:
63
+ train_fn = self.train_step
64
+ if self.use_tf_while_loop:
65
+ self.train_loop_fn = utils.create_tf_while_loop_fn(train_fn)
66
+ else:
67
+ if self.use_tf_function:
68
+ train_fn = tf.function(train_fn)
69
+ self.train_loop_fn = utils.create_loop_fn(train_fn)
70
+
71
+ self.train_loop_begin()
72
+ self.train_loop_fn(self.train_iter, num_steps)
73
+ return self.train_loop_end()
74
+
75
+ def train_loop_begin(self):
76
+ """Called once at the beginning of the training loop.
77
+
78
+ This is a good place to reset metrics that accumulate values over multiple
79
+ steps of training.
80
+ """
81
+ pass
82
+
83
+ @abc.abstractmethod
84
+ def train_step(self, iterator):
85
+ """Implements one step of training.
86
+
87
+ What a "step" consists of is up to the implementer. If using distribution
88
+ strategies, the call to this method should take place in the "cross-replica
89
+ context" for generality, to allow e.g. multiple iterator dequeues and calls
90
+ to `strategy.run`.
91
+
92
+ Args:
93
+ iterator: A tf.nest-compatible structure of tf.data Iterator or
94
+ DistributedIterator.
95
+ """
96
+ pass
97
+
98
+ def train_loop_end(self) -> Optional[Dict[Text, tf.Tensor]]:
99
+ """Called at the end of the training loop.
100
+
101
+ This is a good place to get metric results. The value returned from this
102
+ function will be returned as-is from the train() method.
103
+
104
+ Returns:
105
+ The function may return a dictionary of `Tensors`, which will be
106
+ written to logs and as TensorBoard summaries.
107
+ """
108
+ pass
109
+
110
+
111
+ @six.add_metaclass(abc.ABCMeta)
112
+ class StandardEvaluable(runnable.AbstractEvaluable):
113
+ """Implements the standard functionality of AbstractEvaluable APIs."""
114
+
115
+ def __init__(self, use_tf_function=True):
116
+ self.eval_use_tf_function = use_tf_function
117
+ self.eval_dataset = None
118
+ self.eval_loop_fn = None
119
+
120
+ @abc.abstractmethod
121
+ def build_eval_dataset(self):
122
+ """Builds the evaluation datasets.
123
+
124
+ Returns:
125
+ A tf.nest-compatible structure of tf.data.Dataset or DistributedDataset.
126
+ """
127
+ pass
128
+
129
+ def evaluate(
130
+ self, num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]:
131
+ """See base class."""
132
+ if self.eval_dataset is None:
133
+ # Build train input dataset
134
+ self.eval_dataset = self.build_eval_dataset()
135
+
136
+ if self.eval_loop_fn is None:
137
+ eval_fn = self.eval_step
138
+ if self.eval_use_tf_function:
139
+ eval_fn = tf.function(eval_fn)
140
+ self.eval_loop_fn = utils.create_loop_fn(eval_fn)
141
+
142
+ # TODO(b/147718615): When async RPC is enabled in eager runtime, we make
143
+ # eval iterator as a class member so it doesn't get destroyed when out of
144
+ # the function scope.
145
+ self.eval_iter = tf.nest.map_structure(iter, self.eval_dataset)
146
+
147
+ self.eval_begin()
148
+ self.eval_loop_fn(self.eval_iter, num_steps)
149
+ return self.eval_end()
150
+
151
+ def eval_begin(self):
152
+ """Called once at the beginning of the evaluation.
153
+
154
+ This is a good place to reset metrics that accumulate values over the entire
155
+ evaluation.
156
+ """
157
+ pass
158
+
159
+ @abc.abstractmethod
160
+ def eval_step(self, iterator):
161
+ """Implements one step of evaluation.
162
+
163
+ What a "step" consists of is up to the implementer. If using distribution
164
+ strategies, the call to this method should take place in the "cross-replica
165
+ context" for generality, to allow e.g. multiple iterator dequeues and calls
166
+ to `strategy.run`.
167
+
168
+ Args:
169
+ iterator: A tf.nest-compatible structure of tf.data Iterator or
170
+ DistributedIterator.
171
+ """
172
+ pass
173
+
174
+ def eval_end(self) -> Optional[Dict[Text, tf.Tensor]]:
175
+ """Called at the end of the evaluation.
176
+
177
+ This is a good place to get metric results. The value returned from this
178
+ function will be returned as-is from the evaluate() method.
179
+
180
+ Returns:
181
+ The function may return a dictionary of `Tensors`, which will be
182
+ written to logs and as TensorBoard summaries.
183
+ """
184
+ pass
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/training/utils.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Some layered modules/functions to help users writing custom training loop."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ # from __future__ import google_type_annotations
20
+ from __future__ import print_function
21
+
22
+ import abc
23
+ import inspect
24
+ import six
25
+
26
+ import tensorflow.compat.v2 as tf
27
+
28
+
29
+ def create_loop_fn(step_fn):
30
+ """Creates a multiple steps function driven by the python while loop.
31
+
32
+ Args:
33
+ step_fn: A function which takes `iterator` as input.
34
+
35
+ Returns:
36
+ A callable defined as the `loop_fn` defination below.
37
+ """
38
+
39
+ def loop_fn(iterator, num_steps, state=None, reduce_fn=None):
40
+ """A loop function with multiple steps.
41
+
42
+ Args:
43
+ iterator: A nested structure of tf.data `Iterator` or
44
+ `DistributedIterator`.
45
+ num_steps: The number of steps in the loop. If `num_steps==-1`, will
46
+ iterate until exausting the iterator.
47
+ state: An optional initial state before running the loop.
48
+ reduce_fn: a callable defined as `def reduce_fn(state, value)`, where
49
+ `value` is the outputs from `step_fn`.
50
+
51
+ Returns:
52
+ The updated state.
53
+ """
54
+ try:
55
+ step = 0
56
+ # To make sure the OutOfRangeError exception can be handled well with
57
+ # async remote eager, we need to wrap the loop body in a `async_scope`.
58
+ with tf.experimental.async_scope():
59
+ while (num_steps == -1 or step < num_steps):
60
+ outputs = step_fn(iterator)
61
+ if reduce_fn is not None:
62
+ state = reduce_fn(state, outputs)
63
+ step += 1
64
+ return state
65
+ except (StopIteration, tf.errors.OutOfRangeError):
66
+ tf.experimental.async_clear_error()
67
+ return state
68
+
69
+ return loop_fn
70
+
71
+
72
+ def create_tf_while_loop_fn(step_fn):
73
+ """Create a multiple steps function driven by tf.while_loop on the host.
74
+
75
+ Args:
76
+ step_fn: A function which takes `iterator` as input.
77
+
78
+ Returns:
79
+ A callable defined as the `loop_fn` defination below.
80
+ """
81
+
82
+ @tf.function
83
+ def loop_fn(iterator, num_steps):
84
+ """A loop function with multiple steps.
85
+
86
+ Args:
87
+ iterator: A nested structure of tf.data `Iterator` or
88
+ `DistributedIterator`.
89
+ num_steps: The number of steps in the loop. Must be a tf.Tensor.
90
+ """
91
+ if not isinstance(num_steps, tf.Tensor):
92
+ raise ValueError("`num_steps` should be an `tf.Tensor`. Python object "
93
+ "may cause retracing.")
94
+
95
+ for _ in tf.range(num_steps):
96
+ step_fn(iterator)
97
+
98
+ return loop_fn
99
+
100
+
101
+ def make_distributed_dataset(strategy, dataset_or_fn, *args, **kwargs):
102
+ """A helper function to create distributed dataset.
103
+
104
+ Args:
105
+ strategy: An instance of `tf.distribute.Strategy`.
106
+ dataset_or_fn: A instance of `tf.data.Dataset` or a function which takes an
107
+ `tf.distribute.InputContext` as input and returns a `tf.data.Dataset`. If
108
+ it is a function, it could optionally have an argument named
109
+ `input_context` which is `tf.distribute.InputContext` argument type.
110
+ *args: The list of arguments to be passed to dataset_or_fn.
111
+ **kwargs: Any keyword arguments to be passed.
112
+
113
+ Returns:
114
+ A distributed Dataset.
115
+ """
116
+ if strategy is None:
117
+ strategy = tf.distribute.get_strategy()
118
+
119
+ if isinstance(dataset_or_fn, tf.data.Dataset):
120
+ return strategy.experimental_distribute_dataset(dataset_or_fn)
121
+
122
+ if not callable(dataset_or_fn):
123
+ raise ValueError("`dataset_or_fn` should be either callable or an instance "
124
+ "of `tf.data.Dataset`")
125
+
126
+ def dataset_fn(ctx):
127
+ """Wrapped dataset function for creating distributed dataset.."""
128
+
129
+ # If `dataset_or_fn` is a function and has `input_context` as argument
130
+ # names, pass `ctx` as the value of `input_context` when calling
131
+ # `dataset_or_fn`. Otherwise `ctx` will not be used when calling
132
+ # `dataset_or_fn`.
133
+ if six.PY3:
134
+ argspec = inspect.getfullargspec(dataset_or_fn)
135
+ else:
136
+ argspec = inspect.getargspec(dataset_or_fn)
137
+ args_names = argspec.args
138
+
139
+ if "input_context" in args_names:
140
+ kwargs["input_context"] = ctx
141
+ ds = dataset_or_fn(*args, **kwargs)
142
+ return ds
143
+
144
+ return strategy.experimental_distribute_datasets_from_function(dataset_fn)
145
+
146
+
147
+ class SummaryManager(object):
148
+ """A class manages writing summaries."""
149
+
150
+ def __init__(self,
151
+ summary_writer,
152
+ summary_fn,
153
+ global_step=None,
154
+ summary_interval=None):
155
+ """Construct a summary manager object.
156
+
157
+ Args:
158
+ summary_writer: A `tf.summary.SummaryWriter` instance for writing
159
+ summaries.
160
+ summary_fn: A callable defined as `def summary_fn(name, tensor,
161
+ step=None)`, which describes the summary operation.
162
+ global_step: A `tf.Variable` instance for checking the current global step
163
+ value, in case users want to save summaries every N steps.
164
+ summary_interval: An integer, indicates the minimum step interval between
165
+ two summaries.
166
+ """
167
+ if summary_writer is not None:
168
+ self._summary_writer = summary_writer
169
+ self._enabled = True
170
+ else:
171
+ self._summary_writer = tf.summary.create_noop_writer()
172
+ self._enabled = False
173
+ self._summary_fn = summary_fn
174
+
175
+ if global_step is None:
176
+ self._global_step = tf.summary.experimental.get_step()
177
+ else:
178
+ self._global_step = global_step
179
+
180
+ if summary_interval is not None:
181
+ if self._global_step is None:
182
+ raise ValueError("`summary_interval` is not None, but no `global_step` "
183
+ "can be obtained ")
184
+ self._last_summary_step = self._global_step.numpy()
185
+ self._summary_interval = summary_interval
186
+
187
+ @property
188
+ def summary_interval(self):
189
+ return self._summary_interval
190
+
191
+ @property
192
+ def summary_writer(self):
193
+ """Returns the underlying summary writer."""
194
+ return self._summary_writer
195
+
196
+ def flush(self):
197
+ """Flush the underlying summary writer."""
198
+ if self._enabled:
199
+ tf.summary.flush(self._summary_writer)
200
+
201
+ def write_summaries(self, items, always_write=True):
202
+ """Write a bulk of summaries.
203
+
204
+ Args:
205
+ items: a dictionary of `Tensors` for writing summaries.
206
+ always_write: An optional boolean. If `True`, the manager will always
207
+ write summaries unless the summaries have been written for the same
208
+ step. Otherwise the manager will only write the summaries if the
209
+ interval between summaries are larger than `summary_interval`.
210
+
211
+ Returns:
212
+ A boolean indicates whether the summaries are written or not.
213
+ """
214
+ # TODO(rxsang): Support writing summaries with nested structure, so users
215
+ # can split the summaries into different directories for nicer visualization
216
+ # in Tensorboard, like train and eval metrics.
217
+ if not self._enabled:
218
+ return False
219
+
220
+ if self._summary_interval is not None:
221
+ current_step = self._global_step.numpy()
222
+ if current_step == self._last_summary_step:
223
+ return False
224
+ if not always_write and current_step < (self._last_summary_step +
225
+ self._summary_interval):
226
+ return False
227
+ self._last_summary_step = current_step
228
+
229
+ with self._summary_writer.as_default():
230
+ for name, tensor in items.items():
231
+ self._summary_fn(name, tensor, step=self._global_step)
232
+ return True
233
+
234
+
235
+ @six.add_metaclass(abc.ABCMeta)
236
+ class Trigger(object):
237
+ """An abstract class representing a "trigger" for some event."""
238
+
239
+ @abc.abstractmethod
240
+ def __call__(self, value: float, force_trigger=False):
241
+ """Maybe trigger the event based on the given value.
242
+
243
+ Args:
244
+ value: the value for triggering.
245
+ force_trigger: Whether the trigger is forced triggered.
246
+
247
+ Returns:
248
+ `True` if the trigger is triggered on the given `value`, and
249
+ `False` otherwise.
250
+ """
251
+
252
+ @abc.abstractmethod
253
+ def reset(self):
254
+ """Reset states in the trigger."""
255
+
256
+
257
+ class IntervalTrigger(Trigger):
258
+ """Triggers on every fixed interval."""
259
+
260
+ def __init__(self, interval, start=0):
261
+ """Constructs the IntervalTrigger.
262
+
263
+ Args:
264
+ interval: The triggering interval.
265
+ start: An initial value for the trigger.
266
+ """
267
+ self._interval = interval
268
+ self._last_trigger_value = start
269
+
270
+ def __call__(self, value, force_trigger=False):
271
+ """Maybe trigger the event based on the given value.
272
+
273
+ Args:
274
+ value: the value for triggering.
275
+ force_trigger: If True, the trigger will be forced triggered unless the
276
+ last trigger value is equal to `value`.
277
+
278
+ Returns:
279
+ `True` if the trigger is triggered on the given `value`, and
280
+ `False` otherwise.
281
+ """
282
+ if force_trigger and value != self._last_trigger_value:
283
+ self._last_trigger_value = value
284
+ return True
285
+
286
+ if self._interval and self._interval > 0:
287
+ if value >= self._last_trigger_value + self._interval:
288
+ self._last_trigger_value = value
289
+ return True
290
+ return False
291
+
292
+ def reset(self):
293
+ """See base class."""
294
+ self._last_trigger_value = 0
295
+
296
+
297
+ class EpochHelper(object):
298
+ """A Helper class to handle epochs in Customized Training Loop."""
299
+
300
+ def __init__(self, epoch_steps, global_step):
301
+ """Constructs the EpochHelper.
302
+
303
+ Args:
304
+ epoch_steps: An integer indicates how many steps in an epoch.
305
+ global_step: A `tf.Variable` instance indicates the current global step.
306
+ """
307
+ self._epoch_steps = epoch_steps
308
+ self._global_step = global_step
309
+ self._current_epoch = None
310
+ self._epoch_start_step = None
311
+ self._in_epoch = False
312
+
313
+ def epoch_begin(self):
314
+ """Returns whether a new epoch should begin."""
315
+ if self._in_epoch:
316
+ return False
317
+ current_step = self._global_step.numpy()
318
+ self._epoch_start_step = current_step
319
+ self._current_epoch = current_step // self._epoch_steps
320
+ self._in_epoch = True
321
+ return True
322
+
323
+ def epoch_end(self):
324
+ """Returns whether the current epoch should end."""
325
+ if not self._in_epoch:
326
+ raise ValueError("`epoch_end` can only be called inside an epoch")
327
+ current_step = self._global_step.numpy()
328
+ epoch = current_step // self._epoch_steps
329
+
330
+ if epoch > self._current_epoch:
331
+ self._in_epoch = False
332
+ return True
333
+ return False
334
+
335
+ @property
336
+ def batch_index(self):
337
+ """Index of the next batch within the current epoch."""
338
+ return self._global_step.numpy() - self._epoch_start_step
339
+
340
+ @property
341
+ def current_epoch(self):
342
+ return self._current_epoch
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/__init__.py ADDED
File without changes
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adding Abseil (absl) flags quickstart
2
+ ## Defining a flag
3
+ absl flag definitions are similar to argparse, although they are defined on a global namespace.
4
+
5
+ For instance defining a string flag looks like:
6
+ ```$xslt
7
+ from absl import flags
8
+ flags.DEFINE_string(
9
+ name="my_flag",
10
+ default="a_sensible_default",
11
+ help="Here is what this flag does."
12
+ )
13
+ ```
14
+
15
+ All three arguments are required, but default may be `None`. A common optional argument is
16
+ short_name for defining abreviations. Certain `DEFINE_*` methods will have other required arguments.
17
+ For instance `DEFINE_enum` requires the `enum_values` argument to be specified.
18
+
19
+ ## Key Flags
20
+ absl has the concept of a key flag. Any flag defined in `__main__` is considered a key flag by
21
+ default. Key flags are displayed in `--help`, others only appear in `--helpfull`. In order to
22
+ handle key flags that are defined outside the module in question, absl provides the
23
+ `flags.adopt_module_key_flags()` method. This adds the key flags of a different module to one's own
24
+ key flags. For example:
25
+ ```$xslt
26
+ File: flag_source.py
27
+ ---------------------------------------
28
+
29
+ from absl import flags
30
+ flags.DEFINE_string(name="my_flag", default="abc", help="a flag.")
31
+ ```
32
+
33
+ ```$xslt
34
+ File: my_module.py
35
+ ---------------------------------------
36
+
37
+ from absl import app as absl_app
38
+ from absl import flags
39
+
40
+ import flag_source
41
+
42
+ flags.adopt_module_key_flags(flag_source)
43
+
44
+ def main(_):
45
+ pass
46
+
47
+ absl_app.run(main, [__file__, "-h"]
48
+ ```
49
+
50
+ when `my_module.py` is run it will show the help text for `my_flag`. Because not all flags defined
51
+ in a file are equally important, `official/utils/flags/core.py` (generally imported as flags_core)
52
+ provides an abstraction for handling key flag declaration in an easy way through the
53
+ `register_key_flags_in_core()` function, which allows a module to make a single
54
+ `adopt_key_flags(flags_core)` call when using the util flag declaration functions.
55
+
56
+ ## Validators
57
+ Often the constraints on a flag are complicated. absl provides the validator decorator to allow
58
+ one to mark a function as a flag validation function. Suppose we want users to provide a flag
59
+ which is a palindrome.
60
+
61
+ ```$xslt
62
+ from absl import flags
63
+
64
+ flags.DEFINE_string(name="pal_flag", short_name="pf", default="", help="Give me a palindrome")
65
+
66
+ @flags.validator("pal_flag")
67
+ def _check_pal(provided_pal_flag):
68
+ return provided_pal_flag == provided_pal_flag[::-1]
69
+
70
+ ```
71
+
72
+ Validators take the form that returning True (truthy) passes, and all others
73
+ (False, None, exception) fail.
74
+
75
+ ## Testing
76
+ To test using absl, simply declare flags in the setupClass method of TensorFlow's TestCase.
77
+
78
+ ```$xslt
79
+ from absl import flags
80
+ import tensorflow as tf
81
+
82
+ def define_flags():
83
+ flags.DEFINE_string(name="test_flag", default="abc", help="an example flag")
84
+
85
+
86
+ class BaseTester(unittest.TestCase):
87
+
88
+ @classmethod
89
+ def setUpClass(cls):
90
+ super(BaseTester, cls).setUpClass()
91
+ define_flags()
92
+
93
+ def test_trivial(self):
94
+ flags_core.parse_flags([__file__, "test_flag", "def"])
95
+ self.AssertEqual(flags.FLAGS.test_flag, "def")
96
+
97
+ ```
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/__init__.py ADDED
File without changes
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_base.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Flags which will be nearly universal across models."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ from absl import flags
22
+ import tensorflow as tf
23
+
24
+ from TensorFlow.utils.flags._conventions import help_wrap
25
+ from TensorFlow.utils.logs import hooks_helper
26
+
27
+
28
+ def define_base(data_dir=True, model_dir=True, clean=False, train_epochs=False,
29
+ epochs_between_evals=False, stop_threshold=False,
30
+ batch_size=True, num_gpu=False, hooks=False, export_dir=False,
31
+ distribution_strategy=False, run_eagerly=False):
32
+ """Register base flags.
33
+
34
+ Args:
35
+ data_dir: Create a flag for specifying the input data directory.
36
+ model_dir: Create a flag for specifying the model file directory.
37
+ clean: Create a flag for removing the model_dir.
38
+ train_epochs: Create a flag to specify the number of training epochs.
39
+ epochs_between_evals: Create a flag to specify the frequency of testing.
40
+ stop_threshold: Create a flag to specify a threshold accuracy or other
41
+ eval metric which should trigger the end of training.
42
+ batch_size: Create a flag to specify the batch size.
43
+ num_gpu: Create a flag to specify the number of GPUs used.
44
+ hooks: Create a flag to specify hooks for logging.
45
+ export_dir: Create a flag to specify where a SavedModel should be exported.
46
+ distribution_strategy: Create a flag to specify which Distribution Strategy
47
+ to use.
48
+ run_eagerly: Create a flag to specify to run eagerly op by op.
