diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/brute_force_min_pad_waste.py b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/brute_force_min_pad_waste.py
new file mode 100644
index 0000000000000000000000000000000000000000..71abcceebea70d662717bbb51fceb5e28d02ef69
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/brute_force_min_pad_waste.py
@@ -0,0 +1,154 @@
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+
+import numpy as np
+import copy
+import collections
+from itertools import combinations
+import time
+
+class BruteForceOptimalBucketing():
+ def __init__(self, inp_dist, num_buckets, numbucket_threshold=10000000, verbose=False, collect=1000, print_freq=10000):
+ self.inp_dist = collections.OrderedDict(sorted(inp_dist.items()))
+ # not sure if deepcopy preserves order, hence resorting
+ self.inp_dist_orig = collections.OrderedDict(sorted(copy.deepcopy(self.inp_dist).items()))
+ self.num_buckets = num_buckets
+ self.numbucket_threshold = numbucket_threshold
+ if numbucket_threshold > 0:
+ self.simplify_distribution()
+ self.verbose = verbose
+ if self.verbose:
+ print('Original distribution: ', self.inp_dist_orig)
+ print('Modified distribution: ', self.inp_dist)
+ print('kl divergence: ', self.kl_div())
+ self.max_shape = max(self.inp_dist)
+ key_col = []
+ val_col = []
+ for k in sorted(self.inp_dist):
+ key_col += [k]
+ val_col += [self.inp_dist[k]]
+ self.num_shapes = len(key_col)
+ self.key_col_tensor = np.array(key_col) # sorted by keys (first column)
+ self.val_col_tensor = np.array(val_col)
+ self.collect = collect
+ self.print_freq = print_freq
+ #self.key_col_tensor_tiled = np.tile(self.key_col_tensor, (num_buckets,self.collect,1)).T
+ def kl_div(self):
+ total = sum(self.inp_dist.values())
+ kld = 0
+ for k in self.inp_dist_orig:
+ q = self.inp_dist_orig[k] / total
+ tmp = self.inp_dist.get(k,0)
+ if tmp == 0:
+ term = 0
+ else:
+ term = tmp * np.log((tmp / total) / q)
+ kld += term
+ return kld
+ def simplify_distribution(self):
+ while self.num_possible_buckets() > self.numbucket_threshold:
+ self.fuse_inp_dist()
+ def fuse_inp_dist(self):
+ # helper finds the smallest frequency (which will be removed)
+ def helper(d):
+ least_count = None
+ for idx, k in enumerate(d):
+ if least_count is None or d[k] < least_count:
+ least_count = d[k]
+ least_idx = idx
+ to_be_removed = k
+ return least_count, least_idx, to_be_removed
+ sum_vals_before = sum(self.inp_dist.values())
+ assert sum_vals_before == sum(self.inp_dist_orig.values())
+ # Remove the last (largest) shape from the search of lowest frequency to be deleted,
+ # because that can't be deleted
+ tmp = collections.OrderedDict(sorted(copy.deepcopy(self.inp_dist).items()))
+ tmp.pop(max(tmp))
+ # search for the shape with least frequency
+ least_count, least_idx, to_be_removed = helper(tmp)
+ # fuse the shape with least frequency with its right neighbour (next bigger shape)
+ fuse_with = least_idx+1
+ for idx, k in enumerate(self.inp_dist):
+ if fuse_with == idx:
+ self.inp_dist[k] = self.inp_dist[k]+least_count
+ # Remove the shape with least frequency
+ self.inp_dist.pop(to_be_removed)
+ sum_vals_after = sum(self.inp_dist.values())
+ assert sum_vals_before == sum_vals_after
+ def num_possible_buckets(self):
+ from functools import reduce
+ import operator as op
+ n = len(self.inp_dist)-1
+ r = self.num_buckets-1
+ r = min(r, n-r)
+ numer = reduce(op.mul, range(n, n-r, -1), 1)
+ denom = reduce(op.mul, range(1, r+1), 1)
+ return numer // denom # or / in Python 2
+ # function to evaluate
+ def num_padding(self, buckets):
+ tot_pad = 0
+ cur_bucket_idx = 0
+ for k in self.inp_dist_orig: # self.inp_dist is expected to be sorted, hence we can do the cur_bucket_idx optimization
+ while True:
+ bucket = buckets[cur_bucket_idx]
+ if k > bucket:
+ cur_bucket_idx += 1
+ else:
+ break
+ padding = (bucket - k) * self.inp_dist_orig[k]