49
+ Returns:
50
+ A list of flags for core.py to marks as key flags.
51
+ """
52
+ key_flags = []
53
+
54
+ if data_dir:
55
+ flags.DEFINE_string(
56
+ name="data_dir", short_name="dd", default="/tmp",
57
+ help=help_wrap("The location of the input data."))
58
+ key_flags.append("data_dir")
59
+
60
+ if model_dir:
61
+ flags.DEFINE_string(
62
+ name="model_dir", short_name="md", default="/tmp",
63
+ help=help_wrap("The location of the model checkpoint files."))
64
+ key_flags.append("model_dir")
65
+
66
+ if clean:
67
+ flags.DEFINE_boolean(
68
+ name="clean", default=False,
69
+ help=help_wrap("If set, model_dir will be removed if it exists."))
70
+ key_flags.append("clean")
71
+
72
+ if train_epochs:
73
+ flags.DEFINE_integer(
74
+ name="train_epochs", short_name="te", default=1,
75
+ help=help_wrap("The number of epochs used to train."))
76
+ key_flags.append("train_epochs")
77
+
78
+ if epochs_between_evals:
79
+ flags.DEFINE_integer(
80
+ name="epochs_between_evals", short_name="ebe", default=1,
81
+ help=help_wrap("The number of training epochs to run between "
82
+ "evaluations."))
83
+ key_flags.append("epochs_between_evals")
84
+
85
+ if stop_threshold:
86
+ flags.DEFINE_float(
87
+ name="stop_threshold", short_name="st",
88
+ default=None,
89
+ help=help_wrap("If passed, training will stop at the earlier of "
90
+ "train_epochs and when the evaluation metric is "
91
+ "greater than or equal to stop_threshold."))
92
+
93
+ if batch_size:
94
+ flags.DEFINE_integer(
95
+ name="batch_size", short_name="bs", default=32,
96
+ help=help_wrap("Batch size for training and evaluation. When using "
97
+ "multiple gpus, this is the global batch size for "
98
+ "all devices. For example, if the batch size is 32 "
99
+ "and there are 4 GPUs, each GPU will get 8 examples on "
100
+ "each step."))
101
+ key_flags.append("batch_size")
102
+
103
+ if num_gpu:
104
+ flags.DEFINE_integer(
105
+ name="num_gpus", short_name="ng",
106
+ default=1,
107
+ help=help_wrap(
108
+ "How many GPUs to use at each worker with the "
109
+ "DistributionStrategies API. The default is 1."))
110
+
111
+ if run_eagerly:
112
+ flags.DEFINE_boolean(
113
+ name="run_eagerly", default=False,
114
+ help="Run the model op by op without building a model function.")
115
+
116
+ if hooks:
117
+ # Construct a pretty summary of hooks.
118
+ hook_list_str = (
119
+ u"\ufeff Hook:\n" + u"\n".join([u"\ufeff {}".format(key) for key
120
+ in hooks_helper.HOOKS]))
121
+ flags.DEFINE_list(
122
+ name="hooks", short_name="hk", default="LoggingTensorHook",
123
+ help=help_wrap(
124
+ u"A list of (case insensitive) strings to specify the names of "
125
+ u"training hooks.\n{}\n\ufeff Example: `--hooks ProfilerHook,"
126
+ u"ExamplesPerSecondHook`\n See official.utils.logs.hooks_helper "
127
+ u"for details.".format(hook_list_str))
128
+ )
129
+ key_flags.append("hooks")
130
+
131
+ if export_dir:
132
+ flags.DEFINE_string(
133
+ name="export_dir", short_name="ed", default=None,
134
+ help=help_wrap("If set, a SavedModel serialization of the model will "
135
+ "be exported to this directory at the end of training. "
136
+ "See the README for more details and relevant links.")
137
+ )
138
+ key_flags.append("export_dir")
139
+
140
+ if distribution_strategy:
141
+ flags.DEFINE_string(
142
+ name="distribution_strategy", short_name="ds", default="mirrored",
143
+ help=help_wrap("The Distribution Strategy to use for training. "
144
+ "Accepted values are 'off', 'one_device', "
145
+ "'mirrored', 'parameter_server', 'collective', "
146
+ "case insensitive. 'off' means not to use "
147
+ "Distribution Strategy; 'default' means to choose "
148
+ "from `MirroredStrategy` or `OneDeviceStrategy` "
149
+ "according to the number of GPUs.")
150
+ )
151
+
152
+
153
+ return key_flags
154
+
155
+
156
+ def get_num_gpus(flags_obj):
157
+ """Treat num_gpus=-1 as 'use all'."""
158
+ if flags_obj.num_gpus != -1:
159
+ return flags_obj.num_gpus
160
+
161
+ from tensorflow.python.client import device_lib # pylint: disable=g-import-not-at-top
162
+ local_device_protos = device_lib.list_local_devices()
163
+ return sum([1 for d in local_device_protos if d.device_type == "GPU"])
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_device.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Flags for managing compute devices. Currently only contains TPU flags."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ from absl import flags
22
+ import tensorflow as tf
23
+
24
+ from TensorFlow.utils.flags._conventions import help_wrap
25
+
26
+
27
+ def require_cloud_storage(flag_names):
28
+ """Register a validator to check directory flags.
29
+ Args:
30
+ flag_names: An iterable of strings containing the names of flags to be
31
+ checked.
32
+ """
33
+ msg = "TPU requires GCS path for {}".format(", ".join(flag_names))
34
+ @flags.multi_flags_validator(["tpu"] + flag_names, message=msg)
35
+ def _path_check(flag_values): # pylint: disable=missing-docstring
36
+ if flag_values["tpu"] is None:
37
+ return True
38
+
39
+ valid_flags = True
40
+ for key in flag_names:
41
+ if not flag_values[key].startswith("gs://"):
42
+ tf.compat.v1.logging.error("{} must be a GCS path.".format(key))
43
+ valid_flags = False
44
+
45
+ return valid_flags
46
+
47
+
48
+ def define_device(tpu=True):
49
+ """Register device specific flags.
50
+ Args:
51
+ tpu: Create flags to specify TPU operation.
52
+ Returns:
53
+ A list of flags for core.py to marks as key flags.
54
+ """
55
+
56
+ key_flags = []
57
+
58
+ if tpu:
59
+ flags.DEFINE_string(
60
+ name="tpu", default=None,
61
+ help=help_wrap(
62
+ "The Cloud TPU to use for training. This should be either the name "
63
+ "used when creating the Cloud TPU, or a "
64
+ "grpc://ip.address.of.tpu:8470 url. Passing `local` will use the"
65
+ "CPU of the local instance instead. (Good for debugging.)"))
66
+ key_flags.append("tpu")
67
+
68
+ flags.DEFINE_string(
69
+ name="tpu_zone", default=None,
70
+ help=help_wrap(
71
+ "[Optional] GCE zone where the Cloud TPU is located in. If not "
72
+ "specified, we will attempt to automatically detect the GCE "
73
+ "project from metadata."))
74
+
75
+ flags.DEFINE_string(
76
+ name="tpu_gcp_project", default=None,
77
+ help=help_wrap(
78
+ "[Optional] Project name for the Cloud TPU-enabled project. If not "
79
+ "specified, we will attempt to automatically detect the GCE "
80
+ "project from metadata."))
81
+
82
+ flags.DEFINE_integer(name="num_tpu_shards", default=8,
83
+ help=help_wrap("Number of shards (TPU chips)."))
84
+
85
+ return key_flags
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_distribution.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Flags related to distributed execution."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ from absl import flags
22
+ import tensorflow as tf
23
+
24
+ from TensorFlow.utils.flags._conventions import help_wrap
25
+
26
+
27
+ def define_distribution(worker_hosts=True, task_index=True):
28
+ """Register distributed execution flags.
29
+
30
+ Args:
31
+ worker_hosts: Create a flag for specifying comma-separated list of workers.
32
+ task_index: Create a flag for specifying index of task.
33
+
34
+ Returns:
35
+ A list of flags for core.py to marks as key flags.
36
+ """
37
+ key_flags = []
38
+
39
+ if worker_hosts:
40
+ flags.DEFINE_string(
41
+ name='worker_hosts', default=None,
42
+ help=help_wrap(
43
+ 'Comma-separated list of worker ip:port pairs for running '
44
+ 'multi-worker models with DistributionStrategy. The user would '
45
+ 'start the program on each host with identical value for this '
46
+ 'flag.'))
47
+
48
+ if task_index:
49
+ flags.DEFINE_integer(
50
+ name='task_index', default=-1,
51
+ help=help_wrap('If multi-worker training, the task_index of this '
52
+ 'worker.'))
53
+
54
+ return key_flags
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/core.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Public interface for flag definition.
16
+
17
+ See _example.py for detailed instructions on defining flags.
18
+ """
19
+
20
+ from __future__ import absolute_import
21
+ from __future__ import division
22
+ from __future__ import print_function
23
+
24
+ import sys
25
+ from six.moves import shlex_quote
26
+
27
+ from absl import app as absl_app
28
+ from absl import flags
29
+
30
+ from TensorFlow.utils.flags import _base
31
+ from TensorFlow.utils.flags import _benchmark
32
+ from TensorFlow.utils.flags import _conventions
33
+ from TensorFlow.utils.flags import _device
34
+ from TensorFlow.utils.flags import _distribution
35
+ from TensorFlow.utils.flags import _misc
36
+ from TensorFlow.utils.flags import _performance
37
+
38
+
39
+ def set_defaults(**kwargs):
40
+ for key, value in kwargs.items():
41
+ flags.FLAGS.set_default(name=key, value=value)
42
+
43
+
44
+ def parse_flags(argv=None):
45
+ """Reset flags and reparse. Currently only used in testing."""
46
+ flags.FLAGS.unparse_flags()
47
+ absl_app.parse_flags_with_usage(argv or sys.argv)
48
+
49
+
50
+ def register_key_flags_in_core(f):
51
+ """Defines a function in core.py, and registers its key flags.
52
+
53
+ absl uses the location of a flags.declare_key_flag() to determine the context
54
+ in which a flag is key. By making all declares in core, this allows model
55
+ main functions to call flags.adopt_module_key_flags() on core and correctly
56
+ chain key flags.
57
+
58
+ Args:
59
+ f: The function to be wrapped
60
+
61
+ Returns:
62
+ The "core-defined" version of the input function.
63
+ """
64
+
65
+ def core_fn(*args, **kwargs):
66
+ key_flags = f(*args, **kwargs)
67
+ [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned
68
+ return core_fn
69
+
70
+
71
+ define_base = register_key_flags_in_core(_base.define_base)
72
+ # We have define_base_eager for compatibility, since it used to be a separate
73
+ # function from define_base.
74
+ define_base_eager = define_base
75
+ define_log_steps = register_key_flags_in_core(_benchmark.define_log_steps)
76
+ define_benchmark = register_key_flags_in_core(_benchmark.define_benchmark)
77
+ define_device = register_key_flags_in_core(_device.define_device)
78
+ define_image = register_key_flags_in_core(_misc.define_image)
79
+ define_performance = register_key_flags_in_core(_performance.define_performance)
80
+ define_distribution = register_key_flags_in_core(
81
+ _distribution.define_distribution)
82
+
83
+
84
+ help_wrap = _conventions.help_wrap
85
+
86
+
87
+ get_num_gpus = _base.get_num_gpus
88
+ get_tf_dtype = _performance.get_tf_dtype
89
+ get_loss_scale = _performance.get_loss_scale
90
+ DTYPE_MAP = _performance.DTYPE_MAP
91
+ require_cloud_storage = _device.require_cloud_storage
92
+
93
+ def _get_nondefault_flags_as_dict():
94
+ """Returns the nondefault flags as a dict from flag name to value."""
95
+ nondefault_flags = {}
96
+ for flag_name in flags.FLAGS:
97
+ flag_value = getattr(flags.FLAGS, flag_name)
98
+ if (flag_name != flags.FLAGS[flag_name].short_name and
99
+ flag_value != flags.FLAGS[flag_name].default):
100
+ nondefault_flags[flag_name] = flag_value
101
+ return nondefault_flags
102
+
103
+
104
+ def get_nondefault_flags_as_str():
105
+ """Returns flags as a string that can be passed as command line arguments.
106
+
107
+ E.g., returns: "--batch_size=256 --use_synthetic_data" for the following code
108
+ block:
109
+
110
+ ```
111
+ flags.FLAGS.batch_size = 256
112
+ flags.FLAGS.use_synthetic_data = True
113
+ print(get_nondefault_flags_as_str())
114
+ ```
115
+
116
+ Only flags with nondefault values are returned, as passing default flags as
117
+ command line arguments has no effect.
118
+
119
+ Returns:
120
+ A string with the flags, that can be passed as command line arguments to a
121
+ program to use the flags.
122
+ """
123
+ nondefault_flags = _get_nondefault_flags_as_dict()
124
+ flag_strings = []
125
+ for name, value in sorted(nondefault_flags.items()):
126
+ if isinstance(value, bool):
127
+ flag_str = '--{}'.format(name) if value else '--no{}'.format(name)
128
+ elif isinstance(value, list):
129
+ flag_str = '--{}={}'.format(name, ','.join(value))
130
+ else:
131
+ flag_str = '--{}={}'.format(name, value)
132
+ flag_strings.append(flag_str)
133
+ return ' '.join(shlex_quote(flag_str) for flag_str in flag_strings)
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/hyperparams_flags.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Common flags for importing hyperparameters."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ # from __future__ import google_type_annotations
20
+ from __future__ import print_function
21
+
22
+ from absl import flags
23
+ from TensorFlow.utils.flags import core as flags_core
24
+
25
+ FLAGS = flags.FLAGS
26
+
27
+
28
+ def define_common_hparams_flags():
29
+ """Define the common flags across models."""
30
+
31
+ flags.DEFINE_string(
32
+ 'model_dir',
33
+ default=None,
34
+ help=('The directory where the model and training/evaluation summaries'
35
+ 'are stored.'))
36
+
37
+ flags.DEFINE_integer(
38
+ 'train_batch_size', default=None, help='Batch size for training.')
39
+
40
+ flags.DEFINE_integer(
41
+ 'eval_batch_size', default=None, help='Batch size for evaluation.')
42
+
43
+ flags.DEFINE_string(
44
+ 'precision',
45
+ default=None,
46
+ help=('Precision to use; one of: {bfloat16, float32}'))
47
+
48
+ flags.DEFINE_string(
49
+ 'config_file',
50
+ default=None,
51
+ help=('A YAML file which specifies overrides. Note that this file can be '
52
+ 'used as an override template to override the default parameters '
53
+ 'specified in Python. If the same parameter is specified in both '
54
+ '`--config_file` and `--params_override`, the one in '
55
+ '`--params_override` will be used finally.'))
56
+
57
+ flags.DEFINE_string(
58
+ 'params_override',
59
+ default=None,
60
+ help=('a YAML/JSON string or a YAML file which specifies additional '
61
+ 'overrides over the default parameters and those specified in '
62
+ '`--config_file`. Note that this is supposed to be used only to '
63
+ 'override the model parameters, but not the parameters like TPU '
64
+ 'specific flags. One canonical use case of `--config_file` and '
65
+ '`--params_override` is users first define a template config file '
66
+ 'using `--config_file`, then use `--params_override` to adjust the '
67
+ 'minimal set of tuning parameters, for example setting up different'
68
+ ' `train_batch_size`. '
69
+ 'The final override order of parameters: default_model_params --> '
70
+ 'params from config_file --> params in params_override.'
71
+ 'See also the help message of `--config_file`.'))
72
+ flags.DEFINE_integer('save_checkpoint_freq', None,
73
+ 'Number of steps to save checkpoint.')
74
+
75
+
76
+ def initialize_common_flags():
77
+ """Define the common flags across models."""
78
+ define_common_hparams_flags()
79
+
80
+ flags_core.define_device(tpu=True)
81
+ flags_core.define_base(
82
+ num_gpu=True, model_dir=False, data_dir=False, batch_size=False)
83
+ flags_core.define_distribution(worker_hosts=True, task_index=True)
84
+ flags_core.define_performance(all_reduce_alg=True, num_packs=True)
85
+
86
+ # Reset the default value of num_gpus to zero.
87
+ FLAGS.num_gpus = 0
88
+
89
+ flags.DEFINE_string(
90
+ 'strategy_type', 'mirrored', 'Type of distribute strategy.'
91
+ 'One of mirrored, tpu and multiworker.')
92
+
93
+
94
+ def strategy_flags_dict():
95
+ """Returns TPU and/or GPU related flags in a dictionary."""
96
+ return {
97
+ # TPUStrategy related flags.
98
+ 'tpu': FLAGS.tpu,
99
+ # MultiWorkerMirroredStrategy related flags.
100
+ 'all_reduce_alg': FLAGS.all_reduce_alg,
101
+ 'worker_hosts': FLAGS.worker_hosts,
102
+ 'task_index': FLAGS.task_index,
103
+ # MirroredStrategy and OneDeviceStrategy
104
+ 'num_gpus': FLAGS.num_gpus,
105
+ 'num_packs': FLAGS.num_packs,
106
+ }
107
+
108
+
109
+ def hparam_flags_dict():
110
+ """Returns model params related flags in a dictionary."""
111
+ return {
112
+ 'data_dir': FLAGS.data_dir,
113
+ 'model_dir': FLAGS.model_dir,
114
+ 'train_batch_size': FLAGS.train_batch_size,
115
+ 'eval_batch_size': FLAGS.eval_batch_size,
116
+ 'precision': FLAGS.precision,
117
+ 'config_file': FLAGS.config_file,
118
+ 'params_override': FLAGS.params_override,
119
+ }
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/__init__.py ADDED
File without changes
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/cloud_lib.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Utilities that interact with cloud service.
17
+ """
18
+
19
+ import requests
20
+
21
+ GCP_METADATA_URL = "http://metadata/computeMetadata/v1/instance/hostname"
22
+ GCP_METADATA_HEADER = {"Metadata-Flavor": "Google"}
23
+
24
+
25
+ def on_gcp():
26
+ """Detect whether the current running environment is on GCP."""
27
+ try:
28
+ # Timeout in 5 seconds, in case the test environment has connectivity issue.
29
+ # There is not default timeout, which means it might block forever.
30
+ response = requests.get(
31
+ GCP_METADATA_URL, headers=GCP_METADATA_HEADER, timeout=5)
32
+ return response.status_code == 200
33
+ except requests.exceptions.RequestException:
34
+ return False
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/guidelines.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Logging in official models
2
+
3
+ This library adds logging functions that print or save tensor values. Official models should define all common hooks
4
+ (using hooks helper) and a benchmark logger.
5
+
6
+ 1. **Training Hooks**
7
+
8
+ Hooks are a TensorFlow concept that define specific actions at certain points of the execution. We use them to obtain and log
9
+ tensor values during training.
10
+
11
+ hooks_helper.py provides an easy way to create common hooks. The following hooks are currently defined:
12
+ * LoggingTensorHook: Logs tensor values
13
+ * ProfilerHook: Writes a timeline json that can be loaded into chrome://tracing.
14
+ * ExamplesPerSecondHook: Logs the number of examples processed per second.
15
+ * LoggingMetricHook: Similar to LoggingTensorHook, except that the tensors are logged in a format defined by our data
16
+ anaylsis pipeline.
17
+
18
+
19
+ 2. **Benchmarks**
20
+
21
+ The benchmark logger provides useful functions for logging environment information, and evaluation results.
22
+ The module also contains a context which is used to update the status of the run.
23
+
24
+ Example usage:
25
+
26
+ ```
27
+ from absl import app as absl_app
28
+
29
+ from TensorFlow.utils.logs import hooks_helper
30
+ from TensorFlow.utils.logs import logger
31
+
32
+ def model_main(flags_obj):
33
+ estimator = ...
34
+
35
+ benchmark_logger = logger.get_benchmark_logger()
36
+ benchmark_logger.log_run_info(...)
37
+
38
+ train_hooks = hooks_helper.get_train_hooks(...)
39
+
40
+ for epoch in range(10):
41
+ estimator.train(..., hooks=train_hooks)
42
+ eval_results = estimator.evaluate(...)
43
+
44
+ # Log a dictionary of metrics
45
+ benchmark_logger.log_evaluation_result(eval_results)
46
+
47
+ # Log an individual metric
48
+ benchmark_logger.log_metric(...)
49
+
50
+
51
+ def main(_):
52
+ with logger.benchmark_context(flags.FLAGS):
53
+ model_main(flags.FLAGS)
54
+
55
+ if __name__ == "__main__":
56
+ # define flags
57
+ absl_app.run(main)
58
+ ```
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/hooks.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Hook that counts examples per second every N steps or seconds."""
17
+
18
+
19
+ from __future__ import absolute_import
20
+ from __future__ import division
21
+ from __future__ import print_function
22
+
23
+ import tensorflow as tf # pylint: disable=g-bad-import-order
24
+
25
+ from TensorFlow.utils.logs import logger
26
+
27
+
28
+ class ExamplesPerSecondHook(tf.estimator.SessionRunHook):
29
+ """Hook to print out examples per second.
30
+
31
+ Total time is tracked and then divided by the total number of steps
32
+ to get the average step time and then batch_size is used to determine
33
+ the running average of examples per second. The examples per second for the
34
+ most recent interval is also logged.
35
+ """
36
+
37
+ def __init__(self,
38
+ batch_size,
39
+ every_n_steps=None,
40
+ every_n_secs=None,
41
+ warm_steps=0,
42
+ metric_logger=None):
43
+ """Initializer for ExamplesPerSecondHook.
44
+
45
+ Args:
46
+ batch_size: Total batch size across all workers used to calculate
47
+ examples/second from global time.
48
+ every_n_steps: Log stats every n steps.
49
+ every_n_secs: Log stats every n seconds. Exactly one of the
50
+ `every_n_steps` or `every_n_secs` should be set.
51
+ warm_steps: The number of steps to be skipped before logging and running
52
+ average calculation. warm_steps steps refers to global steps across all
53
+ workers, not on each worker
54
+ metric_logger: instance of `BenchmarkLogger`, the benchmark logger that
55
+ hook should use to write the log. If None, BaseBenchmarkLogger will
56
+ be used.
57
+
58
+ Raises:
59
+ ValueError: if neither `every_n_steps` or `every_n_secs` is set, or
60
+ both are set.
61
+ """
62
+
63
+ if (every_n_steps is None) == (every_n_secs is None):
64
+ raise ValueError("exactly one of every_n_steps"
65
+ " and every_n_secs should be provided.")
66
+
67
+ self._logger = metric_logger or logger.BaseBenchmarkLogger()
68
+
69
+ self._timer = tf.estimator.SecondOrStepTimer(
70
+ every_steps=every_n_steps, every_secs=every_n_secs)
71
+
72
+ self._step_train_time = 0
73
+ self._total_steps = 0
74
+ self._batch_size = batch_size
75
+ self._warm_steps = warm_steps
76
+ # List of examples per second logged every_n_steps.
77
+ self.current_examples_per_sec_list = []
78
+
79
+ def begin(self):
80
+ """Called once before using the session to check global step."""
81
+ self._global_step_tensor = tf.compat.v1.train.get_global_step()
82
+ if self._global_step_tensor is None:
83
+ raise RuntimeError(
84
+ "Global step should be created to use StepCounterHook.")
85
+
86
+ def before_run(self, run_context): # pylint: disable=unused-argument
87
+ """Called before each call to run().
88
+
89
+ Args:
90
+ run_context: A SessionRunContext object.
91
+
92
+ Returns:
93
+ A SessionRunArgs object or None if never triggered.
94
+ """
95
+ return tf.estimator.SessionRunArgs(self._global_step_tensor)
96
+
97
+ def after_run(self, run_context, run_values): # pylint: disable=unused-argument
98
+ """Called after each call to run().
99
+
100
+ Args:
101
+ run_context: A SessionRunContext object.
102
+ run_values: A SessionRunValues object.
103
+ """
104
+ global_step = run_values.results
105
+
106
+ if self._timer.should_trigger_for_step(
107
+ global_step) and global_step > self._warm_steps:
108
+ elapsed_time, elapsed_steps = self._timer.update_last_triggered_step(
109
+ global_step)
110
+ if elapsed_time is not None:
111
+ self._step_train_time += elapsed_time
112
+ self._total_steps += elapsed_steps
113
+
114
+ # average examples per second is based on the total (accumulative)
115
+ # training steps and training time so far
116
+ average_examples_per_sec = self._batch_size * (
117
+ self._total_steps / self._step_train_time)
118
+ # current examples per second is based on the elapsed training steps
119
+ # and training time per batch
120
+ current_examples_per_sec = self._batch_size * (
121
+ elapsed_steps / elapsed_time)
122
+ # Logs entries to be read from hook during or after run.
123
+ self.current_examples_per_sec_list.append(current_examples_per_sec)
124
+ self._logger.log_metric(
125
+ "average_examples_per_sec", average_examples_per_sec,
126
+ global_step=global_step)
127
+
128
+ self._logger.log_metric(
129
+ "current_examples_per_sec", current_examples_per_sec,
130
+ global_step=global_step)
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/hooks_helper.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Hooks helper to return a list of TensorFlow hooks for training by name.
17
+
18
+ More hooks can be added to this set. To add a new hook, 1) add the new hook to
19
+ the registry in HOOKS, 2) add a corresponding function that parses out necessary
20
+ parameters.
21
+ """
22
+
23
+ from __future__ import absolute_import
24
+ from __future__ import division
25
+ from __future__ import print_function
26
+
27
+ import tensorflow as tf # pylint: disable=g-bad-import-order
28
+
29
+ from TensorFlow.utils.logs import hooks
30
+ from TensorFlow.utils.logs import logger
31
+ from TensorFlow.utils.logs import metric_hook
32
+
33
+ _TENSORS_TO_LOG = dict((x, x) for x in ['learning_rate',
34
+ 'cross_entropy',
35
+ 'train_accuracy'])
36
+
37
+
38
+ def get_train_hooks(name_list, use_tpu=False, **kwargs):
39
+ """Factory for getting a list of TensorFlow hooks for training by name.
40
+
41
+ Args:
42
+ name_list: a list of strings to name desired hook classes. Allowed:
43
+ LoggingTensorHook, ProfilerHook, ExamplesPerSecondHook, which are defined
44
+ as keys in HOOKS
45
+ use_tpu: Boolean of whether computation occurs on a TPU. This will disable
46
+ hooks altogether.
47
+ **kwargs: a dictionary of arguments to the hooks.
48
+
49
+ Returns:
50
+ list of instantiated hooks, ready to be used in a classifier.train call.
51
+
52
+ Raises:
53
+ ValueError: if an unrecognized name is passed.
54
+ """
55
+
56
+ if not name_list:
57
+ return []
58
+
59
+ if use_tpu:
60
+ tf.compat.v1.logging.warning('hooks_helper received name_list `{}`, but a '
61
+ 'TPU is specified. No hooks will be used.'
62
+ .format(name_list))
63
+ return []
64
+
65
+ train_hooks = []
66
+ for name in name_list:
67
+ hook_name = HOOKS.get(name.strip().lower())
68
+ if hook_name is None:
69
+ raise ValueError('Unrecognized training hook requested: {}'.format(name))
70
+ else:
71
+ train_hooks.append(hook_name(**kwargs))
72
+
73
+ return train_hooks
74
+
75
+
76
+ def get_logging_tensor_hook(every_n_iter=100, tensors_to_log=None, **kwargs): # pylint: disable=unused-argument
77
+ """Function to get LoggingTensorHook.
78
+
79
+ Args:
80
+ every_n_iter: `int`, print the values of `tensors` once every N local
81
+ steps taken on the current worker.
82
+ tensors_to_log: List of tensor names or dictionary mapping labels to tensor
83
+ names. If not set, log _TENSORS_TO_LOG by default.
84
+ **kwargs: a dictionary of arguments to LoggingTensorHook.
85
+
86
+ Returns:
87
+ Returns a LoggingTensorHook with a standard set of tensors that will be
88
+ printed to stdout.
89
+ """
90
+ if tensors_to_log is None:
91
+ tensors_to_log = _TENSORS_TO_LOG
92
+
93
+ return tf.estimator.LoggingTensorHook(
94
+ tensors=tensors_to_log,
95
+ every_n_iter=every_n_iter)
96
+
97
+
98
+ def get_profiler_hook(model_dir, save_steps=1000, **kwargs): # pylint: disable=unused-argument
99
+ """Function to get ProfilerHook.
100
+
101
+ Args:
102
+ model_dir: The directory to save the profile traces to.
103
+ save_steps: `int`, print profile traces every N steps.
104
+ **kwargs: a dictionary of arguments to ProfilerHook.
105
+
106
+ Returns:
107
+ Returns a ProfilerHook that writes out timelines that can be loaded into
108
+ profiling tools like chrome://tracing.
109
+ """
110
+ return tf.estimator.ProfilerHook(save_steps=save_steps, output_dir=model_dir)
111
+
112
+
113
+ def get_examples_per_second_hook(every_n_steps=100,
114
+ batch_size=128,
115
+ warm_steps=5,
116
+ **kwargs): # pylint: disable=unused-argument
117
+ """Function to get ExamplesPerSecondHook.
118
+
119
+ Args:
120
+ every_n_steps: `int`, print current and average examples per second every
121
+ N steps.
122
+ batch_size: `int`, total batch size used to calculate examples/second from
123
+ global time.
124
+ warm_steps: skip this number of steps before logging and running average.
125
+ **kwargs: a dictionary of arguments to ExamplesPerSecondHook.
126
+
127
+ Returns:
128
+ Returns a ProfilerHook that writes out timelines that can be loaded into
129
+ profiling tools like chrome://tracing.
130
+ """
131
+ return hooks.ExamplesPerSecondHook(
132
+ batch_size=batch_size, every_n_steps=every_n_steps,
133
+ warm_steps=warm_steps, metric_logger=logger.get_benchmark_logger())
134
+
135
+
136
+ def get_logging_metric_hook(tensors_to_log=None,
137
+ every_n_secs=600,
138
+ **kwargs): # pylint: disable=unused-argument
139
+ """Function to get LoggingMetricHook.
140
+
141
+ Args:
142
+ tensors_to_log: List of tensor names or dictionary mapping labels to tensor
143
+ names. If not set, log _TENSORS_TO_LOG by default.
144
+ every_n_secs: `int`, the frequency for logging the metric. Default to every
145
+ 10 mins.
146
+ **kwargs: a dictionary of arguments.
147
+
148
+ Returns:
149
+ Returns a LoggingMetricHook that saves tensor values in a JSON format.
150
+ """
151
+ if tensors_to_log is None:
152
+ tensors_to_log = _TENSORS_TO_LOG
153
+ return metric_hook.LoggingMetricHook(
154
+ tensors=tensors_to_log,
155
+ metric_logger=logger.get_benchmark_logger(),
156
+ every_n_secs=every_n_secs)
157
+
158
+
159
+ def get_step_counter_hook(**kwargs):
160
+ """Function to get StepCounterHook."""
161
+ del kwargs
162
+ return tf.estimator.StepCounterHook()
163
+
164
+
165
+ # A dictionary to map one hook name and its corresponding function
166
+ HOOKS = {
167
+ 'loggingtensorhook': get_logging_tensor_hook,
168
+ 'profilerhook': get_profiler_hook,
169
+ 'examplespersecondhook': get_examples_per_second_hook,
170
+ 'loggingmetrichook': get_logging_metric_hook,
171
+ 'stepcounterhook': get_step_counter_hook
172
+ }
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/logger.py ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Logging utilities for benchmark.
17
+
18
+ For collecting local environment metrics like CPU and memory, certain python
19
+ packages need be installed. See README for details.
20
+ """
21
+ from __future__ import absolute_import
22
+ from __future__ import division
23
+ from __future__ import print_function
24
+
25
+ import contextlib
26
+ import datetime
27
+ import json
28
+ import multiprocessing
29
+ import numbers
30
+ import os
31
+ import threading
32
+ import uuid
33
+
34
+ from six.moves import _thread as thread
35
+ from absl import flags
36
+ import tensorflow as tf
37
+ from tensorflow.python.client import device_lib
38
+
39
+ from TensorFlow.utils.logs import cloud_lib
40
+
41
+ METRIC_LOG_FILE_NAME = "metric.log"
42
+ BENCHMARK_RUN_LOG_FILE_NAME = "benchmark_run.log"
43
+ _DATE_TIME_FORMAT_PATTERN = "%Y-%m-%dT%H:%M:%S.%fZ"
44
+ GCP_TEST_ENV = "GCP"
45
+ RUN_STATUS_SUCCESS = "success"
46
+ RUN_STATUS_FAILURE = "failure"
47
+ RUN_STATUS_RUNNING = "running"
48
+
49
+
50
+ FLAGS = flags.FLAGS
51
+
52
+ # Don't use it directly. Use get_benchmark_logger to access a logger.
53
+ _benchmark_logger = None
54
+ _logger_lock = threading.Lock()
55
+
56
+
57
+ def config_benchmark_logger(flag_obj=None):
58
+ """Config the global benchmark logger."""
59
+ _logger_lock.acquire()
60
+ try:
61
+ global _benchmark_logger
62
+ if not flag_obj:
63
+ flag_obj = FLAGS
64
+
65
+ if (not hasattr(flag_obj, "benchmark_logger_type") or
66
+ flag_obj.benchmark_logger_type == "BaseBenchmarkLogger"):
67
+ _benchmark_logger = BaseBenchmarkLogger()
68
+ elif flag_obj.benchmark_logger_type == "BenchmarkFileLogger":
69
+ _benchmark_logger = BenchmarkFileLogger(flag_obj.benchmark_log_dir)
70
+ elif flag_obj.benchmark_logger_type == "BenchmarkBigQueryLogger":
71
+ from benchmark import benchmark_uploader as bu # pylint: disable=g-import-not-at-top
72
+ bq_uploader = bu.BigQueryUploader(gcp_project=flag_obj.gcp_project)
73
+ _benchmark_logger = BenchmarkBigQueryLogger(
74
+ bigquery_uploader=bq_uploader,
75
+ bigquery_data_set=flag_obj.bigquery_data_set,
76
+ bigquery_run_table=flag_obj.bigquery_run_table,
77
+ bigquery_run_status_table=flag_obj.bigquery_run_status_table,
78
+ bigquery_metric_table=flag_obj.bigquery_metric_table,
79
+ run_id=str(uuid.uuid4()))
80
+ else:
81
+ raise ValueError("Unrecognized benchmark_logger_type: %s"
82
+ % flag_obj.benchmark_logger_type)
83
+
84
+ finally:
85
+ _logger_lock.release()
86
+ return _benchmark_logger
87
+
88
+
89
+ def get_benchmark_logger():
90
+ if not _benchmark_logger:
91
+ config_benchmark_logger()
92
+ return _benchmark_logger
93
+
94
+
95
+ @contextlib.contextmanager
96
+ def benchmark_context(flag_obj):
97
+ """Context of benchmark, which will update status of the run accordingly."""
98
+ benchmark_logger = config_benchmark_logger(flag_obj)
99
+ try:
100
+ yield
101
+ benchmark_logger.on_finish(RUN_STATUS_SUCCESS)
102
+ except Exception: # pylint: disable=broad-except
103
+ # Catch all the exception, update the run status to be failure, and re-raise
104
+ benchmark_logger.on_finish(RUN_STATUS_FAILURE)
105
+ raise
106
+
107
+
108
+ class BaseBenchmarkLogger(object):
109
+ """Class to log the benchmark information to STDOUT."""
110
+
111
+ def log_evaluation_result(self, eval_results):
112
+ """Log the evaluation result.
113
+
114
+ The evaluate result is a dictionary that contains metrics defined in
115
+ model_fn. It also contains a entry for global_step which contains the value
116
+ of the global step when evaluation was performed.
117
+
118
+ Args:
119
+ eval_results: dict, the result of evaluate.
120
+ """
121
+ if not isinstance(eval_results, dict):
122
+ tf.compat.v1.logging.warning(
123
+ "eval_results should be dictionary for logging. Got %s",
124
+ type(eval_results))
125
+ return
126
+ global_step = eval_results[tf.compat.v1.GraphKeys.GLOBAL_STEP]
127
+ for key in sorted(eval_results):
128
+ if key != tf.compat.v1.GraphKeys.GLOBAL_STEP:
129
+ self.log_metric(key, eval_results[key], global_step=global_step)
130
+
131
+ def log_metric(self, name, value, unit=None, global_step=None, extras=None):
132
+ """Log the benchmark metric information to local file.
133
+
134
+ Currently the logging is done in a synchronized way. This should be updated
135
+ to log asynchronously.
136
+
137
+ Args:
138
+ name: string, the name of the metric to log.
139
+ value: number, the value of the metric. The value will not be logged if it
140
+ is not a number type.
141
+ unit: string, the unit of the metric, E.g "image per second".
142
+ global_step: int, the global_step when the metric is logged.
143
+ extras: map of string:string, the extra information about the metric.
144
+ """
145
+ metric = _process_metric_to_json(name, value, unit, global_step, extras)
146
+ if metric:
147
+ tf.compat.v1.logging.info("Benchmark metric: %s", metric)
148
+
149
+ def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
150
+ tf.compat.v1.logging.info(
151
+ "Benchmark run: %s", _gather_run_info(model_name, dataset_name,
152
+ run_params, test_id))
153
+
154
+ def on_finish(self, status):
155
+ pass
156
+
157
+
158
+ class BenchmarkFileLogger(BaseBenchmarkLogger):
159
+ """Class to log the benchmark information to local disk."""
160
+
161
+ def __init__(self, logging_dir):
162
+ super(BenchmarkFileLogger, self).__init__()
163
+ self._logging_dir = logging_dir
164
+ if not tf.io.gfile.isdir(self._logging_dir):
165
+ tf.io.gfile.makedirs(self._logging_dir)
166
+ self._metric_file_handler = tf.io.gfile.GFile(
167
+ os.path.join(self._logging_dir, METRIC_LOG_FILE_NAME), "a")
168
+
169
+ def log_metric(self, name, value, unit=None, global_step=None, extras=None):
170
+ """Log the benchmark metric information to local file.
171
+
172
+ Currently the logging is done in a synchronized way. This should be updated
173
+ to log asynchronously.
174
+
175
+ Args:
176
+ name: string, the name of the metric to log.
177
+ value: number, the value of the metric. The value will not be logged if it
178
+ is not a number type.
179
+ unit: string, the unit of the metric, E.g "image per second".
180
+ global_step: int, the global_step when the metric is logged.
181
+ extras: map of string:string, the extra information about the metric.
182
+ """
183
+ metric = _process_metric_to_json(name, value, unit, global_step, extras)
184
+ if metric:
185
+ try:
186
+ json.dump(metric, self._metric_file_handler)
187
+ self._metric_file_handler.write("\n")
188
+ self._metric_file_handler.flush()
189
+ except (TypeError, ValueError) as e:
190
+ tf.compat.v1.logging.warning(
191
+ "Failed to dump metric to log file: name %s, value %s, error %s",
192
+ name, value, e)
193
+
194
+ def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
195
+ """Collect most of the TF runtime information for the local env.
196
+
197
+ The schema of the run info follows official/benchmark/datastore/schema.
198
+
199
+ Args:
200
+ model_name: string, the name of the model.
201
+ dataset_name: string, the name of dataset for training and evaluation.
202
+ run_params: dict, the dictionary of parameters for the run, it could
203
+ include hyperparameters or other params that are important for the run.
204
+ test_id: string, the unique name of the test run by the combination of key
205
+ parameters, eg batch size, num of GPU. It is hardware independent.
206
+ """
207
+ run_info = _gather_run_info(model_name, dataset_name, run_params, test_id)
208
+
209
+ with tf.io.gfile.GFile(os.path.join(
210
+ self._logging_dir, BENCHMARK_RUN_LOG_FILE_NAME), "w") as f:
211
+ try:
212
+ json.dump(run_info, f)
213
+ f.write("\n")
214
+ except (TypeError, ValueError) as e:
215
+ tf.compat.v1.logging.warning(
216
+ "Failed to dump benchmark run info to log file: %s", e)
217
+
218
+ def on_finish(self, status):
219
+ self._metric_file_handler.flush()
220
+ self._metric_file_handler.close()
221
+
222
+
223
+ class BenchmarkBigQueryLogger(BaseBenchmarkLogger):
224
+ """Class to log the benchmark information to BigQuery data store."""
225
+
226
+ def __init__(self,
227
+ bigquery_uploader,
228
+ bigquery_data_set,
229
+ bigquery_run_table,
230
+ bigquery_run_status_table,
231
+ bigquery_metric_table,
232
+ run_id):
233
+ super(BenchmarkBigQueryLogger, self).__init__()
234
+ self._bigquery_uploader = bigquery_uploader
235
+ self._bigquery_data_set = bigquery_data_set
236
+ self._bigquery_run_table = bigquery_run_table
237
+ self._bigquery_run_status_table = bigquery_run_status_table
238
+ self._bigquery_metric_table = bigquery_metric_table
239
+ self._run_id = run_id
240
+
241
+ def log_metric(self, name, value, unit=None, global_step=None, extras=None):
242
+ """Log the benchmark metric information to bigquery.
243
+
244
+ Args:
245
+ name: string, the name of the metric to log.
246
+ value: number, the value of the metric. The value will not be logged if it
247
+ is not a number type.
248
+ unit: string, the unit of the metric, E.g "image per second".
249
+ global_step: int, the global_step when the metric is logged.
250
+ extras: map of string:string, the extra information about the metric.
251
+ """
252
+ metric = _process_metric_to_json(name, value, unit, global_step, extras)
253
+ if metric:
254
+ # Starting new thread for bigquery upload in case it might take long time
255
+ # and impact the benchmark and performance measurement. Starting a new
256
+ # thread might have potential performance impact for model that run on
257
+ # CPU.
258
+ thread.start_new_thread(
259
+ self._bigquery_uploader.upload_benchmark_metric_json,
260
+ (self._bigquery_data_set,
261
+ self._bigquery_metric_table,
262
+ self._run_id,
263
+ [metric]))
264
+
265
+ def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
266
+ """Collect most of the TF runtime information for the local env.
267
+
268
+ The schema of the run info follows official/benchmark/datastore/schema.
269
+
270
+ Args:
271
+ model_name: string, the name of the model.
272
+ dataset_name: string, the name of dataset for training and evaluation.
273
+ run_params: dict, the dictionary of parameters for the run, it could
274
+ include hyperparameters or other params that are important for the run.