+ assert padding >= 0
+ tot_pad += padding
+ return tot_pad
+ def find_optimal_buckets(self):
+ result_best = None
+ sizes = [k for k in self.inp_dist.keys()]
+ sizes_without_largest = sizes[:-1]
+ num = self.num_possible_buckets()
+ if self.verbose:
+ print(f'Combinations to try: {num}')
+ t0 = time.time()
+ collect_ctr = 0
+ self.idx_collection = []
+ self.bucket_boundary_collection = []
+ result_best = None
+ def update_helper(idx, result_best, best_padwaste_in_curr_collection, best_bucket_in_curr_collection):
+ if result_best is None or result_best['wasted_padding'] > best_padwaste_in_curr_collection:
+ tmp = {'wasted_padding':best_padwaste_in_curr_collection, 'idx':idx, 'buckets':copy.deepcopy(best_bucket_in_curr_collection)}
+ if self.verbose:
+ print('Best till now: ', tmp)
+ return tmp
+ else:
+ return result_best
+ for idx, bucket_boundary in (enumerate(combinations(sizes_without_largest, self.num_buckets-1))):
+ if collect_ctr == self.collect:
+ best_padwaste_in_curr_collection, best_bucket_in_curr_collection, best_idx = self.process_collection()
+ result_best = update_helper(idx - self.collect + best_idx, result_best, best_padwaste_in_curr_collection, best_bucket_in_curr_collection)
+ self.idx_collection = []
+ self.bucket_boundary_collection = []
+ collect_ctr = 0
+ self.idx_collection.append(idx)
+ self.bucket_boundary_collection.append(list(bucket_boundary) + [sizes[-1]])
+ collect_ctr += 1
+ if idx % self.print_freq == self.print_freq-1 and self.verbose:
+ curr_time = time.time()
+ time_till_now = curr_time-t0
+ projected_time_left = time_till_now * ((num / idx) - 1) if idx > 0 else -1
+ print(f'{idx}/{num}: {(idx/num):.3f}. Time taken till now {time_till_now:.3f}. Projected time left {projected_time_left:.3f}. Best {result_best}')
+ if len(self.idx_collection) > 0:
+ best_padwaste_in_curr_collection, best_bucket_in_curr_collection, best_idx = self.process_collection()
+ result_best = update_helper(idx - len(self.idx_collection) + best_idx, result_best, best_padwaste_in_curr_collection, best_bucket_in_curr_collection)
+ return result_best
+ def process_collection(self):
+ # self.collect x self.num_buckets
+ bucket_boundary_collection = np.array(self.bucket_boundary_collection)
+ # self.num_shapes x self.collect x self.num_buckets
+ buckets_tiled = np.tile(np.array(bucket_boundary_collection), (self.num_shapes, 1, 1))
+ # self.num_shapes x self.collect
+ key_col_tensor_tiled = np.tile(self.key_col_tensor, (self.num_buckets,bucket_boundary_collection.shape[0],1)).T
+ bucket_idx = np.argmin(key_col_tensor_tiled > buckets_tiled, 2)
+ bucket_for_each_shape = np.take_along_axis(bucket_boundary_collection, bucket_idx.T, 1)
+ padding_waste_per_shape = bucket_for_each_shape - np.expand_dims(self.key_col_tensor, 0)
+ #assert np.all(padding_waste_per_shape >= 0)
+ total_padding_waste = np.sum((padding_waste_per_shape * self.val_col_tensor), 1)
+ #assert len(total_padding_waste)
+ best_idx = np.argmin(total_padding_waste)
+ return total_padding_waste[best_idx], bucket_boundary_collection[best_idx], best_idx
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket.py b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket.py
new file mode 100644
index 0000000000000000000000000000000000000000..61b21a7224b1e6d10475ca8c700f66138fa5443b
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket.py
@@ -0,0 +1,169 @@
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+
+import numpy as np
+import time
+import pickle as pkl
+
+# A decorator for input/output validation of bucketing algorithms
+def get_check_bucket(allow_none_return):
+ # some bucketing algos like LP can return None
+ def check_bucket(bucketer):
+ def helper(shapes, num_buckets, *args, **kwargs):
+ for k in shapes:
+ assert type(k) == type(1)
+ assert k >= 0
+ assert num_buckets >= 1
+ assert type(num_buckets) == type(1)
+ buckets = bucketer(shapes, num_buckets, *args, **kwargs)
+ if allow_none_return:
+ if buckets is None:
+ return None
+ assert len(buckets) <= num_buckets
+ assert buckets[-1] <= max(shapes)
+ return buckets
+ return helper
+ return check_bucket
+
+# Percentile based bucketing
+@get_check_bucket(False)
+def percentile_bucket(shapes, num_buckets):
+ buckets = np.unique(
+ np.percentile(
+ shapes,
+ np.linspace(0, 100, num_buckets + 1),
+ interpolation="lower",
+ )[1:]
+ )
+ return buckets
+
+# LP based bucketing
+@get_check_bucket(True)
+def lp_bucket(shapes, num_buckets):
+ from pulp import LpMinimize, LpProblem, lpSum, PULP_CBC_CMD, LpStatus, LpVariable, LpInteger
+ def padding_overhead(bucket_size,sample_size,num_samples):
+ if (sample_size-bucket_size)>0:
+ return 1e32
+ else:
+ return (bucket_size-sample_size)*num_samples
+ data_unique=np.unique(shapes)
+ prob = LpProblem('OptimalBucket',LpMinimize)
+ Combinations=[]; padLoss={}; Indicators={}; DeltaM={}
+
+ for s in data_unique:
+ num_samples=(shapes==s).sum()
+ for b in data_unique:
+ Combinations.append('ind' + '_{}b_{}s'.format(b,s))
+ padLoss['ind' + '_{}b_{}s'.format(b,s)] = padding_overhead(b,s,num_samples)
+ Indicators['ind' + '_{}b_{}s'.format(b,s)] = LpVariable('ind' + '_{}b_{}s'.format(b,s),0,1,LpInteger)
+
+ prob += lpSum([Indicators[ind]*padLoss[ind] for ind in padLoss.keys()]) # Objective (minimize padding)
+
+ for s in data_unique:
+ prob += lpSum([Indicators[key] for key in Combinations if '_{}s'.format(s) in key]) == 1
+ bucket_indecators=[]
+ for b in data_unique:
+ Indicators['ind_bucket' + '_{}'.format(b)]=LpVariable('ind_bucket' + '_{}'.format(b),0,1,LpInteger)
+ bucket_indecators.append(Indicators['ind_bucket' + '_{}'.format(b)])
+ for b in data_unique:
+ prob += lpSum([Indicators[key] for key in Combinations if '_{}b'.format(b) in key]) <= Indicators['ind_bucket' + '_{}'.format(b)]*len(data_unique)
+
+ prob += lpSum(bucket_indecators)==num_buckets
+
+ prob.solve(PULP_CBC_CMD(msg=0))
+ LpStatus[prob.status]
+
+ ip_buckets=[]
+ for v in prob.variables():
+ if 'ind_bucket' in v.name and v.value() > 0:
+ ip_buckets.append(int(v.name.split('_')[-1]))
+
+ if (prob.status==-1):
+ print('Infeasable')
+ return None
+ else:
+ return tuple(sorted(ip_buckets))
+
+# Pad to max or constant bucketing
+@get_check_bucket(False)
+def const_bucket(shapes, num_buckets):
+ return [max(shapes)]
+
+# Uniform intervals bucketing
+@get_check_bucket(False)
+def uniform_bucket(shapes, num_buckets):
+ mn = min(shapes)
+ mx = max(shapes)
+ step = (mx - mn) / num_buckets
+ buckets = [mx]
+ curr_bucket = mx
+ step = (mx - mn) / num_buckets
+ for i in range(num_buckets-1):
+ curr_bucket = curr_bucket - step
+ buckets = [curr_bucket] + buckets
+ buckets = [round(k) for k in buckets]
+ return buckets
+
+# Brute force min pad waste bucketing
+@get_check_bucket(False)
+def brute_force_min_pad_waste(shapes, num_buckets, max_elems=10000000):
+ from brute_force_min_pad_waste import BruteForceOptimalBucketing
+ size_freq = {}
+ for k in shapes:
+ size_freq[k] = size_freq.get(k,0)+1
+ ob = BruteForceOptimalBucketing(size_freq, num_buckets, numbucket_threshold=max_elems)
+ res = ob.find_optimal_buckets()
+ return res['buckets']
+
+# Lloyd-Max quantization based bucketing
+@get_check_bucket(False)
+def lloyd_max_bucketing(shapes, num_buckets, max_steps=20):
+ from lloyd_max_bucket import lloydmax
+ from scipy.interpolate import CubicSpline
+ hist = {}
+ for k in shapes:
+ hist[k] = hist.get(k,0) + 1
+ x = []
+ y = []
+ for k in sorted(hist.keys()):
+ x += [k]
+ y += [hist[k]/sum(hist.values())]
+ pdf = CubicSpline(x, y)
+ repr = uniform_bucket(shapes, num_buckets)
+ thresholds = list((np.array(repr[:-1]) + np.array(repr[1:]))/2)
+ x,t,e = lloydmax(thresholds,repr,0.01, pdf, min(shapes), max(shapes), max_steps)
+ buckets = [int(k) for k in t] + [max(shapes)]
+ return buckets
+