275
+ test_id: string, the unique name of the test run by the combination of key
276
+ parameters, eg batch size, num of GPU. It is hardware independent.
277
+ """
278
+ run_info = _gather_run_info(model_name, dataset_name, run_params, test_id)
279
+ # Starting new thread for bigquery upload in case it might take long time
280
+ # and impact the benchmark and performance measurement. Starting a new
281
+ # thread might have potential performance impact for model that run on CPU.
282
+ thread.start_new_thread(
283
+ self._bigquery_uploader.upload_benchmark_run_json,
284
+ (self._bigquery_data_set,
285
+ self._bigquery_run_table,
286
+ self._run_id,
287
+ run_info))
288
+ thread.start_new_thread(
289
+ self._bigquery_uploader.insert_run_status,
290
+ (self._bigquery_data_set,
291
+ self._bigquery_run_status_table,
292
+ self._run_id,
293
+ RUN_STATUS_RUNNING))
294
+
295
+ def on_finish(self, status):
296
+ self._bigquery_uploader.update_run_status(
297
+ self._bigquery_data_set,
298
+ self._bigquery_run_status_table,
299
+ self._run_id,
300
+ status)
301
+
302
+
303
+ def _gather_run_info(model_name, dataset_name, run_params, test_id):
304
+ """Collect the benchmark run information for the local environment."""
305
+ run_info = {
306
+ "model_name": model_name,
307
+ "dataset": {"name": dataset_name},
308
+ "machine_config": {},
309
+ "test_id": test_id,
310
+ "run_date": datetime.datetime.utcnow().strftime(
311
+ _DATE_TIME_FORMAT_PATTERN)}
312
+ _collect_tensorflow_info(run_info)
313
+ _collect_tensorflow_environment_variables(run_info)
314
+ _collect_run_params(run_info, run_params)
315
+ _collect_cpu_info(run_info)
316
+ _collect_memory_info(run_info)
317
+ _collect_test_environment(run_info)
318
+ return run_info
319
+
320
+
321
+ def _process_metric_to_json(
322
+ name, value, unit=None, global_step=None, extras=None):
323
+ """Validate the metric data and generate JSON for insert."""
324
+ if not isinstance(value, numbers.Number):
325
+ tf.compat.v1.logging.warning(
326
+ "Metric value to log should be a number. Got %s", type(value))
327
+ return None
328
+
329
+ extras = _convert_to_json_dict(extras)
330
+ return {
331
+ "name": name,
332
+ "value": float(value),
333
+ "unit": unit,
334
+ "global_step": global_step,
335
+ "timestamp": datetime.datetime.utcnow().strftime(
336
+ _DATE_TIME_FORMAT_PATTERN),
337
+ "extras": extras}
338
+
339
+
340
+ def _collect_tensorflow_info(run_info):
341
+ run_info["tensorflow_version"] = {
342
+ "version": tf.version.VERSION, "git_hash": tf.version.GIT_VERSION}
343
+
344
+
345
+ def _collect_run_params(run_info, run_params):
346
+ """Log the parameter information for the benchmark run."""
347
+ def process_param(name, value):
348
+ type_check = {
349
+ str: {"name": name, "string_value": value},
350
+ int: {"name": name, "long_value": value},
351
+ bool: {"name": name, "bool_value": str(value)},
352
+ float: {"name": name, "float_value": value},
353
+ }
354
+ return type_check.get(type(value),
355
+ {"name": name, "string_value": str(value)})
356
+ if run_params:
357
+ run_info["run_parameters"] = [
358
+ process_param(k, v) for k, v in sorted(run_params.items())]
359
+
360
+
361
+ def _collect_tensorflow_environment_variables(run_info):
362
+ run_info["tensorflow_environment_variables"] = [
363
+ {"name": k, "value": v}
364
+ for k, v in sorted(os.environ.items()) if k.startswith("TF_")]
365
+
366
+
367
+ # The following code is mirrored from tensorflow/tools/test/system_info_lib
368
+ # which is not exposed for import.
369
+ def _collect_cpu_info(run_info):
370
+ """Collect the CPU information for the local environment."""
371
+ cpu_info = {}
372
+
373
+ cpu_info["num_cores"] = multiprocessing.cpu_count()
374
+
375
+ try:
376
+ # Note: cpuinfo is not installed in the TensorFlow OSS tree.
377
+ # It is installable via pip.
378
+ import cpuinfo # pylint: disable=g-import-not-at-top
379
+
380
+ info = cpuinfo.get_cpu_info()
381
+ cpu_info["cpu_info"] = info["brand"]
382
+ cpu_info["mhz_per_cpu"] = info["hz_advertised_raw"][0] / 1.0e6
383
+
384
+ run_info["machine_config"]["cpu_info"] = cpu_info
385
+ except ImportError:
386
+ tf.compat.v1.logging.warn(
387
+ "'cpuinfo' not imported. CPU info will not be logged.")
388
+
389
+
390
+ def _collect_memory_info(run_info):
391
+ try:
392
+ # Note: psutil is not installed in the TensorFlow OSS tree.
393
+ # It is installable via pip.
394
+ import psutil # pylint: disable=g-import-not-at-top
395
+ vmem = psutil.virtual_memory()
396
+ run_info["machine_config"]["memory_total"] = vmem.total
397
+ run_info["machine_config"]["memory_available"] = vmem.available
398
+ except ImportError:
399
+ tf.compat.v1.logging.warn(
400
+ "'psutil' not imported. Memory info will not be logged.")
401
+
402
+
403
+ def _collect_test_environment(run_info):
404
+ """Detect the local environment, eg GCE, AWS or DGX, etc."""
405
+ if cloud_lib.on_gcp():
406
+ run_info["test_environment"] = GCP_TEST_ENV
407
+ # TODO(scottzhu): Add more testing env detection for other platform
408
+
409
+
410
+ def _parse_gpu_model(physical_device_desc):
411
+ # Assume all the GPU connected are same model
412
+ for kv in physical_device_desc.split(","):
413
+ k, _, v = kv.partition(":")
414
+ if k.strip() == "name":
415
+ return v.strip()
416
+ return None
417
+
418
+
419
+ def _convert_to_json_dict(input_dict):
420
+ if input_dict:
421
+ return [{"name": k, "value": v} for k, v in sorted(input_dict.items())]
422
+ else:
423
+ return []
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/metric_hook.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Session hook for logging benchmark metric."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import tensorflow as tf # pylint: disable=g-bad-import-order
22
+
23
+
24
+ class LoggingMetricHook(tf.estimator.LoggingTensorHook):
25
+ """Hook to log benchmark metric information.
26
+
27
+ This hook is very similar as tf.train.LoggingTensorHook, which logs given
28
+ tensors every N local steps, every N seconds, or at the end. The metric
29
+ information will be logged to given log_dir or via metric_logger in JSON
30
+ format, which can be consumed by data analysis pipeline later.
31
+
32
+ Note that if `at_end` is True, `tensors` should not include any tensor
33
+ whose evaluation produces a side effect such as consuming additional inputs.
34
+ """
35
+
36
+ def __init__(self, tensors, metric_logger=None,
37
+ every_n_iter=None, every_n_secs=None, at_end=False):
38
+ """Initializer for LoggingMetricHook.
39
+
40
+ Args:
41
+ tensors: `dict` that maps string-valued tags to tensors/tensor names,
42
+ or `iterable` of tensors/tensor names.
43
+ metric_logger: instance of `BenchmarkLogger`, the benchmark logger that
44
+ hook should use to write the log.
45
+ every_n_iter: `int`, print the values of `tensors` once every N local
46
+ steps taken on the current worker.
47
+ every_n_secs: `int` or `float`, print the values of `tensors` once every N
48
+ seconds. Exactly one of `every_n_iter` and `every_n_secs` should be
49
+ provided.
50
+ at_end: `bool` specifying whether to print the values of `tensors` at the
51
+ end of the run.
52
+
53
+ Raises:
54
+ ValueError:
55
+ 1. `every_n_iter` is non-positive, or
56
+ 2. Exactly one of every_n_iter and every_n_secs should be provided.
57
+ 3. Exactly one of log_dir and metric_logger should be provided.
58
+ """
59
+ super(LoggingMetricHook, self).__init__(
60
+ tensors=tensors,
61
+ every_n_iter=every_n_iter,
62
+ every_n_secs=every_n_secs,
63
+ at_end=at_end)
64
+
65
+ if metric_logger is None:
66
+ raise ValueError("metric_logger should be provided.")
67
+ self._logger = metric_logger
68
+
69
+ def begin(self):
70
+ super(LoggingMetricHook, self).begin()
71
+ self._global_step_tensor = tf.compat.v1.train.get_global_step()
72
+ if self._global_step_tensor is None:
73
+ raise RuntimeError(
74
+ "Global step should be created to use LoggingMetricHook.")
75
+ if self._global_step_tensor.name not in self._current_tensors:
76
+ self._current_tensors[self._global_step_tensor.name] = (
77
+ self._global_step_tensor)
78
+
79
+ def after_run(self, unused_run_context, run_values):
80
+ # should_trigger is a internal state that populated at before_run, and it is
81
+ # using self_timer to determine whether it should trigger.
82
+ if self._should_trigger:
83
+ self._log_metric(run_values.results)
84
+
85
+ self._iter_count += 1
86
+
87
+ def end(self, session):
88
+ if self._log_at_end:
89
+ values = session.run(self._current_tensors)
90
+ self._log_metric(values)
91
+
92
+ def _log_metric(self, tensor_values):
93
+ self._timer.update_last_triggered_step(self._iter_count)
94
+ global_step = tensor_values[self._global_step_tensor.name]
95
+ # self._tag_order is populated during the init of LoggingTensorHook
96
+ for tag in self._tag_order:
97
+ self._logger.log_metric(tag, tensor_values[tag], global_step=global_step)
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/logs/mlperf_helper.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Wrapper for the mlperf logging utils.
17
+
18
+ MLPerf compliance logging is only desired under a limited set of circumstances.
19
+ This module is intended to keep users from needing to consider logging (or
20
+ install the module) unless they are performing mlperf runs.
21
+ """
22
+
23
+ from __future__ import absolute_import
24
+ from __future__ import division
25
+ from __future__ import print_function
26
+
27
+ from collections import namedtuple
28
+ import json
29
+ import os
30
+ import re
31
+ import subprocess
32
+ import sys
33
+ import typing
34
+
35
+ import tensorflow as tf
36
+
37
+ _MIN_VERSION = (0, 0, 10)
38
+ _STACK_OFFSET = 2
39
+
40
+ SUDO = "sudo" if os.geteuid() else ""
41
+
42
+ # This indirection is used in docker.
43
+ DROP_CACHE_LOC = os.getenv("DROP_CACHE_LOC", "/proc/sys/vm/drop_caches")
44
+
45
+ _NCF_PREFIX = "NCF_RAW_"
46
+
47
+ # TODO(robieta): move line parsing to mlperf util
48
+ _PREFIX = r"(?:{})?:::MLPv([0-9]+).([0-9]+).([0-9]+)".format(_NCF_PREFIX)
49
+ _BENCHMARK = r"([a-zA-Z0-9_]+)"
50
+ _TIMESTAMP = r"([0-9]+\.[0-9]+)"
51
+ _CALLSITE = r"\((.+):([0-9]+)\)"
52
+ _TAG = r"([a-zA-Z0-9_]+)"
53
+ _VALUE = r"(.*)"
54
+
55
+ ParsedLine = namedtuple("ParsedLine", ["version", "benchmark", "timestamp",
56
+ "callsite", "tag", "value"])
57
+
58
+ LINE_PATTERN = re.compile(
59
+ "^{prefix} {benchmark} {timestamp} {callsite} {tag}(: |$){value}?$".format(
60
+ prefix=_PREFIX, benchmark=_BENCHMARK, timestamp=_TIMESTAMP,
61
+ callsite=_CALLSITE, tag=_TAG, value=_VALUE))
62
+
63
+
64
+ def parse_line(line): # type: (str) -> typing.Optional[ParsedLine]
65
+ match = LINE_PATTERN.match(line.strip())
66
+ if not match:
67
+ return
68
+
69
+ major, minor, micro, benchmark, timestamp = match.groups()[:5]
70
+ call_file, call_line, tag, _, value = match.groups()[5:]
71
+
72
+ return ParsedLine(version=(int(major), int(minor), int(micro)),
73
+ benchmark=benchmark, timestamp=timestamp,
74
+ callsite=(call_file, call_line), tag=tag, value=value)
75
+
76
+
77
+ def unparse_line(parsed_line): # type: (ParsedLine) -> str
78
+ version_str = "{}.{}.{}".format(*parsed_line.version)
79
+ callsite_str = "({}:{})".format(*parsed_line.callsite)
80
+ value_str = ": {}".format(parsed_line.value) if parsed_line.value else ""
81
+ return ":::MLPv{} {} {} {} {} {}".format(
82
+ version_str, parsed_line.benchmark, parsed_line.timestamp, callsite_str,
83
+ parsed_line.tag, value_str)
84
+
85
+
86
+ def get_mlperf_log():
87
+ """Shielded import of mlperf_log module."""
88
+ try:
89
+ import mlperf_compliance
90
+
91
+ def test_mlperf_log_pip_version():
92
+ """Check that mlperf_compliance is up to date."""
93
+ import pkg_resources
94
+ version = pkg_resources.get_distribution("mlperf_compliance")
95
+ version = tuple(int(i) for i in version.version.split("."))
96
+ if version < _MIN_VERSION:
97
+ tf.compat.v1.logging.warning(
98
+ "mlperf_compliance is version {}, must be >= {}".format(
99
+ ".".join([str(i) for i in version]),
100
+ ".".join([str(i) for i in _MIN_VERSION])))
101
+ raise ImportError
102
+ return mlperf_compliance.mlperf_log
103
+
104
+ mlperf_log = test_mlperf_log_pip_version()
105
+
106
+ except ImportError:
107
+ mlperf_log = None
108
+
109
+ return mlperf_log
110
+
111
+
112
+ class Logger(object):
113
+ """MLPerf logger indirection class.
114
+
115
+ This logger only logs for MLPerf runs, and prevents various errors associated
116
+ with not having the mlperf_compliance package installed.
117
+ """
118
+ class Tags(object):
119
+ def __init__(self, mlperf_log):
120
+ self._enabled = False
121
+ self._mlperf_log = mlperf_log
122
+
123
+ def __getattr__(self, item):
124
+ if self._mlperf_log is None or not self._enabled:
125
+ return
126
+ return getattr(self._mlperf_log, item)
127
+
128
+ def __init__(self):
129
+ self._enabled = False
130
+ self._mlperf_log = get_mlperf_log()
131
+ self.tags = self.Tags(self._mlperf_log)
132
+
133
+ def __call__(self, enable=False):
134
+ if enable and self._mlperf_log is None:
135
+ raise ImportError("MLPerf logging was requested, but mlperf_compliance "
136
+ "module could not be loaded.")
137
+
138
+ self._enabled = enable
139
+ self.tags._enabled = enable
140
+ return self
141
+
142
+ def __enter__(self):
143
+ pass
144
+
145
+ def __exit__(self, exc_type, exc_val, exc_tb):
146
+ self._enabled = False
147
+ self.tags._enabled = False
148
+
149
+ @property
150
+ def log_file(self):
151
+ if self._mlperf_log is None:
152
+ return
153
+ return self._mlperf_log.LOG_FILE
154
+
155
+ @property
156
+ def enabled(self):
157
+ return self._enabled
158
+
159
+ def ncf_print(self, key, value=None, stack_offset=_STACK_OFFSET,
160
+ deferred=False, extra_print=False, prefix=_NCF_PREFIX):
161
+ if self._mlperf_log is None or not self.enabled:
162
+ return
163
+ self._mlperf_log.ncf_print(key=key, value=value, stack_offset=stack_offset,
164
+ deferred=deferred, extra_print=extra_print,
165
+ prefix=prefix)
166
+
167
+ def set_ncf_root(self, path):
168
+ if self._mlperf_log is None:
169
+ return
170
+ self._mlperf_log.ROOT_DIR_NCF = path
171
+
172
+
173
+ LOGGER = Logger()
174
+ ncf_print, set_ncf_root = LOGGER.ncf_print, LOGGER.set_ncf_root
175
+ TAGS = LOGGER.tags
176
+
177
+
178
+ def clear_system_caches():
179
+ if not LOGGER.enabled:
180
+ return
181
+ ret_code = subprocess.call(
182
+ ["sync && echo 3 | {} tee {}".format(SUDO, DROP_CACHE_LOC)],
183
+ shell=True)
184
+
185
+ if ret_code:
186
+ raise ValueError("Failed to clear caches")
187
+
188
+
189
+ if __name__ == "__main__":
190
+ tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
191
+ with LOGGER(True):
192
+ ncf_print(key=TAGS.RUN_START)
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/__init__.py ADDED
File without changes
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/callstack_sampler.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A simple Python callstack sampler."""
2
+
3
+ import contextlib
4
+ import datetime
5
+ import signal
6
+ import traceback
7
+
8
+
9
+ class CallstackSampler(object):
10
+ """A simple signal-based Python callstack sampler.
11
+ """
12
+
13
+ def __init__(self, interval=None):
14
+ self.stacks = []
15
+ self.interval = 0.001 if interval is None else interval
16
+
17
+ def _sample(self, signum, frame):
18
+ """Samples the current stack."""
19
+ del signum
20
+ stack = traceback.extract_stack(frame)
21
+ formatted_stack = []
22
+ formatted_stack.append(datetime.datetime.utcnow())
23
+ for filename, lineno, function_name, text in stack:
24
+ formatted_frame = '{}:{}({})({})'.format(filename, lineno, function_name,
25
+ text)
26
+ formatted_stack.append(formatted_frame)
27
+ self.stacks.append(formatted_stack)
28
+ signal.setitimer(signal.ITIMER_VIRTUAL, self.interval, 0)
29
+
30
+ @contextlib.contextmanager
31
+ def profile(self):
32
+ signal.signal(signal.SIGVTALRM, self._sample)
33
+ signal.setitimer(signal.ITIMER_VIRTUAL, self.interval, 0)
34
+ try:
35
+ yield
36
+ finally:
37
+ signal.setitimer(signal.ITIMER_VIRTUAL, 0)
38
+
39
+ def save(self, fname):
40
+ with open(fname, 'w') as f:
41
+ for s in self.stacks:
42
+ for l in s:
43
+ f.write('%s\n' % l)
44
+ f.write('\n')
45
+
46
+
47
+ @contextlib.contextmanager
48
+ def callstack_sampling(filename, interval=None):
49
+ """Periodically samples the Python callstack.
50
+
51
+ Args:
52
+ filename: the filename
53
+ interval: the sampling interval, in seconds. Defaults to 0.001.
54
+
55
+ Yields:
56
+ nothing
57
+ """
58
+ sampler = CallstackSampler(interval=interval)
59
+ with sampler.profile():
60
+ yield
61
+ sampler.save(filename)
62
+
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/distribution_utils.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Helper functions for running models in a distributed setting."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import json
22
+ import os
23
+ import random
24
+ import string
25
+ import tensorflow.compat.v2 as tf
26
+
27
+ from TensorFlow.utils.misc import tpu_lib
28
+
29
+ from habana_frameworks.tensorflow.distribute import HPUStrategy
30
+
31
+ def _collective_communication(all_reduce_alg):
32
+ """Return a CollectiveCommunication based on all_reduce_alg.
33
+
34
+ Args:
35
+ all_reduce_alg: a string specifying which collective communication to pick,
36
+ or None.
37
+
38
+ Returns:
39
+ tf.distribute.experimental.CollectiveCommunication object
40
+
41
+ Raises:
42
+ ValueError: if `all_reduce_alg` not in [None, 'ring', 'nccl']
43
+ """
44
+ collective_communication_options = {
45
+ None: tf.distribute.experimental.CollectiveCommunication.AUTO,
46
+ "ring": tf.distribute.experimental.CollectiveCommunication.RING,
47
+ "nccl": tf.distribute.experimental.CollectiveCommunication.NCCL
48
+ }
49
+ if all_reduce_alg not in collective_communication_options:
50
+ raise ValueError(
51
+ "When used with `multi_worker_mirrored`, valid values for "
52
+ "all_reduce_alg are ['ring', 'nccl']. Supplied value: {}".format(
53
+ all_reduce_alg))
54
+ return collective_communication_options[all_reduce_alg]
55
+
56
+
57
+ def _mirrored_cross_device_ops(all_reduce_alg, num_packs):
58
+ """Return a CrossDeviceOps based on all_reduce_alg and num_packs.
59
+
60
+ Args:
61
+ all_reduce_alg: a string specifying which cross device op to pick, or None.
62
+ num_packs: an integer specifying number of packs for the cross device op.
63
+
64
+ Returns:
65
+ tf.distribute.CrossDeviceOps object or None.
66
+
67
+ Raises:
68
+ ValueError: if `all_reduce_alg` not in [None, 'nccl', 'hierarchical_copy'].