+def normalize_trial_buckets(trial_buckets):
+ if trial_buckets is None:
+ trial_buckets = 10
+ if type(trial_buckets) == type(1):
+ trial_buckets = range(1,trial_buckets)
+ return trial_buckets
+
+def eval_bucketing(buckets, shapes):
+ tot = sum([min([i for i in buckets if i >= k]) for k in shapes])
+ return tot, tot/len(shapes)
+
+
+def bucket_analysis(shapes, bucket_algos, trial_buckets=None):
+ trial_buckets = normalize_trial_buckets(trial_buckets)
+ results = {}
+ for algoidx, (bucket_algo_name, bucket_algo) in enumerate(bucket_algos):
+ print(f'Processing {bucket_algo_name}')
+ res = {}
+ for num_bucket in trial_buckets:
+ print(f'Processing bucket={num_bucket}')
+ t0 = time.time()
+ buckets = bucket_algo(shapes, num_bucket)
+ t1 = time.time()
+ if buckets is None:
+ print(f'Failed to generate buckets for {bucket_algo_name} for {num_bucket} buckets. Falling back to const bucketing')
+ buckets = const_bucket(shapes, num_bucket)
+ totwaste, avgwaste = eval_bucketing(buckets, shapes)
+ res[num_bucket] = {'totwaste':totwaste, 'avgwaste':avgwaste, 'time':t1-t0}
+ print(algoidx, num_bucket, totwaste, avgwaste, t1-t0)
+ assert bucket_algo_name not in results
+ results[bucket_algo_name] = res
+ pkl.dump(results, open('res.pkl', 'wb'), protocol=pkl.HIGHEST_PROTOCOL)
+ return results
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket_analysis.svg b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket_analysis.svg
new file mode 100644
index 0000000000000000000000000000000000000000..b1a29bccbb214bd19aa3db7d403d01dd1239b39a
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket_analysis.svg
@@ -0,0 +1,1709 @@
+
+
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket_analysis_bar_squad.svg b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket_analysis_bar_squad.svg
new file mode 100644
index 0000000000000000000000000000000000000000..8918273649537c7c04cc7911fa0280f14130a021
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket_analysis_bar_squad.svg
@@ -0,0 +1,1772 @@
+
+
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/datasets_library.py b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/datasets_library.py
new file mode 100644
index 0000000000000000000000000000000000000000..b784a23a18dbb613fa6ae7143634b75a2f4498f9
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/datasets_library.py
@@ -0,0 +1,123 @@
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+
+import random, itertools
+from tqdm import tqdm
+import numpy as np
+
+def get_cdf(pdf):
+ # list of tuples, each tuple is a k-v pair (k is the number, v its probability)
+ sorted_key_pdf = sorted(pdf, key=lambda x:x[0]) # sort by keys
+ run_sum = 0
+ cdf = []
+ for i in range(len(sorted_key_pdf)):
+ k, v = sorted_key_pdf[i]
+ run_sum += v
+ assert run_sum <= 1 or (1-run_sum) < 0.000000001
+ cdf += [(k, 1 if run_sum > 1 else run_sum)]
+ last_elem = cdf[-1]
+ assert last_elem[1] <= 1.0
+ assert (1.0 - last_elem[1]) < 0.000001
+ cdf[-1] = (cdf[-1][0], 1.0) # set the last elem to 1
+ return cdf
+
+def hist_to_tuplelist(pdf):
+ inp_is_hist = type(pdf) == type({1:2})
+ if inp_is_hist:
+ # pdf is a histograms. values add to 1 and are positive
+ pdf = [(k,pdf[k]) for k in pdf]
+ return pdf, inp_is_hist
+
+def format_convert(f):
+ def helper(pdf, bs, aggregator):
+ pdf, inp_is_hist = hist_to_tuplelist(pdf)
+ out = f(pdf, bs, aggregator)
+ if inp_is_hist:
+ return {k:v for k,v in out}
+ else:
+ return out
+ return helper
+
+@format_convert
+def aggregator_batch(pdf, bs, aggregator):
+ assert aggregator in ['min', 'max']
+ pdf = sorted(pdf, key=lambda x:x[0])
+ cdf = get_cdf(pdf)
+ assert len(cdf) == len(pdf)
+ result = []
+ for p, c in zip(pdf, cdf):
+ kp, pval = p
+ kc, cval = c
+ assert kp == kc
+ val = bs * pval * ((cval if aggregator == 'max' else (1-cval)) ** (bs-1))
+ result += [(kp, val)]