69
+ """
70
+ if all_reduce_alg is None:
71
+ return None
72
+ mirrored_all_reduce_options = {
73
+ "nccl": tf.distribute.NcclAllReduce,
74
+ "hierarchical_copy": tf.distribute.HierarchicalCopyAllReduce
75
+ }
76
+ if all_reduce_alg not in mirrored_all_reduce_options:
77
+ raise ValueError(
78
+ "When used with `mirrored`, valid values for all_reduce_alg are "
79
+ "['nccl', 'hierarchical_copy']. Supplied value: {}".format(
80
+ all_reduce_alg))
81
+ cross_device_ops_class = mirrored_all_reduce_options[all_reduce_alg]
82
+ return cross_device_ops_class(num_packs=num_packs)
83
+
84
+
85
+ def get_distribution_strategy(distribution_strategy="mirrored",
86
+ num_gpus=0,
87
+ num_hpus=0,
88
+ all_reduce_alg=None,
89
+ num_packs=1,
90
+ tpu_address=None):
91
+ """Return a DistributionStrategy for running the model.
92
+
93
+ Args:
94
+ distribution_strategy: a string specifying which distribution strategy to
95
+ use. Accepted values are 'off', 'one_device', 'mirrored',
96
+ 'parameter_server', 'multi_worker_mirrored', and 'tpu' -- case insensitive.
97
+ 'off' means not to use Distribution Strategy; 'tpu' means to use
98
+ TPUStrategy using `tpu_address`.
99
+ num_gpus: Number of GPUs to run this model.
100
+ all_reduce_alg: Optional. Specifies which algorithm to use when performing
101
+ all-reduce. For `MirroredStrategy`, valid values are "nccl" and
102
+ "hierarchical_copy". For `MultiWorkerMirroredStrategy`, valid values are
103
+ "ring" and "nccl". If None, DistributionStrategy will choose based on
104
+ device topology.
105
+ num_packs: Optional. Sets the `num_packs` in `tf.distribute.NcclAllReduce`
106
+ or `tf.distribute.HierarchicalCopyAllReduce` for `MirroredStrategy`.
107
+ tpu_address: Optional. String that represents TPU to connect to. Must not
108
+ be None if `distribution_strategy` is set to `tpu`.
109
+ Returns:
110
+ tf.distribute.DistibutionStrategy object.
111
+ Raises:
112
+ ValueError: if `distribution_strategy` is 'off' or 'one_device' and
113
+ `num_gpus` is larger than 1; or `num_gpus` is negative or if
114
+ `distribution_strategy` is `tpu` but `tpu_address` is not specified.
115
+ """
116
+ if num_gpus < 0:
117
+ raise ValueError("`num_gpus` can not be negative.")
118
+
119
+ distribution_strategy = distribution_strategy.lower()
120
+ if distribution_strategy == "off":
121
+ if num_gpus > 1:
122
+ raise ValueError(
123
+ "When {} GPUs are specified, distribution_strategy "
124
+ "flag cannot be set to 'off'.".format(num_gpus))
125
+ return None
126
+
127
+ if distribution_strategy == "hpu":
128
+ return HPUStrategy()
129
+
130
+ if distribution_strategy == "tpu":
131
+ # When tpu_address is an empty string, we communicate with local TPUs.
132
+ cluster_resolver = tpu_lib.tpu_initialize(tpu_address)
133
+ return tf.distribute.experimental.TPUStrategy(cluster_resolver)
134
+
135
+ if distribution_strategy == "multi_worker_mirrored":
136
+ return tf.distribute.experimental.MultiWorkerMirroredStrategy(
137
+ communication=_collective_communication(all_reduce_alg))
138
+
139
+ if distribution_strategy == "one_device":
140
+ if num_gpus == 0 and num_hpus == 0:
141
+ return tf.distribute.OneDeviceStrategy("device:CPU:0")
142
+ if num_hpus == 1:
143
+ return tf.distribute.OneDeviceStrategy("device:HPU:0")
144
+ if num_gpus > 1 or num_hpus > 1:
145
+ raise ValueError("`OneDeviceStrategy` can not be used for more than "
146
+ "one device.")
147
+ return tf.distribute.OneDeviceStrategy("device:GPU:0")
148
+
149
+ if distribution_strategy == "mirrored":
150
+ if num_gpus == 0:
151
+ devices = ["device:CPU:0"]
152
+ else:
153
+ devices = ["device:GPU:%d" % i for i in range(num_gpus)]
154
+ return tf.distribute.MirroredStrategy(
155
+ devices=devices,
156
+ cross_device_ops=_mirrored_cross_device_ops(all_reduce_alg, num_packs))
157
+
158
+ if distribution_strategy == "parameter_server":
159
+ return tf.distribute.experimental.ParameterServerStrategy()
160
+
161
+ raise ValueError(
162
+ "Unrecognized Distribution Strategy: %r" % distribution_strategy)
163
+
164
+
165
+ def per_replica_batch_size(batch_size, num_gpus):
166
+ """For multi-gpu, batch-size must be a multiple of the number of GPUs.
167
+
168
+
169
+ Note that distribution strategy handles this automatically when used with
170
+ Keras. For using with Estimator, we need to get per GPU batch.
171
+
172
+ Args:
173
+ batch_size: Global batch size to be divided among devices. This should be
174
+ equal to num_gpus times the single-GPU batch_size for multi-gpu training.
175
+ num_gpus: How many GPUs are used with DistributionStrategies.
176
+
177
+ Returns:
178
+ Batch size per device.
179
+
180
+ Raises:
181
+ ValueError: if batch_size is not divisible by number of devices
182
+ """
183
+ if num_gpus <= 1:
184
+ return batch_size
185
+
186
+ remainder = batch_size % num_gpus
187
+ if remainder:
188
+ err = ('When running with multiple GPUs, batch size '
189
+ 'must be a multiple of the number of available GPUs. Found {} '
190
+ 'GPUs with a batch size of {}; try --batch_size={} instead.'
191
+ ).format(num_gpus, batch_size, batch_size - remainder)
192
+ raise ValueError(err)
193
+ return int(batch_size / num_gpus)
194
+
195
+
196
+ # The `SyntheticDataset` is a temporary solution for generating synthetic data
197
+ # directly on devices. It is only useful for Keras with Distribution
198
+ # Strategies. We will have better support in `tf.data` or Distribution Strategy
199
+ # later.
200
+ class SyntheticDataset(object):
201
+ """A dataset that generates synthetic data on each device."""
202
+
203
+ def __init__(self, dataset, split_by=1):
204
+ # dataset.take(1) doesn't have GPU kernel.
205
+ with tf.device('device:CPU:0'):
206
+ tensor = tf.data.experimental.get_single_element(dataset.take(1))
207
+ flat_tensor = tf.nest.flatten(tensor)
208
+ variable_data = []
209
+ initializers = []
210
+ for t in flat_tensor:
211
+ rebatched_t = tf.split(t, num_or_size_splits=split_by, axis=0)[0]
212
+ assert rebatched_t.shape.is_fully_defined(), rebatched_t.shape
213
+ v = tf.compat.v1.get_local_variable(self._random_name(),
214
+ initializer=rebatched_t)
215
+ variable_data.append(v)
216
+ initializers.append(v.initializer)
217
+ input_data = tf.nest.pack_sequence_as(tensor, variable_data)
218
+ self._iterator = SyntheticIterator(input_data, initializers)
219
+
220
+ def _random_name(self, size=10, chars=string.ascii_uppercase + string.digits):
221
+ return ''.join(random.choice(chars) for _ in range(size))
222
+
223
+ def __iter__(self):
224
+ return self._iterator
225
+
226
+ def make_one_shot_iterator(self):
227
+ return self._iterator
228
+
229
+ def make_initializable_iterator(self):
230
+ return self._iterator
231
+
232
+
233
+ class SyntheticIterator(object):
234
+ """A dataset that generates synthetic data on each device."""
235
+
236
+ def __init__(self, input_data, initializers):
237
+ self._input_data = input_data
238
+ self._initializers = initializers
239
+
240
+ def get_next(self):
241
+ return self._input_data
242
+
243
+ def next(self):
244
+ return self.__next__()
245
+
246
+ def __next__(self):
247
+ try:
248
+ return self.get_next()
249
+ except tf.errors.OutOfRangeError:
250
+ raise StopIteration
251
+
252
+ def initialize(self):
253
+ if tf.executing_eagerly():
254
+ return tf.no_op()
255
+ else:
256
+ return self._initializers
257
+
258
+
259
+ def _monkey_patch_dataset_method(strategy):
260
+ """Monkey-patch `strategy`'s `make_dataset_iterator` method."""
261
+ def make_dataset(self, dataset):
262
+ tf.compat.v1.logging.info('Using pure synthetic data.')
263
+ with self.scope():
264
+ if self.extended._global_batch_size: # pylint: disable=protected-access
265
+ return SyntheticDataset(dataset, self.num_replicas_in_sync)
266
+ else:
267
+ return SyntheticDataset(dataset)
268
+
269
+ def make_iterator(self, dataset):
270
+ dist_dataset = make_dataset(self, dataset)
271
+ return iter(dist_dataset)
272
+
273
+ strategy.orig_make_dataset_iterator = strategy.make_dataset_iterator
274
+ strategy.make_dataset_iterator = make_iterator
275
+ strategy.orig_distribute_dataset = strategy.experimental_distribute_dataset
276
+ strategy.experimental_distribute_dataset = make_dataset
277
+
278
+
279
+ def _undo_monkey_patch_dataset_method(strategy):
280
+ if hasattr(strategy, 'orig_make_dataset_iterator'):
281
+ strategy.make_dataset_iterator = strategy.orig_make_dataset_iterator
282
+ if hasattr(strategy, 'orig_distribute_dataset'):
283
+ strategy.make_dataset_iterator = strategy.orig_distribute_dataset
284
+
285
+
286
+ def set_up_synthetic_data():
287
+ _monkey_patch_dataset_method(tf.distribute.OneDeviceStrategy)
288
+ _monkey_patch_dataset_method(tf.distribute.MirroredStrategy)
289
+ _monkey_patch_dataset_method(
290
+ tf.distribute.experimental.MultiWorkerMirroredStrategy)
291
+
292
+
293
+ def undo_set_up_synthetic_data():
294
+ _undo_monkey_patch_dataset_method(tf.distribute.OneDeviceStrategy)
295
+ _undo_monkey_patch_dataset_method(tf.distribute.MirroredStrategy)
296
+ _undo_monkey_patch_dataset_method(
297
+ tf.distribute.experimental.MultiWorkerMirroredStrategy)
298
+
299
+
300
+ def configure_cluster(worker_hosts=None, task_index=-1):
301
+ """Set multi-worker cluster spec in TF_CONFIG environment variable.
302
+
303
+ Args:
304
+ worker_hosts: comma-separated list of worker ip:port pairs.
305
+
306
+ Returns:
307
+ Number of workers in the cluster.
308
+ """
309
+ tf_config = json.loads(os.environ.get('TF_CONFIG', '{}'))
310
+ if tf_config:
311
+ num_workers = (len(tf_config['cluster'].get('chief', [])) +
312
+ len(tf_config['cluster'].get('worker', [])))
313
+ elif worker_hosts:
314
+ workers = worker_hosts.split(',')
315
+ num_workers = len(workers)
316
+ if num_workers > 1 and task_index < 0:
317
+ raise ValueError('Must specify task_index when number of workers > 1')
318
+ task_index = 0 if num_workers == 1 else task_index
319
+ os.environ['TF_CONFIG'] = json.dumps({
320
+ 'cluster': {
321
+ 'worker': workers
322
+ },
323
+ 'task': {'type': 'worker', 'index': task_index}
324
+ })
325
+ else:
326
+ num_workers = 1
327
+ return num_workers
328
+
329
+
330
+ def get_strategy_scope(strategy):
331
+ if strategy:
332
+ strategy_scope = strategy.scope()
333
+ else:
334
+ strategy_scope = DummyContextManager()
335
+
336
+ return strategy_scope
337
+
338
+
339
+ class DummyContextManager(object):
340
+
341
+ def __enter__(self):
342
+ pass
343
+
344
+ def __exit__(self, *args):
345
+ pass
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/keras_utils.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Helper functions for the Keras implementations of models."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import multiprocessing
22
+ import os
23
+ import time
24
+
25
+ from absl import logging
26
+ import tensorflow.compat.v2 as tf
27
+ from tensorflow.python import tf2
28
+ from tensorflow.python.profiler import profiler_v2 as profiler
29
+
30
+
31
+ class BatchTimestamp(object):
32
+ """A structure to store batch time stamp."""
33
+
34
+ def __init__(self, batch_index, timestamp):
35
+ self.batch_index = batch_index
36
+ self.timestamp = timestamp
37
+
38
+ def __repr__(self):
39
+ return "'BatchTimestamp<batch_index: {}, timestamp: {}>'".format(
40
+ self.batch_index, self.timestamp)
41
+
42
+
43
+ class TimeHistory(tf.keras.callbacks.Callback):
44
+ """Callback for Keras models."""
45
+
46
+ def __init__(self, batch_size, log_steps, logdir=None):
47
+ """Callback for logging performance.
48
+
49
+ Args:
50
+ batch_size: Total batch size.
51
+ log_steps: Interval of steps between logging of batch level stats.
52
+ logdir: Optional directory to write TensorBoard summaries.
53
+ """
54
+ # TODO(wcromar): remove this parameter and rely on `logs` parameter of
55
+ # on_train_batch_end()
56
+ self.batch_size = batch_size
57
+ super(TimeHistory, self).__init__()
58
+ self.log_steps = log_steps
59
+ self.last_log_step = 0
60
+ self.steps_before_epoch = 0
61
+ self.steps_in_epoch = 0
62
+ self.start_time = None
63
+
64
+ if logdir:
65
+ self.summary_writer = tf.summary.create_file_writer(logdir)
66
+ else:
67
+ self.summary_writer = None
68
+
69
+ # Logs start of step 1 then end of each step based on log_steps interval.
70
+ self.timestamp_log = []
71
+
72
+ # Records the time each epoch takes to run from start to finish of epoch.
73
+ self.epoch_runtime_log = []
74
+
75
+ @property
76
+ def global_steps(self):
77
+ """The current 1-indexed global step."""
78
+ return self.steps_before_epoch + self.steps_in_epoch
79
+
80
+ @property
81
+ def average_steps_per_second(self):
82
+ """The average training steps per second across all epochs."""
83
+ return self.global_steps / sum(self.epoch_runtime_log)
84
+
85
+ @property
86
+ def average_examples_per_second(self):
87
+ """The average number of training examples per second across all epochs."""
88
+ return self.average_steps_per_second * self.batch_size
89
+
90
+ def on_train_end(self, logs=None):
91
+ self.train_finish_time = time.time()
92
+
93
+ if self.summary_writer:
94
+ self.summary_writer.flush()
95
+
96
+ def on_epoch_begin(self, epoch, logs=None):
97
+ self.epoch_start = time.time()
98
+
99
+ def on_batch_begin(self, batch, logs=None):
100
+ if not self.start_time:
101
+ self.start_time = time.time()
102
+
103
+ # Record the timestamp of the first global step
104
+ if not self.timestamp_log:
105
+ self.timestamp_log.append(BatchTimestamp(self.global_steps,
106
+ self.start_time))
107
+
108
+ def on_batch_end(self, batch, logs=None):
109
+ """Records elapse time of the batch and calculates examples per second."""
110
+ self.steps_in_epoch = batch + 1
111
+ steps_since_last_log = self.global_steps - self.last_log_step
112
+ if steps_since_last_log >= self.log_steps:
113
+ now = time.time()
114
+ elapsed_time = now - self.start_time
115
+ steps_per_second = steps_since_last_log / elapsed_time
116
+ examples_per_second = steps_per_second * self.batch_size
117
+
118
+ self.timestamp_log.append(BatchTimestamp(self.global_steps, now))
119
+ logging.info(
120
+ 'TimeHistory: %.2f seconds, %.2f examples/second between steps %d '
121
+ 'and %d', elapsed_time, examples_per_second, self.last_log_step,
122
+ self.global_steps)
123
+
124
+ if self.summary_writer:
125
+ with self.summary_writer.as_default():
126
+ tf.summary.scalar('global_step/sec', steps_per_second,
127
+ self.global_steps)
128
+ tf.summary.scalar('examples/sec', examples_per_second,
129
+ self.global_steps)
130
+
131
+ self.last_log_step = self.global_steps
132
+ self.start_time = None
133
+
134
+ def on_epoch_end(self, epoch, logs=None):
135
+ epoch_run_time = time.time() - self.epoch_start
136
+ self.epoch_runtime_log.append(epoch_run_time)
137
+
138
+ self.steps_before_epoch += self.steps_in_epoch
139
+ self.steps_in_epoch = 0
140
+
141
+
142
+ def get_profiler_callback(model_dir, profile_steps, enable_tensorboard,
143
+ steps_per_epoch):
144
+ """Validate profile_steps flag value and return profiler callback."""
145
+ profile_steps_error_message = (
146
+ 'profile_steps must be a comma separated pair of positive integers, '
147
+ 'specifying the first and last steps to be profiled.'
148
+ )
149
+ try:
150
+ profile_steps = [int(i) for i in profile_steps.split(',')]
151
+ except ValueError:
152
+ raise ValueError(profile_steps_error_message)
153
+ if len(profile_steps) != 2:
154
+ raise ValueError(profile_steps_error_message)
155
+ start_step, stop_step = profile_steps
156
+ if start_step < 0 or start_step > stop_step:
157
+ raise ValueError(profile_steps_error_message)
158
+ if enable_tensorboard:
159
+ logging.warning(
160
+ 'Both TensorBoard and profiler callbacks are used. Note that the '
161
+ 'TensorBoard callback profiles the 2nd step (unless otherwise '
162
+ 'specified). Please make sure the steps profiled by the two callbacks '
163
+ 'do not overlap.')
164
+ return ProfilerCallback(model_dir, start_step, stop_step, steps_per_epoch)
165
+
166
+
167
+ class ProfilerCallback(tf.keras.callbacks.Callback):
168
+ """Save profiles in specified step range to log directory."""
169
+
170
+ def __init__(self, log_dir, start_step, stop_step, steps_per_epoch):
171
+ super(ProfilerCallback, self).__init__()
172
+ self.log_dir = log_dir
173
+ self.start_step = start_step
174
+ self.stop_step = stop_step
175
+ self.start_epoch = start_step // steps_per_epoch
176
+ self.stop_epoch = stop_step // steps_per_epoch
177
+ self.start_step_in_epoch = start_step % steps_per_epoch
178
+ self.stop_step_in_epoch = stop_step % steps_per_epoch
179
+ self.should_start = False
180
+ self.should_stop = False
181
+
182
+ def on_epoch_begin(self, epoch, logs=None):
183
+ if epoch == self.start_epoch:
184
+ self.should_start = True
185
+ if epoch == self.stop_epoch:
186
+ self.should_stop = True
187
+
188
+ def on_batch_begin(self, batch, logs=None):
189
+ if batch == self.start_step_in_epoch and self.should_start:
190
+ self.should_start = False
191
+ profiler.start(self.log_dir)
192
+ logging.info('Profiler started at Step %s', self.start_step)
193
+
194
+ def on_batch_end(self, batch, logs=None):
195
+ if batch == self.stop_step_in_epoch and self.should_stop:
196
+ self.should_stop = False
197
+ profiler.stop()
198
+ logging.info('Profiler saved profiles for steps between %s and %s to %s',
199
+ self.start_step, self.stop_step, self.log_dir)
200
+
201
+
202
+ def set_session_config(enable_eager=False,
203
+ enable_xla=False):
204
+ """Sets the session config."""
205
+ if is_v2_0():
206
+ set_config_v2(enable_xla=enable_xla)
207
+ else:
208
+ config = get_config_proto_v1(enable_xla=enable_xla)
209
+ if enable_eager:
210
+ tf.compat.v1.enable_eager_execution(config=config)
211
+ else:
212
+ sess = tf.compat.v1.Session(config=config)
213
+ tf.compat.v1.keras.backend.set_session(sess)
214
+
215
+
216
+ def get_config_proto_v1(enable_xla=False):
217
+ """Return config proto according to flag settings, or None to use default."""
218
+ config = None
219
+ if enable_xla:
220
+ config = tf.compat.v1.ConfigProto()
221
+ config.graph_options.optimizer_options.global_jit_level = (
222
+ tf.OptimizerOptions.ON_2)
223
+ return config
224
+
225
+
226
+ def set_config_v2(enable_xla=False):
227
+ """Config eager context according to flag values using TF 2.0 API."""
228
+ if enable_xla:
229
+ tf.config.optimizer.set_jit(True)
230
+
231
+
232
+ def is_v2_0():
233
+ """Returns true if using tf 2.0."""
234
+ return tf2.enabled()
235
+
236
+
237
+ def set_gpu_thread_mode_and_count(gpu_thread_mode,
238
+ datasets_num_private_threads,
239
+ num_gpus, per_gpu_thread_count):
240
+ """Set GPU thread mode and count, and adjust dataset threads count."""
241
+ cpu_count = multiprocessing.cpu_count()
242
+ logging.info('Logical CPU cores: %s', cpu_count)
243
+
244
+ # Allocate private thread pool for each GPU to schedule and launch kernels
245
+ per_gpu_thread_count = per_gpu_thread_count or 2
246
+ os.environ['TF_GPU_THREAD_MODE'] = gpu_thread_mode
247
+ os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
248
+ logging.info('TF_GPU_THREAD_COUNT: %s',
249
+ os.environ['TF_GPU_THREAD_COUNT'])
250
+ logging.info('TF_GPU_THREAD_MODE: %s',
251
+ os.environ['TF_GPU_THREAD_MODE'])
252
+
253
+ # Limit data preprocessing threadpool to CPU cores minus number of total GPU
254
+ # private threads and memory copy threads.
255
+ total_gpu_thread_count = per_gpu_thread_count * num_gpus
256
+ num_runtime_threads = num_gpus
257
+ if not datasets_num_private_threads:
258
+ datasets_num_private_threads = min(
259
+ cpu_count - total_gpu_thread_count - num_runtime_threads,
260
+ num_gpus * 8)
261
+ logging.info('Set datasets_num_private_threads to %s',
262
+ datasets_num_private_threads)
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/model_helpers.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Miscellaneous functions that can be called by models."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import numbers
22
+
23
+ import tensorflow as tf
24
+ from tensorflow.python.util import nest
25
+
26
+
27
+ def past_stop_threshold(stop_threshold, eval_metric):
28
+ """Return a boolean representing whether a model should be stopped.
29
+
30
+ Args:
31
+ stop_threshold: float, the threshold above which a model should stop
32
+ training.
33
+ eval_metric: float, the current value of the relevant metric to check.
34
+
35
+ Returns:
36
+ True if training should stop, False otherwise.
37
+
38
+ Raises:
39
+ ValueError: if either stop_threshold or eval_metric is not a number
40
+ """
41
+ if stop_threshold is None:
42
+ return False
43
+
44
+ if not isinstance(stop_threshold, numbers.Number):
45
+ raise ValueError("Threshold for checking stop conditions must be a number.")
46
+ if not isinstance(eval_metric, numbers.Number):
47
+ raise ValueError("Eval metric being checked against stop conditions "
48
+ "must be a number.")
49
+
50
+ if eval_metric >= stop_threshold:
51
+ tf.compat.v1.logging.info(
52
+ "Stop threshold of {} was passed with metric value {}.".format(
53
+ stop_threshold, eval_metric))
54
+ return True
55
+
56
+ return False
57
+
58
+
59
+ def generate_synthetic_data(
60
+ input_shape, input_value=0, input_dtype=None, label_shape=None,
61
+ label_value=0, label_dtype=None):
62
+ """Create a repeating dataset with constant values.
63
+
64
+ Args:
65
+ input_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of
66
+ the input data.
67
+ input_value: Value of each input element.
68
+ input_dtype: Input dtype. If None, will be inferred by the input value.
69
+ label_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of
70
+ the label data.
71
+ label_value: Value of each input element.
72
+ label_dtype: Input dtype. If None, will be inferred by the target value.
73
+
74
+ Returns:
75
+ Dataset of tensors or tuples of tensors (if label_shape is set).
76
+ """
77
+ # TODO(kathywu): Replace with SyntheticDataset once it is in contrib.
78
+ element = input_element = nest.map_structure(
79
+ lambda s: tf.constant(input_value, input_dtype, s), input_shape)
80
+
81
+ if label_shape:
82
+ label_element = nest.map_structure(
83
+ lambda s: tf.constant(label_value, label_dtype, s), label_shape)
84
+ element = (input_element, label_element)
85
+
86
+ return tf.data.Dataset.from_tensors(element).repeat()
87
+
88
+
89
+ def apply_clean(flags_obj):
90
+ if flags_obj.clean and tf.io.gfile.exists(flags_obj.model_dir):
91
+ tf.compat.v1.logging.info("--clean flag set. Removing existing model dir:"
92
+ " {}".format(flags_obj.model_dir))
93
+ tf.io.gfile.rmtree(flags_obj.model_dir)
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/tpu_lib.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Initializes TPU system for TF 2.0."""
16
+
17
+ import tensorflow as tf
18
+
19
+
20
+ def tpu_initialize(tpu_address):
21
+ """Initializes TPU for TF 2.0 training.
22
+
23
+ Args:
24
+ tpu_address: string, bns address of master TPU worker.
25
+
26
+ Returns:
27
+ A TPUClusterResolver.
28
+ """
29
+ cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
30
+ tpu=tpu_address)
31
+ if tpu_address not in ('', 'local'):
32
+ tf.config.experimental_connect_to_cluster(cluster_resolver)
33
+ tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
34
+ return cluster_resolver
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/__init__.py ADDED
File without changes
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/benchmark_wrappers.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Lint as: python3
2
+ """Utils to annotate and trace benchmarks."""
3
+
4
+ from __future__ import absolute_import
5
+ from __future__ import division
6
+ from __future__ import print_function
7
+
8
+ from absl import flags
9
+ from absl import logging
10
+ from absl.testing import flagsaver
11
+
12
+ FLAGS = flags.FLAGS
13
+
14
+ flags.DEFINE_multi_string(
15
+ 'benchmark_method_flags', None,
16
+ 'Optional list of runtime flags of the form key=value. Specify '
17
+ 'multiple times to specify different flags. These will override the FLAGS '
18
+ 'object directly after hardcoded settings in individual benchmark methods '
19
+ 'before they call _run_and_report benchmark. Example if we set '
20
+ '--benchmark_method_flags=train_steps=10 and a benchmark method hardcodes '
21
+ 'FLAGS.train_steps=10000 and later calls _run_and_report_benchmark, '
22
+ 'it\'ll only run for 10 steps. This is useful for '
23
+ 'debugging/profiling workflows.')
24
+
25
+
26
+ def enable_runtime_flags(decorated_func):
27
+ """Sets attributes from --benchmark_method_flags for method execution.
28
+
29
+ @enable_runtime_flags decorator temporarily adds flags passed in via
30
+ --benchmark_method_flags and runs the decorated function in that context.
31
+
32
+ A user can set --benchmark_method_flags=train_steps=5 to run the benchmark
33
+ method in the snippet below with FLAGS.train_steps=5 for debugging (without
34
+ modifying the benchmark code).
35
+
36
+ class ModelBenchmark():
37
+
38
+ @benchmark_wrappers.enable_runtime_flags
39
+ def _run_and_report_benchmark(self):
40
+ # run benchmark ...
41
+ # report benchmark results ...
42
+
43
+ def benchmark_method(self):
44
+ FLAGS.train_steps = 1000
45
+ ...
46
+ self._run_and_report_benchmark()
47
+
48
+ Args:
49
+ decorated_func: The method that runs the benchmark after previous setup
50
+ execution that set some flags.
51
+
52
+ Returns:
53
+ new_func: The same method which executes in a temporary context where flag
54
+ overrides from --benchmark_method_flags are active.
55
+ """
56
+
57
+ def runner(*args, **kwargs):
58
+ """Creates a temporary context to activate --benchmark_method_flags."""
59
+ if FLAGS.benchmark_method_flags:
60
+ saved_flag_values = flagsaver.save_flag_values()
61
+ for key_value in FLAGS.benchmark_method_flags:
62
+ key, value = key_value.split('=', 1)
63
+ try:
64
+ numeric_float = float(value)
65
+ numeric_int = int(numeric_float)
66
+ if abs(numeric_int) == abs(numeric_float):
67
+ flag_value = numeric_int
68
+ else:
69
+ flag_value = numeric_float
70
+ except ValueError:
71
+ flag_value = value
72
+ logging.info('Setting --%s=%s', key, flag_value)
73
+ setattr(FLAGS, key, flag_value)
74
+ else:
75
+ saved_flag_values = None
76
+ try:
77
+ result = decorated_func(*args, **kwargs)
78
+ return result
79
+ finally:
80
+ if saved_flag_values:
81
+ flagsaver.restore_flag_values(saved_flag_values)
82
+
83
+ return runner
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/integration.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Helper code to run complete models from within python.
16
+ """
17
+
18
+ from __future__ import absolute_import
19
+ from __future__ import division
20
+ from __future__ import print_function
21
+
22
+ import os
23
+ import shutil
24
+ import sys
25
+ import tempfile
26
+
27
+ from absl import flags
28
+ from absl.testing import flagsaver
29
+
30
+ from TensorFlow.utils.flags import core as flags_core
31
+
32
+
33
+ @flagsaver.flagsaver
34
+ def run_synthetic(main, tmp_root, extra_flags=None, synth=True, train_epochs=1,
35
+ epochs_between_evals=1):
36
+ """Performs a minimal run of a model.
37
+
38
+ This function is intended to test for syntax errors throughout a model. A
39
+ very limited run is performed using synthetic data.
40
+
41
+ Args:
42
+ main: The primary function used to exercise a code path. Generally this
43
+ function is "<MODULE>.main(argv)".
44
+ tmp_root: Root path for the temp directory created by the test class.
45
+ extra_flags: Additional flags passed by the caller of this function.
46
+ synth: Use synthetic data.
47
+ train_epochs: Value of the --train_epochs flag.
48
+ epochs_between_evals: Value of the --epochs_between_evals flag.
49
+ """
50
+
51
+ extra_flags = [] if extra_flags is None else extra_flags
52
+
53
+ model_dir = tempfile.mkdtemp(dir=tmp_root)
54
+
55
+ args = [sys.argv[0], "--model_dir", model_dir] + extra_flags
56
+
57
+ if synth:
58
+ args.append("--use_synthetic_data")
59
+
60
+ if train_epochs is not None:
61
+ args.extend(["--train_epochs", str(train_epochs)])
62
+
63
+ if epochs_between_evals is not None:
64
+ args.extend(["--epochs_between_evals", str(epochs_between_evals)])
65
+
66
+ try:
67
+ flags_core.parse_flags(argv=args)
68
+ main(flags.FLAGS)
69
+ finally:
70
+ if os.path.exists(model_dir):
71
+ shutil.rmtree(model_dir)
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/mock_lib.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Mock objects and related functions for testing."""
17
+
18
+ from __future__ import absolute_import
19
+ from __future__ import division
20
+ from __future__ import print_function
21
+
22
+
23
+ class MockBenchmarkLogger(object):
24
+ """This is a mock logger that can be used in dependent tests."""
25
+
26
+ def __init__(self):
27
+ self.logged_metric = []
28
+
29
+ def log_metric(self, name, value, unit=None, global_step=None,
30
+ extras=None):
31
+ self.logged_metric.append({
32
+ "name": name,
33
+ "value": float(value),
34
+ "unit": unit,
35
+ "global_step": global_step,
36
+ "extras": extras})
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/perfzero_benchmark.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Utils for creating PerfZero benchmarks."""
16
+ from __future__ import absolute_import
17
+ from __future__ import division
18
+ from __future__ import print_function
19
+
20
+ import os
21
+
22
+ from absl import flags
23
+ from absl.testing import flagsaver
24
+ import tensorflow as tf # pylint: disable=g-bad-import-order
25
+
26
+ FLAGS = flags.FLAGS
27
+
28
+
29
+ class PerfZeroBenchmark(tf.test.Benchmark):
30
+ """Common methods used in PerfZero Benchmarks.
31
+
32
+ Handles the resetting of flags between tests, loading of default_flags,
33
+ overriding of defaults. PerfZero (OSS) runs each test in a separate
34
+ process reducing some need to reset the flags.
35
+ """
36
+ local_flags = None
37
+
38
+ def __init__(self,
39
+ output_dir=None,
40
+ default_flags=None,
41
+ flag_methods=None,
42
+ tpu=None):
43
+ """Initialize class.
44
+
45
+ Args:
46
+ output_dir: Base directory to store all output for the test.
47
+ default_flags: Set of flags to pass to model.
48
+ flag_methods: Set of flag methods to run during setup.
49
+ tpu: (optional) TPU name to use in a TPU benchmark.
50
+ """
51
+ if os.getenv('BENCHMARK_OUTPUT_DIR'):
52
+ self.output_dir = os.getenv('BENCHMARK_OUTPUT_DIR')
53
+ elif output_dir:
54
+ self.output_dir = output_dir
55
+ else:
56
+ self.output_dir = '/tmp'
57
+ self.default_flags = default_flags or {}
58
+ self.flag_methods = flag_methods or {}
59
+
60
+ if os.getenv('BENCHMARK_TPU'):
61
+ resolved_tpu = os.getenv('BENCHMARK_TPU')
62
+ elif tpu:
63
+ resolved_tpu = tpu
64
+ else:
65
+ resolved_tpu = None
66
+
67
+ if resolved_tpu:
68
+ # TPU models are expected to accept a --tpu=name flag. PerfZero creates
69
+ # the TPU at runtime and passes the TPU's name to this flag.
70
+ self.default_flags['tpu'] = resolved_tpu
71
+
72
+ def _get_model_dir(self, folder_name):
73
+ """Returns directory to store info, e.g. saved model and event log."""
74
+ return os.path.join(self.output_dir, folder_name)
75
+
76
+ def _setup(self):
77
+ """Sets up and resets flags before each test."""
78
+ tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
79
+ if PerfZeroBenchmark.local_flags is None:
80
+ for flag_method in self.flag_methods:
81
+ flag_method()
82
+ # Loads flags to get defaults to then override. List cannot be empty.
83
+ flags.FLAGS(['foo'])
84
+ # Overrides flag values with defaults for the class of tests.
85
+ for k, v in self.default_flags.items():
86
+ setattr(FLAGS, k, v)
87
+ saved_flag_values = flagsaver.save_flag_values()
88
+ PerfZeroBenchmark.local_flags = saved_flag_values
89
+ else:
90
+ flagsaver.restore_flag_values(PerfZeroBenchmark.local_flags)
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/pylint.rcfile ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [MESSAGES CONTROL]
2
+ disable=R,W,bad-option-value,trailing-newlines,no-name-in-module
3
+
4
+ [REPORTS]
5
+ # Tells whether to display a full report or only the messages
6
+ reports=no
7
+
8
+ # Activate the evaluation score.
9
+ score=no
10
+
11
+ [BASIC]
12
+
13
+ # Regular expression matching correct argument names
14
+ argument-rgx=^[a-z][a-z0-9_]*$
15
+
16
+ # Regular expression matching correct attribute names
17
+ attr-rgx=^_{0,2}[a-z][a-z0-9_]*$
18
+
19
+ # Regular expression matching correct class attribute names
20
+ class-attribute-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
21
+
22
+ # Regular expression matching correct class names
23
+ class-rgx=^_?[A-Z][a-zA-Z0-9]*$
24
+
25
+ # Regular expression matching correct constant names
26
+ const-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
27
+
28
+ # Minimum line length for functions/classes that require docstrings, shorter
29
+ # ones are exempt.
30
+ docstring-min-length=10
31
+
32
+ # Regular expression matching correct function names
33
+ function-rgx=^(?:(?P<camel_case>_?[A-Z][a-zA-Z0-9]*)|(?P<snake_case>_?[a-z][a-z0-9_]*))$
34
+
35
+ # Good variable names which should always be accepted, separated by a comma
36
+ good-names=main,_
37
+
38
+ # Regular expression matching correct inline iteration names
39
+ inlinevar-rgx=^[a-z][a-z0-9_]*$
40
+
41
+ # Regular expression matching correct method names
42
+ method-rgx=^(?:(?P<exempt>__[a-z0-9_]+__|next)|(?P<camel_case>_{0,2}[A-Z][a-zA-Z0-9]*)|(?P<snake_case>_{0,2}[a-z][a-z0-9_]*)|(setUp|tearDown))$
43
+
44
+ # Regular expression matching correct module names
45
+ module-rgx=^(_?[a-z][a-z0-9_]*)|__init__|PRESUBMIT|PRESUBMIT_unittest$
46
+
47
+ # Regular expression which should only match function or class names that do
48
+ # not require a docstring.
49
+ no-docstring-rgx=(__.*__|main|.*ArgParser)
50
+
51
+ # Naming hint for variable names
52
+ variable-name-hint=[a-z_][a-z0-9_]{2,30}$
53
+
54
+ # Regular expression matching correct variable names
55
+ variable-rgx=^[a-z][a-z0-9_]*$
56
+
57
+ [TYPECHECK]
58
+
59
+ # List of module names for which member attributes should not be checked
60
+ # (useful for modules/projects where namespaces are manipulated during runtime
61
+ # and thus existing member attributes cannot be deduced by static analysis. It
62
+ # supports qualified module names, as well as Unix pattern matching.
63
+ ignored-modules=absl, absl.*, official, official.*, tensorflow, tensorflow.*, LazyLoader, google, google.cloud.*
64
+
65
+
66
+ [CLASSES]
67
+
68
+ # List of method names used to declare (i.e. assign) instance attributes.
69
+ defining-attr-methods=__init__,__new__,setUp
70
+
71
+ # List of member names, which should be excluded from the protected access
72
+ # warning.
73
+ exclude-protected=_asdict,_fields,_replace,_source,_make
74
+
75
+ # This is deprecated, because it is not used anymore.
76
+ #ignore-iface-methods=
77
+
78
+ # List of valid names for the first argument in a class method.
79
+ valid-classmethod-first-arg=cls,class_
80
+
81
+ # List of valid names for the first argument in a metaclass class method.
82
+ valid-metaclass-classmethod-first-arg=mcs
83
+
84
+
85
+ [DESIGN]
86
+
87
+ # Argument names that match this expression will be ignored. Default to name
88
+ # with leading underscore
89
+ ignored-argument-names=_.*
90
+
91
+ # Maximum number of arguments for function / method
92
+ max-args=5
93
+
94
+ # Maximum number of attributes for a class (see R0902).
95
+ max-attributes=7
96
+
97
+ # Maximum number of branch for function / method body
98
+ max-branches=12
99
+
100
+ # Maximum number of locals for function / method body
101
+ max-locals=15
102
+
103
+ # Maximum number of parents for a class (see R0901).
104
+ max-parents=7
105
+
106
+ # Maximum number of public methods for a class (see R0904).
107
+ max-public-methods=20
108
+
109
+ # Maximum number of return / yield for function / method body
110
+ max-returns=6
111
+
112
+ # Maximum number of statements in function / method body
113
+ max-statements=50
114
+
115
+ # Minimum number of public methods for a class (see R0903).
116
+ min-public-methods=2
117
+
118
+
119
+ [EXCEPTIONS]
120
+
121
+ # Exceptions that will emit a warning when being caught. Defaults to
122
+ # "Exception"
123
+ overgeneral-exceptions=StandardError,Exception,BaseException
124
+
125
+
126
+ [FORMAT]
127
+
128
+ # Number of spaces of indent required inside a hanging or continued line.
129
+ indent-after-paren=4
130
+
131
+ # String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
132
+ # tab).
133
+ indent-string=' '
134
+
135
+ # Maximum number of characters on a single line.
136
+ max-line-length=80
137
+
138
+ # Maximum number of lines in a module
139
+ max-module-lines=99999
140
+
141
+ # List of optional constructs for which whitespace checking is disabled
142
+ no-space-check=
143
+
144
+ # Allow the body of an if to be on the same line as the test if there is no
145
+ # else.
146
+ single-line-if-stmt=yes
147
+
148
+ # Allow URLs and comment type annotations to exceed the max line length as neither can be easily
149
+ # split across lines.
150
+ ignore-long-lines=^\s*(?:(# )?<?https?://\S+>?$|# type:)
151
+
152
+
153
+ [VARIABLES]
154
+
155
+ # List of additional names supposed to be defined in builtins. Remember that
156
+ # you should avoid to define new builtins when possible.
157
+ additional-builtins=
158
+
159
+ # List of strings which can identify a callback function by name. A callback
160
+ # name must start or end with one of those strings.
161
+ callbacks=cb_,_cb
162
+
163
+ # A regular expression matching the name of dummy variables (i.e. expectedly
164
+ # not used).
165
+ dummy-variables-rgx=^\*{0,2}(_$|unused_|dummy_)
166
+
167
+ # Tells whether we should check for unused import in __init__ files.
168
+ init-import=no
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/scripts/builds_common.sh ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+ #
17
+ # Common Bash functions used by build scripts
18
+
19
+ COLOR_NC='\033[0m'
20
+ COLOR_BOLD='\033[1m'
21
+ COLOR_LIGHT_GRAY='\033[0;37m'
22
+ COLOR_GREEN='\033[0;32m'
23
+ COLOR_RED='\033[0;31m'
24
+
25
+ die() {
26
+ # Print a message and exit with code 1.
27
+ #
28
+ # Usage: die <error_message>
29
+ # e.g., die "Something bad happened."
30
+
31
+ echo $@
32
+ exit 1
33
+ }
34
+
35
+ num_cpus() {
36
+ # Get the number of CPUs
37
+ N_CPUS=$(grep -c ^processor /proc/cpuinfo)
38
+ if [[ -z ${N_CPUS} ]]; then
39
+ die "ERROR: Unable to determine the number of CPUs"
40
+ fi
41
+
42
+ echo ${N_CPUS}
43
+ }
44
+
45
+ # List files changed (i.e., added, or revised) from
46
+ # the common ancestor of HEAD and the latest master branch.
47
+ # Usage: get_changed_files_from_master_branch
48
+ get_changed_files_from_master_branch() {
49
+ ANCESTOR=$(git merge-base HEAD master origin/master)
50
+ git diff ${ANCESTOR} --diff-filter=d --name-only "$@"
51
+ }
52
+
53
+ # List python files changed that still exist,
54
+ # i.e., not removed.
55
+ # Usage: get_py_files_to_check [--incremental]
56
+ get_py_files_to_check() {
57
+ if [[ "$1" == "--incremental" ]]; then
58
+ get_changed_files_from_master_branch -- '*.py'
59
+ elif [[ -z "$1" ]]; then
60
+ find official/ -name '*.py'
61
+ else
62
+ die "Found unsupported args: $@ for get_py_files_to_check."
63
+ fi
64
+ }
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/scripts/ci_sanity.sh ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ # Sanity check script that runs tests and lint under local environment.
18
+ # Make sure that tensorflow and pylint is installed.
19
+ # usage: models >: ./official/utils/testing/scripts/ci_sanity.sh do_pylint --incremental
20
+ set +x
21
+
22
+ SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
23
+ source "${SCRIPT_DIR}/builds_common.sh"
24
+ cd "$SCRIPT_DIR/../../../.."
25
+ MODEL_ROOT="$(pwd)"
26
+
27
+ export PYTHONPATH="$PYTHONPATH:${MODEL_ROOT}"
28
+
29
+ # Run pylint
30
+ do_pylint() {
31
+ # Usage: do_pylint [--incremental]
32
+ #
33
+ # Options:
34
+ # --incremental Performs check on only the python files changed in the
35
+ # last non-merge git commit.
36
+
37
+ # Use this list to whitelist pylint errors
38
+ ERROR_WHITELIST=""
39
+
40
+ echo "ERROR_WHITELIST=\"${ERROR_WHITELIST}\""
41
+
42
+ PYLINT_BIN="python3 -m pylint"
43
+
44
+ PYTHON_SRC_FILES=$(get_py_files_to_check $1)
45
+ if [[ -z ${PYTHON_SRC_FILES} ]]; then
46
+ echo "do_pylint found no Python files to check. Returning."
47
+ return 0
48
+ fi
49
+
50
+ PYLINTRC_FILE="official/utils/testing/pylint.rcfile"
51
+
52
+ if [[ ! -f "${PYLINTRC_FILE}" ]]; then
53
+ die "ERROR: Cannot find pylint rc file at ${PYLINTRC_FILE}"
54
+ fi
55
+
56
+ NUM_SRC_FILES=$(echo ${PYTHON_SRC_FILES} | wc -w)
57
+ NUM_CPUS=$(num_cpus)
58
+
59
+ echo "Running pylint on ${NUM_SRC_FILES} files with ${NUM_CPUS} "\
60
+ "parallel jobs..."
61
+ echo ""
62
+
63
+ PYLINT_START_TIME=$(date +'%s')
64
+ OUTPUT_FILE="$(mktemp)_pylint_output.log"
65
+ ERRORS_FILE="$(mktemp)_pylint_errors.log"
66
+ NONWL_ERRORS_FILE="$(mktemp)_pylint_nonwl_errors.log"
67
+
68
+ rm -rf ${OUTPUT_FILE}
69
+ rm -rf ${ERRORS_FILE}
70
+ rm -rf ${NONWL_ERRORS_FILE}
71
+ touch ${NONWL_ERRORS_FILE}
72
+
73
+ ${PYLINT_BIN} --rcfile="${PYLINTRC_FILE}" --output-format=parseable \
74
+ --jobs=${NUM_CPUS} ${PYTHON_SRC_FILES} > ${OUTPUT_FILE} 2>&1
75
+ PYLINT_END_TIME=$(date +'%s')
76
+
77
+ echo ""
78
+ echo "pylint took $((PYLINT_END_TIME - PYLINT_START_TIME)) s"
79
+ echo ""
80
+
81
+ # Report only what we care about
82
+ # Ref https://pylint.readthedocs.io/en/latest/technical_reference/features.html
83
+ # E: all errors
84
+ # W0311 bad-indentation
85
+ # W0312 mixed-indentation
86
+ # C0330 bad-continuation
87
+ # C0301 line-too-long
88
+ # C0326 bad-whitespace
89
+ # W0611 unused-import
90
+ # W0622 redefined-builtin
91
+ grep -E '(\[E|\[W0311|\[W0312|\[C0330|\[C0301|\[C0326|\[W0611|\[W0622)' ${OUTPUT_FILE} > ${ERRORS_FILE}
92
+
93
+ N_ERRORS=0
94
+ while read -r LINE; do
95
+ IS_WHITELISTED=0
96
+ for WL_REGEX in ${ERROR_WHITELIST}; do
97
+ if echo ${LINE} | grep -q "${WL_REGEX}"; then
98
+ echo "Found a whitelisted error:"
99
+ echo " ${LINE}"
100
+ IS_WHITELISTED=1
101
+ fi
102
+ done
103
+
104
+ if [[ ${IS_WHITELISTED} == "0" ]]; then
105
+ echo "${LINE}" >> ${NONWL_ERRORS_FILE}
106
+ echo "" >> ${NONWL_ERRORS_FILE}
107
+ ((N_ERRORS++))
108
+ fi
109
+ done <${ERRORS_FILE}
110
+
111
+ echo "Raw lint output file: ${OUTPUT_FILE}"
112
+
113
+ echo ""
114
+ if [[ ${N_ERRORS} != 0 ]]; then
115
+ echo "FAIL: Found ${N_ERRORS} non-whitelited pylint errors:"
116
+ cat "${NONWL_ERRORS_FILE}"
117
+ return 1
118
+ else
119
+ echo "PASS: No non-whitelisted pylint errors were found."
120
+ return 0
121
+ fi
122
+ }
123
+
124
+ test_result=0
125
+
126
+ TESTS="$@"
127
+
128
+ for t in "${TESTS}"; do
129
+ ${t} || test_result=$?
130
+ done
131
+
132
+ exit "${test_result}"
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/scripts/presubmit.sh ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ # Presubmit script that runs tests and lint under local environment.
18
+ # Make sure that tensorflow and pylint is installed.
19
+ # usage: models >: ./official/utils/testing/scripts/presubmit.sh
20
+ # usage: models >: ./official/utils/testing/scripts/presubmit.sh lint py2_test py3_test
21
+ set +x
22
+
23
+ SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
24
+ cd "$SCRIPT_DIR/../../../.."
25
+ MODEL_ROOT="$(pwd)"
26
+
27
+ export PYTHONPATH="$PYTHONPATH:${MODEL_ROOT}"
28
+
29
+ py_test() {
30
+ local PY_BINARY="$1"
31
+ local exit_code=0
32
+
33
+ echo "===========Running Python test============"
34
+
35
+ for test_file in `find official/ -name '*test.py' -print`
36
+ do
37
+ echo "####=======Testing ${test_file}=======####"
38
+ ${PY_BINARY} "${test_file}"
39
+ _exit_code=$?
40
+ if [[ $_exit_code != 0 ]]; then
41
+ exit_code=$_exit_code
42
+ echo "FAIL: ${test_file}"
43
+ fi
44
+ done
45
+
46
+ return "${exit_code}"
47
+ }
48
+
49
+ py2_test() {
50
+ local PY_BINARY=$(which python2)
51
+ py_test "$PY_BINARY"
52
+ return $?
53
+ }
54
+
55
+ py3_test() {
56
+ local PY_BINARY=$(which python3)
57
+ py_test "$PY_BINARY"
58
+ return $?
59
+ }
60
+
61
+ test_result=0
62
+
63
+ if [ "$#" -eq 0 ]; then
64
+ TESTS="lint py2_test py3_test"
65
+ else
66
+ TESTS="$@"
67
+ fi
68
+
69
+ for t in "${TESTS}"; do
70
+ ${t} || test_result=$?
71
+ done
72
+
73
+ exit "${test_result}"
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/configs/train_01x08x08.yaml ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.25e-7
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: npy
12
+ first_stage_type: moments
13
+ cond_stage_key: txt
14
+ image_size: 64
15
+ channels: 4
16
+ cond_stage_trainable: false
17
+ conditioning_key: crossattn
18
+ monitor: steps
19
+ scale_factor: 0.18215
20
+ use_ema: False
21
+
22
+ load_vae: True
23
+ load_unet: False
24
+ load_encoder: True
25
+
26
+ validation_config:
27
+ sampler: "ddim" # plms, ddim, dpm
28
+ steps: 50
29
+ scale: 8.0
30
+ ddim_eta: 0.0
31
+ prompt_key: "caption"
32
+ image_fname_key: "image_id"
33
+
34
+ save_images:
35
+ enabled: False
36
+ base_output_dir: "results/inference"
37
+ fid:
38
+ enabled: True
39
+ inception_weights_url: https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth
40
+ cache_dir: /tmp/checkpoints/inception
41
+ gt_path: /val_data/val2014_30k_stats.npz
42
+ clip:
43
+ enabled: True
44
+ clip_version: "ViT-H-14"
45
+ cache_dir: /tmp/checkpoints/clip
46
+
47
+ scheduler_config:
48
+ target: ldm.lr_scheduler.LambdaLinearScheduler
49
+ params:
50
+ warm_up_steps: [ 1000 ]
51
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
52
+ f_start: [ 1.e-6 ]
53
+ f_max: [ 1. ]
54
+ f_min: [ 1. ]
55
+
56
+ unet_config:
57
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
58
+ params:
59
+ use_checkpoint: False # gradient checkpointing
60
+ use_fp16: False
61
+ image_size: 32
62
+ in_channels: 4
63
+ out_channels: 4
64
+ model_channels: 320
65
+ attention_resolutions: [ 4, 2, 1 ]
66
+ num_res_blocks: 2
67
+ channel_mult: [ 1, 2, 4, 4 ]
68
+ num_head_channels: 64 # need to fix for flash-attn
69
+ use_spatial_transformer: True
70
+ use_linear_in_transformer: True
71
+ transformer_depth: 1
72
+ context_dim: 1024
73
+ legacy: False
74
+
75
+ first_stage_config:
76
+ target: ldm.models.autoencoder.AutoencoderKL
77
+ params:
78
+ embed_dim: 4
79
+ monitor: val/rec_loss
80
+ ddconfig:
81
+ double_z: true
82
+ z_channels: 4
83
+ resolution: 256
84
+ in_channels: 3
85
+ out_ch: 3
86
+ ch: 128
87
+ ch_mult:
88
+ - 1
89
+ - 2
90
+ - 4
91
+ - 4
92
+ num_res_blocks: 2
93
+ attn_resolutions: []
94
+ dropout: 0.0
95
+ lossconfig:
96
+ target: torch.nn.Identity
97
+
98
+ cond_stage_config:
99
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
100
+ params:
101
+ arch: "ViT-H-14"
102
+ version: "laion2b_s32b_b79k"
103
+ freeze: True
104
+ layer: "penultimate"
105
+ cache_dir: /tmp/checkpoints/clip
106
+ device: "hpu"
107
+ hpu_graph: True
108
+ use_fused_adamw: True
109
+
110
+ data:
111
+ target: ldm.data.composable_data_module.ComposableDataModule
112
+ params:
113
+ train:
114
+ target: ldm.data.webdatasets.build_dataloader
115
+ params:
116
+ urls: /mnt/weka/data/mlperf_models/stable_diffusion/training/laion-400m/webdataset-moments-filtered/{00000..00831}.tar
117
+ batch_size: 8
118
+ shuffle: 1000
119
+ partial: False
120
+ keep_only_keys: ["npy", "txt"]
121
+ num_workers: 4
122
+ cache_size: 0
123
+ cache_dir:
124
+ persistent_workers: True
125
+
126
+ validation:
127
+ target: ldm.data.tsv.build_dataloader
128
+ params:
129
+ annotations_file: "/val_data/val2014_30k.tsv"
130
+ keys: ["image_id", "id", "caption"]
131
+ batch_size: 8
132
+ shuffle: False
133
+ num_workers: 4
134
+
135
+ lightning:
136
+ trainer:
137
+ accelerator: 'hpu'
138
+ num_nodes: 1
139
+ devices: 8
140
+ precision: 32
141
+ logger: False
142
+ log_every_n_steps: 5
143
+ enable_progress_bar: False
144
+ max_epochs: -1
145
+ max_steps: 10000000000000
146
+ val_check_interval: 1000
147
+ enable_checkpointing: True
148
+ num_sanity_val_steps: 0
149
+ strategy:
150
+ target: strategies.DDPStrategy
151
+ params:
152
+ find_unused_parameters: False
153
+
154
+ modelcheckpoint:
155
+ target: lightning.pytorch.callbacks.ModelCheckpoint
156
+ params:
157
+ save_top_k: -1
158
+ every_n_train_steps: 1000
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/configs/train_02x08x08.yaml ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.25e-7
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: npy
12
+ first_stage_type: moments
13
+ cond_stage_key: txt
14
+ image_size: 64
15
+ channels: 4
16
+ cond_stage_trainable: false
17
+ conditioning_key: crossattn
18
+ monitor: steps
19
+ scale_factor: 0.18215
20
+ use_ema: False
21
+
22
+ load_vae: True
23
+ load_unet: False
24
+ load_encoder: True
25
+
26
+ validation_config:
27
+ sampler: "ddim" # plms, ddim, dpm
28
+ steps: 50
29
+ scale: 8.0
30
+ ddim_eta: 0.0
31
+ prompt_key: "caption"
32
+ image_fname_key: "image_id"
33
+
34
+ save_images:
35
+ enabled: False
36
+ base_output_dir: "/results/inference"
37
+ fid:
38
+ enabled: True
39
+ inception_weights_url: https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth
40
+ cache_dir: /tmp/checkpoints/inception
41
+ gt_path: /val_data/val2014_30k_stats.npz
42
+ clip:
43
+ enabled: True
44
+ clip_version: "ViT-H-14"
45
+ cache_dir: /tmp/checkpoints/clip
46
+
47
+ scheduler_config:
48
+ target: ldm.lr_scheduler.LambdaLinearScheduler
49
+ params:
50
+ warm_up_steps: [ 1000 ]
51
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
52
+ f_start: [ 1.e-6 ]
53
+ f_max: [ 1. ]
54
+ f_min: [ 1. ]
55
+
56
+ unet_config:
57
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
58
+ params:
59
+ use_checkpoint: False # gradient checkpointing
60
+ use_fp16: False
61
+ image_size: 32
62
+ in_channels: 4
63
+ out_channels: 4
64
+ model_channels: 320
65
+ attention_resolutions: [ 4, 2, 1 ]
66
+ num_res_blocks: 2
67
+ channel_mult: [ 1, 2, 4, 4 ]
68
+ num_head_channels: 64 # need to fix for flash-attn
69
+ use_spatial_transformer: True
70
+ use_linear_in_transformer: True
71
+ transformer_depth: 1
72
+ context_dim: 1024
73
+ legacy: False
74
+
75
+ first_stage_config:
76
+ target: ldm.models.autoencoder.AutoencoderKL
77
+ params:
78
+ embed_dim: 4
79
+ monitor: val/rec_loss
80
+ ddconfig:
81
+ double_z: true
82
+ z_channels: 4
83
+ resolution: 256
84
+ in_channels: 3
85
+ out_ch: 3
86
+ ch: 128
87
+ ch_mult:
88
+ - 1
89
+ - 2
90
+ - 4
91
+ - 4
92
+ num_res_blocks: 2
93
+ attn_resolutions: []
94
+ dropout: 0.0
95
+ lossconfig:
96
+ target: torch.nn.Identity
97
+
98
+ cond_stage_config:
99
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
100
+ params:
101
+ arch: "ViT-H-14"
102
+ version: "laion2b_s32b_b79k"
103
+ freeze: True
104
+ layer: "penultimate"
105
+ cache_dir: /tmp/checkpoints/clip
106
+ device: "hpu"
107
+ hpu_graph: True
108
+ use_fused_adamw: True
109
+
110
+ data:
111
+ target: ldm.data.composable_data_module.ComposableDataModule
112
+ params:
113
+ train:
114
+ target: ldm.data.webdatasets.build_dataloader
115
+ params:
116
+ urls: /mnt/weka/data/mlperf_models/stable_diffusion/training/laion-400m/webdataset-moments-filtered/{00000..00831}.tar
117
+ batch_size: 8
118
+ shuffle: 1000
119
+ partial: False
120
+ keep_only_keys: ["npy", "txt"]
121
+ num_workers: 4
122
+ cache_size: 0
123
+ cache_dir:
124
+ persistent_workers: True
125
+
126
+ validation:
127
+ target: ldm.data.tsv.build_dataloader
128
+ params:
129
+ annotations_file: "/val_data/val2014_30k.tsv"
130
+ keys: ["image_id", "id", "caption"]
131
+ batch_size: 8
132
+ shuffle: False
133
+ num_workers: 1
134
+
135
+ lightning:
136
+ trainer:
137
+ accelerator: 'hpu'
138
+ num_nodes: 2
139
+ devices: 8
140
+ precision: 32
141
+ logger: False
142
+ log_every_n_steps: 5
143
+ enable_progress_bar: False
144
+ max_epochs: -1
145
+ max_steps: 10000000000000
146
+ val_check_interval: 1000
147
+ enable_checkpointing: True
148
+ num_sanity_val_steps: 0
149
+ strategy:
150
+ target: strategies.DDPStrategy
151
+ params:
152
+ find_unused_parameters: False
153
+
154
+ modelcheckpoint:
155
+ target: lightning.pytorch.callbacks.ModelCheckpoint
156
+ params:
157
+ save_top_k: -1
158
+ every_n_train_steps: 1000
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/configs/train_08x08x08.yaml ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.25e-7
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: npy
12
+ first_stage_type: moments
13
+ cond_stage_key: txt
14
+ image_size: 64
15
+ channels: 4
16
+ cond_stage_trainable: false
17
+ conditioning_key: crossattn
18
+ monitor: steps
19
+ scale_factor: 0.18215
20
+ use_ema: False
21
+
22
+ load_vae: True
23
+ load_unet: False
24
+ load_encoder: True
25
+
26
+ validation_config:
27
+ sampler: "ddim" # plms, ddim, dpm
28
+ steps: 50
29
+ scale: 8.0
30
+ ddim_eta: 0.0
31
+ prompt_key: "caption"
32
+ image_fname_key: "image_id"
33
+
34
+ save_images:
35
+ enabled: False
36
+ base_output_dir: "/results/inference"
37
+ fid:
38
+ enabled: True
39
+ inception_weights_url: https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth
40
+ cache_dir: /tmp/checkpoints/inception
41
+ gt_path: /val_data/val2014_30k_stats.npz
42
+ clip:
43
+ enabled: True
44
+ clip_version: "ViT-H-14"
45
+ cache_dir: /tmp/checkpoints/clip
46
+
47
+ scheduler_config:
48
+ target: ldm.lr_scheduler.LambdaLinearScheduler
49
+ params:
50
+ warm_up_steps: [ 1000 ]
51
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
52
+ f_start: [ 1.e-6 ]
53
+ f_max: [ 1. ]
54
+ f_min: [ 1. ]
55
+
56
+ unet_config:
57
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
58
+ params:
59
+ use_checkpoint: False # gradient checkpointing
60
+ use_fp16: False
61
+ image_size: 32
62
+ in_channels: 4
63
+ out_channels: 4
64
+ model_channels: 320
65
+ attention_resolutions: [ 4, 2, 1 ]
66
+ num_res_blocks: 2
67
+ channel_mult: [ 1, 2, 4, 4 ]
68
+ num_head_channels: 64 # need to fix for flash-attn
69
+ use_spatial_transformer: True
70
+ use_linear_in_transformer: True
71
+ transformer_depth: 1
72
+ context_dim: 1024
73
+ legacy: False
74
+
75
+ first_stage_config:
76
+ target: ldm.models.autoencoder.AutoencoderKL
77
+ params:
78
+ embed_dim: 4
79
+ monitor: val/rec_loss
80
+ ddconfig:
81
+ double_z: true
82
+ z_channels: 4
83
+ resolution: 256
84
+ in_channels: 3
85
+ out_ch: 3
86
+ ch: 128
87
+ ch_mult:
88
+ - 1
89
+ - 2
90
+ - 4
91
+ - 4
92
+ num_res_blocks: 2
93
+ attn_resolutions: []
94
+ dropout: 0.0
95
+ lossconfig:
96
+ target: torch.nn.Identity
97
+
98
+ cond_stage_config:
99
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
100
+ params:
101
+ arch: "ViT-H-14"
102
+ version: "laion2b_s32b_b79k"
103
+ freeze: True
104
+ layer: "penultimate"
105
+ cache_dir: /tmp/checkpoints/clip
106
+ device: "hpu"
107
+ hpu_graph: True
108
+ use_fused_adamw: True
109
+
110
+ data:
111
+ target: ldm.data.composable_data_module.ComposableDataModule
112
+ params:
113
+ train:
114
+ target: ldm.data.webdatasets.build_dataloader
115
+ params:
116
+ urls: /mnt/weka/data/mlperf_models/stable_diffusion/training/laion-400m/webdataset-moments-filtered/{00000..00831}.tar
117
+ batch_size: 8
118
+ shuffle: 1000
119
+ partial: False
120
+ keep_only_keys: ["npy", "txt"]
121
+ num_workers: 4
122
+ cache_size: 0
123
+ cache_dir:
124
+ persistent_workers: True
125
+
126
+ validation:
127
+ target: ldm.data.tsv.build_dataloader
128
+ params:
129
+ annotations_file: "/val_data/val2014_30k.tsv"
130
+ keys: ["image_id", "id", "caption"]
131
+ batch_size: 8
132
+ shuffle: False
133
+ num_workers: 1
134
+
135
+ lightning:
136
+ trainer:
137
+ accelerator: 'hpu'
138
+ num_nodes: 8
139
+ devices: 8
140
+ precision: 32
141
+ logger: False
142
+ log_every_n_steps: 5
143
+ enable_progress_bar: False
144
+ max_epochs: -1
145
+ max_steps: 10000000000000
146
+ val_check_interval: 1000
147
+ enable_checkpointing: True
148
+ num_sanity_val_steps: 0
149
+ strategy:
150
+ target: strategies.DDPStrategy
151
+ params:
152
+ find_unused_parameters: False
153
+
154
+ modelcheckpoint:
155
+ target: lightning.pytorch.callbacks.ModelCheckpoint
156
+ params:
157
+ save_top_k: -1
158
+ every_n_train_steps: 1000
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/configs/train_32x08x08.yaml ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.25e-7
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: npy
12
+ first_stage_type: moments
13
+ cond_stage_key: txt
14
+ image_size: 64
15
+ channels: 4
16
+ cond_stage_trainable: false
17
+ conditioning_key: crossattn
18
+ monitor: steps
19
+ scale_factor: 0.18215
20
+ use_ema: False
21
+
22
+ load_vae: True
23
+ load_unet: False
24
+ load_encoder: True
25
+
26
+ validation_config:
27
+ sampler: "ddim" # plms, ddim, dpm
28
+ steps: 50
29
+ scale: 8.0
30
+ ddim_eta: 0.0
31
+ prompt_key: "caption"
32
+ image_fname_key: "image_id"
33
+
34
+ save_images:
35
+ enabled: False
36
+ base_output_dir: "/results/inference"
37
+ fid:
38
+ enabled: True
39
+ inception_weights_url: https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth
40
+ cache_dir: /tmp/checkpoints/inception
41
+ gt_path: /val_data/val2014_30k_stats.npz
42
+ clip:
43
+ enabled: True
44
+ clip_version: "ViT-H-14"
45
+ cache_dir: /tmp/checkpoints/clip
46
+
47
+ scheduler_config:
48
+ target: ldm.lr_scheduler.LambdaLinearScheduler
49
+ params:
50
+ warm_up_steps: [ 1000 ]
51
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
52
+ f_start: [ 1.e-6 ]
53
+ f_max: [ 1. ]
54
+ f_min: [ 1. ]
55
+
56
+ unet_config:
57
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
58
+ params:
59
+ use_checkpoint: False # gradient checkpointing
60
+ use_fp16: False
61
+ image_size: 32
62
+ in_channels: 4
63
+ out_channels: 4
64
+ model_channels: 320
65
+ attention_resolutions: [ 4, 2, 1 ]
66
+ num_res_blocks: 2
67
+ channel_mult: [ 1, 2, 4, 4 ]
68
+ num_head_channels: 64 # need to fix for flash-attn
69
+ use_spatial_transformer: True
70
+ use_linear_in_transformer: True
71
+ transformer_depth: 1
72
+ context_dim: 1024
73
+ legacy: False
74
+
75
+ first_stage_config:
76
+ target: ldm.models.autoencoder.AutoencoderKL
77
+ params:
78
+ embed_dim: 4
79
+ monitor: val/rec_loss
80
+ ddconfig:
81
+ double_z: true
82
+ z_channels: 4
83
+ resolution: 256
84
+ in_channels: 3
85
+ out_ch: 3
86
+ ch: 128
87
+ ch_mult:
88
+ - 1
89
+ - 2
90
+ - 4
91
+ - 4
92
+ num_res_blocks: 2
93
+ attn_resolutions: []
94
+ dropout: 0.0
95
+ lossconfig:
96
+ target: torch.nn.Identity
97
+
98
+ cond_stage_config:
99
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
100
+ params:
101
+ arch: "ViT-H-14"
102
+ version: "laion2b_s32b_b79k"
103
+ freeze: True
104
+ layer: "penultimate"
105
+ cache_dir: /tmp/checkpoints/clip
106
+ device: "hpu"
107
+ hpu_graph: True
108
+ use_fused_adamw: True
109
+
110
+ data:
111
+ target: ldm.data.composable_data_module.ComposableDataModule
112
+ params:
113
+ train:
114
+ target: ldm.data.webdatasets.build_dataloader
115
+ params:
116
+ urls: /mnt/weka/data/mlperf_models/stable_diffusion/training/laion-400m/webdataset-moments-filtered/{00000..00831}.tar
117
+ batch_size: 8
118
+ shuffle: 1000
119
+ partial: False
120
+ keep_only_keys: ["npy", "txt"]
121
+ num_workers: 4
122
+ persistent_workers: True
123
+
124
+ validation:
125
+ target: ldm.data.tsv.build_dataloader
126
+ params:
127
+ annotations_file: "/val_data/val2014_30k.tsv"
128
+ keys: ["image_id", "id", "caption"]
129
+ batch_size: 8
130
+ shuffle: False
131
+ num_workers: 1
132
+
133
+ lightning:
134
+ trainer:
135
+ accelerator: 'hpu'
136
+ num_nodes: 32
137
+ devices: 8
138
+ precision: 32
139
+ logger: False
140
+ log_every_n_steps: 5
141
+ enable_progress_bar: False
142
+ max_epochs: -1
143
+ max_steps: 10000000000000
144
+ val_check_interval: 250
145
+ enable_checkpointing: True
146
+ num_sanity_val_steps: 0
147
+ strategy:
148
+ target: strategies.DDPStrategy
149
+ params:
150
+ find_unused_parameters: False
151
+
152
+ modelcheckpoint:
153
+ target: lightning.pytorch.callbacks.ModelCheckpoint
154
+ params:
155
+ save_top_k: -1
156
+ every_n_train_steps: 250
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/ldm/data/base.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ from abc import abstractmethod
4
+
5
+ import cv2
6
+ import numpy as np
7
+ import torch
8
+ from torch.utils.data import ChainDataset, ConcatDataset, Dataset, IterableDataset
9
+
10
+
11
+ class Txt2ImgIterableBaseDataset(IterableDataset):
12
+ '''
13
+ Define an interface to make the IterableDatasets for text2img data chainable
14
+ '''
15
+
16
+ def __init__(self, file_path: str, rank, world_size):
17
+ super().__init__()
18
+ self.file_path = file_path
19
+ self.folder_list = []
20
+ self.file_list = []
21
+ self.txt_list = []
22
+ self.info = self._get_file_info(file_path)
23
+ self.start = self.info['start']
24
+ self.end = self.info['end']
25
+ self.rank = rank
26
+
27
+ self.world_size = world_size
28
+ # self.per_worker = int(math.floor((self.end - self.start) / float(self.world_size)))
29
+ # self.iter_start = self.start + self.rank * self.per_worker
30
+ # self.iter_end = min(self.iter_start + self.per_worker, self.end)
31
+ # self.num_records = self.iter_end - self.iter_start
32
+ # self.valid_ids = [i for i in range(self.iter_end)]
33
+ self.num_records = self.end - self.start
34
+ self.valid_ids = [i for i in range(self.end)]
35
+
36
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
37
+
38
+ def __len__(self):
39
+ # return self.iter_end - self.iter_start
40
+ return self.end - self.start
41
+
42
+ def __iter__(self):
43
+ sample_iterator = self._sample_generator(self.start, self.end)
44
+ # sample_iterator = self._sample_generator(self.iter_start, self.iter_end)
45
+ return sample_iterator
46
+
47
+ def _sample_generator(self, start, end):
48
+ for idx in range(start, end):
49
+ file_name = self.file_list[idx]
50
+ txt_name = self.txt_list[idx]
51
+ f_ = open(txt_name, 'r')
52
+ txt_ = f_.read()
53
+ f_.close()
54
+ image = cv2.imdecode(np.fromfile(file_name, dtype=np.uint8), 1)
55
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
56
+ image = torch.from_numpy(image) / 255
57
+ yield {"txt": txt_, "image": image}
58
+
59
+ def _get_file_info(self, file_path):
60
+ info = \
61
+ {
62
+ "start": 1,
63
+ "end": 0,
64
+ }
65
+ self.folder_list = [file_path + i for i in os.listdir(file_path) if '.' not in i]
66
+ for folder in self.folder_list:
67
+ files = [folder + '/' + i for i in os.listdir(folder) if 'jpg' in i]
68
+ txts = [k.replace('jpg', 'txt') for k in files]
69
+ self.file_list.extend(files)
70
+ self.txt_list.extend(txts)
71
+ info['end'] = len(self.file_list)
72
+ # with open(file_path, 'r') as fin:
73
+ # for _ in enumerate(fin):
74
+ # info['end'] += 1
75
+ # self.txt_list = [k.replace('jpg', 'txt') for k in self.file_list]
76
+ return info
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/ldm/data/utils.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torchvision import transforms
2
+ from einops import rearrange
3
+
4
+ from ldm.util import instantiate_from_config
5
+
6
+ def instantiate_transforms_from_config(config):
7
+ if config.target in ['torchvision.transforms.RandomResizedCrop', 'torchvision.transforms.Resize']:
8
+ # the isinstance is necessary because instantiate_transforms_from_config might be called multiple times
9
+ # and isinstance(config['params']['interpolation'] already caseted from str to InterpolationMode
10
+ if "interpolation" in config['params'] and isinstance(config['params']['interpolation'], str):
11
+ config.params.interpolation = interpolation_from_string(config['params']['interpolation'])
12
+ return instantiate_from_config(config)
13
+
14
+ def interpolation_from_string(interpolation):
15
+ interpolation_map = {
16
+ 'nearest': transforms.InterpolationMode.NEAREST,
17
+ 'bilinear': transforms.InterpolationMode.BILINEAR,
18
+ 'bicubic': transforms.InterpolationMode.BICUBIC,
19
+ 'box': transforms.InterpolationMode.BOX,
20
+ 'hamming': transforms.InterpolationMode.HAMMING,
21
+ 'lanczos': transforms.InterpolationMode.LANCZOS,
22
+ }
23
+ return interpolation_map[interpolation]
24
+
25
+ def rearrange_transform(pattern):
26
+ return transforms.Lambda(lambda x: rearrange(tensor=x, pattern=pattern))
27
+
28
+ def identity(x):
29
+ return x
30
+
31
+ def keys_filter(keys):
32
+ def filter_fn(sample):
33
+ return {k: v for k, v in sample.items() if k in keys}
34
+ return filter_fn
35
+
36
+ def value_filter(key, predicate, value):
37
+ def filter_fn(sample):
38
+ if predicate == "eq":
39
+ return sample[key] == value
40
+ elif predicate == "neq":
41
+ return sample[key] != value
42
+ elif predicate == "gt":
43
+ return sample[key] > value
44
+ elif predicate == "lt":
45
+ return sample[key] < value
46
+ elif predicate == "gte":
47
+ return sample[key] >= value
48
+ elif predicate == "lte":
49
+ return sample[key] <= value
50
+ else:
51
+ raise ValueError(f"Unknown predicate: {predicate}")
52
+ return filter_fn
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/ldm/lr_scheduler.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class LambdaWarmUpCosineScheduler:
5
+ """
6
+ note: use with a base_lr of 1.0
7
+ """
8
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
+ self.lr_warm_up_steps = warm_up_steps
10
+ self.lr_start = lr_start
11
+ self.lr_min = lr_min
12
+ self.lr_max = lr_max
13
+ self.lr_max_decay_steps = max_decay_steps
14
+ self.last_lr = 0.
15
+ self.verbosity_interval = verbosity_interval
16
+
17
+ def schedule(self, n, **kwargs):
18
+ if self.verbosity_interval > 0:
19
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
+ if n < self.lr_warm_up_steps:
21
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
+ self.last_lr = lr
23
+ return lr
24
+ else:
25
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
+ t = min(t, 1.0)
27
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
+ 1 + np.cos(t * np.pi))
29
+ self.last_lr = lr
30
+ return lr
31
+
32
+ def __call__(self, n, **kwargs):
33
+ return self.schedule(n,**kwargs)
34
+
35
+
36
+ class LambdaWarmUpCosineScheduler2:
37
+ """
38
+ supports repeated iterations, configurable via lists
39
+ note: use with a base_lr of 1.0.
40
+ """
41
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
+ self.lr_warm_up_steps = warm_up_steps
44
+ self.f_start = f_start
45
+ self.f_min = f_min
46
+ self.f_max = f_max
47
+ self.cycle_lengths = cycle_lengths
48
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
+ self.last_f = 0.
50
+ self.verbosity_interval = verbosity_interval
51
+
52
+ def find_in_interval(self, n):
53
+ interval = 0
54
+ for cl in self.cum_cycles[1:]:
55
+ if n <= cl:
56
+ return interval
57
+ interval += 1
58
+
59
+ def schedule(self, n, **kwargs):
60
+ cycle = self.find_in_interval(n)
61
+ n = n - self.cum_cycles[cycle]
62
+ if self.verbosity_interval > 0:
63
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
+ f"current cycle {cycle}")
65
+ if n < self.lr_warm_up_steps[cycle]:
66
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
+ self.last_f = f
68
+ return f
69
+ else:
70
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
+ t = min(t, 1.0)
72
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
+ 1 + np.cos(t * np.pi))
74
+ self.last_f = f
75
+ return f
76
+
77
+ def __call__(self, n, **kwargs):
78
+ return self.schedule(n, **kwargs)
79
+
80
+
81
+ class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
+
83
+ def schedule(self, n, **kwargs):
84
+ cycle = self.find_in_interval(n)
85
+ n = n - self.cum_cycles[cycle]
86
+ if self.verbosity_interval > 0:
87
+ if n % self.verbosity_interval == 0:
88
+ print(f"current step: {n}, recent lr-multiplier: {self.last_f}, current cycle {cycle}")
89
+
90
+ if n < self.lr_warm_up_steps[cycle]:
91
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
+ self.last_f = f
93
+ return f
94
+ else:
95
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
+ self.last_f = f
97
+ return f
98
+
docker/bloom13b/Model-References/MLPERF3.1/Training/benchmarks/stable_diffusion/ldm/models/autoencoder.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ try:
3
+ import lightning.pytorch as pl
4
+ except:
5
+ import pytorch_lightning as pl
6
+
7
+ import torch.nn.functional as F
8
+ from contextlib import contextmanager
9
+
10
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
11
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
12
+
13
+ from ldm.util import instantiate_from_config
14
+ from ldm.modules.ema import LitEma
15
+
16
+
17
+ class AutoencoderKL(pl.LightningModule):
18
+ def __init__(self,
19
+ ddconfig,
20
+ lossconfig,
21
+ embed_dim,
22
+ ckpt_path=None,
23
+ ignore_keys=[],
24
+ image_key="image",
25
+ colorize_nlabels=None,
26
+ monitor=None,
27
+ ema_decay=None,
28
+ learn_logvar=False
29
+ ):
30
+ super().__init__()
31
+ self.learn_logvar = learn_logvar
32
+ self.image_key = image_key
33
+ self.encoder = Encoder(**ddconfig)
34
+ self.decoder = Decoder(**ddconfig)
35
+ self.loss = instantiate_from_config(lossconfig)
36
+ assert ddconfig["double_z"]
37
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
38
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
39
+ self.embed_dim = embed_dim
40
+ if colorize_nlabels is not None:
41
+ assert type(colorize_nlabels)==int
42
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
43
+ if monitor is not None:
44
+ self.monitor = monitor
45
+
46
+ self.use_ema = ema_decay is not None
47
+ if self.use_ema:
48
+ self.ema_decay = ema_decay
49
+ assert 0. < ema_decay < 1.
50
+ self.model_ema = LitEma(self, decay=ema_decay)
51
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
52
+
53
+ if ckpt_path is not None:
54
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
55
+
56
+ def init_from_ckpt(self, path, ignore_keys=list()):
57
+ sd = torch.load(path, map_location="cpu")["state_dict"]
58
+ keys = list(sd.keys())
59
+ for k in keys:
60
+ for ik in ignore_keys:
61
+ if k.startswith(ik):
62
+ print("Deleting key {} from state_dict.".format(k))
63
+ del sd[k]
64
+ self.load_state_dict(sd, strict=False)
65
+ print(f"Restored from {path}")
66
+
67
+ @contextmanager
68
+ def ema_scope(self, context=None):
69
+ if self.use_ema:
70
+ self.model_ema.store(self.parameters())
71
+ self.model_ema.copy_to(self)
72
+ if context is not None:
73
+ print(f"{context}: Switched to EMA weights")
74
+ try:
75
+ yield None
76
+ finally:
77
+ if self.use_ema:
78
+ self.model_ema.restore(self.parameters())
79
+ if context is not None:
80
+ print(f"{context}: Restored training weights")
81
+
82
+ def on_train_batch_end(self, *args, **kwargs):
83
+ if self.use_ema:
84
+ self.model_ema(self)
85
+
86
+ def moments(self, x):
87
+ h = self.encoder(x)
88
+ moments = self.quant_conv(h)
89
+ return moments
90
+
91
+ def encode(self, x):
92
+ moments = self.moments(x)
93
+ posterior = DiagonalGaussianDistribution(moments)
94
+ return posterior
95
+
96
+ def decode(self, z):
97
+ z = self.post_quant_conv(z)
98
+ dec = self.decoder(z)
99
+ return dec
100
+
101
+ def forward(self, input, sample_posterior=True):
102
+ posterior = self.encode(input)
103
+ if sample_posterior:
104
+ z = posterior.sample()
105
+ else:
106
+ z = posterior.mode()
107
+ dec = self.decode(z)
108
+ return dec, posterior
109
+
110
+ def get_input(self, batch, k):
111
+ x = batch[k]
112
+ if len(x.shape) == 3:
113
+ x = x[..., None]
114
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
115
+ return x
116
+
117
+ def training_step(self, batch, batch_idx, optimizer_idx):
118
+ inputs = self.get_input(batch, self.image_key)
119
+ reconstructions, posterior = self(inputs)
120
+
121
+ if optimizer_idx == 0:
122
+ # train encoder+decoder+logvar
123
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
124
+ last_layer=self.get_last_layer(), split="train")
125
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
126
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
127
+ return aeloss
128
+
129
+ if optimizer_idx == 1:
130
+ # train the discriminator
131
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
132
+ last_layer=self.get_last_layer(), split="train")
133
+
134
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
135
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
136
+ return discloss
137
+
138
+ def validation_step(self, batch, batch_idx):
139
+ log_dict = self._validation_step(batch, batch_idx)
140
+ with self.ema_scope():
141
+ log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
142
+ return log_dict
143
+
144
+ def _validation_step(self, batch, batch_idx, postfix=""):
145
+ inputs = self.get_input(batch, self.image_key)
146
+ reconstructions, posterior = self(inputs)
147
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
148
+ last_layer=self.get_last_layer(), split="val"+postfix)
149
+
150
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
151
+ last_layer=self.get_last_layer(), split="val"+postfix)
152
+
153
+ self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
154
+ self.log_dict(log_dict_ae)
155
+ self.log_dict(log_dict_disc)
156
+ return self.log_dict
157
+
158
+ def configure_optimizers(self):
159
+ lr = self.learning_rate
160
+ ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
161
+ self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
162
+ if self.learn_logvar:
163
+ print(f"{self.__class__.__name__}: Learning logvar")
164
+ ae_params_list.append(self.loss.logvar)
165
+ opt_ae = torch.optim.Adam(ae_params_list,
166
+ lr=lr, betas=(0.5, 0.9))
167
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
168
+ lr=lr, betas=(0.5, 0.9))
169
+ return [opt_ae, opt_disc], []
170
+
171
+ def get_last_layer(self):
172
+ return self.decoder.conv_out.weight
173
+
174
+ @torch.no_grad()
175
+ def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
176
+ log = dict()
177
+ x = self.get_input(batch, self.image_key)
178
+ x = x.to(self.device)
179
+ if not only_inputs:
180
+ xrec, posterior = self(x)
181
+ if x.shape[1] > 3:
182
+ # colorize with random projection
183
+ assert xrec.shape[1] > 3
184
+ x = self.to_rgb(x)
185
+ xrec = self.to_rgb(xrec)
186
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
187
+ log["reconstructions"] = xrec
188
+ if log_ema or self.use_ema:
189
+ with self.ema_scope():
190
+ xrec_ema, posterior_ema = self(x)
191
+ if x.shape[1] > 3:
192
+ # colorize with random projection
193
+ assert xrec_ema.shape[1] > 3
194
+ xrec_ema = self.to_rgb(xrec_ema)
195
+ log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
196
+ log["reconstructions_ema"] = xrec_ema
197
+ log["inputs"] = x
198
+ return log
199
+
200
+ def to_rgb(self, x):
201
+ assert self.image_key == "segmentation"
202
+ if not hasattr(self, "colorize"):
203
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
204
+ x = F.conv2d(x, weight=self.colorize)
205
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
206
+ return x
207
+
208
+
209
+ class IdentityFirstStage(torch.nn.Module):
210
+ def __init__(self, *args, vq_interface=False, **kwargs):
211
+ self.vq_interface = vq_interface
212
+ super().__init__()
213
+
214
+ def encode(self, x, *args, **kwargs):
215
+ return x
216
+
217
+ def decode(self, x, *args, **kwargs):
218
+ return x
219
+
220
+ def quantize(self, x, *args, **kwargs):
221
+ if self.vq_interface:
222
+ return x, None, [None, None, None]
223
+ return x
224
+
225
+ def forward(self, x, *args, **kwargs):
226
+ return x
227
+