+ # the resulting pdf might be unnormalized, probably due to computational issues? normalizing it
+ result_val_tot = sum([k[1] for k in result])
+ result = [(k[0], k[1]/result_val_tot) for k in result]
+ return result
+
+
+def generate_random_gaussian():
+ import numpy as np
+ while True:
+ x = np.random.normal(500, 50)
+ if x < 2: # truncating it so that its not negative
+ x = 2
+ x = round(x) # its a discrete distribution, so rounding it off
+ yield x
+
+def gaussian(num_samples):
+ return list(itertools.islice(generate_random_gaussian(), num_samples))
+
+def batched_gaussian(orig_list, bs, aggregator):
+ return [aggregator(orig_list[i * bs : (i+1) * bs]) for i in range(len(orig_list) // bs)]
+
+
+def batch_by_formula(orig_list, bs, aggregator):
+ count_hist = {}
+ for item in orig_list:
+ count_hist[item] = count_hist.get(item, 0) + 1
+ total = sum(list(count_hist.values()))
+ pdf_hist = {k:count_hist[k]/total for k in count_hist}
+ return aggregator_batch(pdf_hist, bs, aggregator)
+
+def sample_from_pdf(pdf, num_samples):
+ pdf, _ = hist_to_tuplelist(pdf)
+ nums = [k[0] for k in pdf]
+ prob = [k[1] for k in pdf]
+ return np.random.choice(nums, num_samples, p=prob)
+
+
+def squad(bs=1, clip=None):
+ print('Start squad bs =',bs)
+ from datasets import load_dataset
+ from torch.utils.data import DataLoader
+ from transformers import AutoTokenizer
+ import torch
+
+ # Pad to max length sentence in each batch
+ def collate(batch):
+ def pad(item, val, maxlen):
+ return torch.tensor([i + [val]*(maxlen-len(i)) for i in item])
+ token = [k['token_type_ids'] for k in batch]
+ attention = [k['attention_mask'] for k in batch]
+ inp = [k['input_ids'] for k in batch]
+ token_lens = [len(i) for i in token]
+ # Find the max length sentence in this batch
+ max_len = max(token_lens)
+ assert token_lens == [len(i) for i in attention] == [len(i) for i in inp]
+ return {'token_type_ids': pad(token, 0, max_len), 'attention_mask': pad(attention, 0, max_len), 'input_ids': pad(inp, 0, max_len)}
+
+
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
+
+ squad_dataset = load_dataset('squad')
+ tokenized_dataset = squad_dataset.map(lambda x: tokenizer(x['context']), batched=True)
+
+ dt = DataLoader(tokenized_dataset['train'], batch_size=bs, num_workers=2, collate_fn=collate)
+ lens = []
+ for idx, data in tqdm(enumerate(dt)):
+ lens += [data['input_ids'].shape[1]]
+ if clip is not None and len(lens) >= clip:
+ break
+ print('Done squad bs =', bs)
+ return lens
\ No newline at end of file
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/requirements.txt b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..2de871b73cd747387d732e6f73a8b19605de432a
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/requirements.txt
@@ -0,0 +1,7 @@
+matplotlib
+tqdm
+datasets
+transformers
+pulp
+scipy
+pytest
\ No newline at end of file
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/run_demo_bucketing_gaussian.py b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/run_demo_bucketing_gaussian.py
new file mode 100644
index 0000000000000000000000000000000000000000..83977dd502a2186fce2465419d46e35fe5e53a38
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/run_demo_bucketing_gaussian.py
@@ -0,0 +1,14 @@
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+
+import itertools
+from plotting import plot_bucket_analysis_results
+from bucket import bucket_analysis, lp_bucket, const_bucket, uniform_bucket, percentile_bucket, lloyd_max_bucketing, brute_force_min_pad_waste
+from datasets_library import generate_random_gaussian
+
+shapes = list(itertools.islice(generate_random_gaussian(), 1000))
+results = bucket_analysis(shapes, [("lp_bucket", lp_bucket), ("const_bucket", const_bucket), ("uniform_bucket", uniform_bucket), \
+ ("percentile_bucket", percentile_bucket), ("lloyd_max_bucketing", lloyd_max_bucketing), \
+ ("brute_force_min_pad_waste", brute_force_min_pad_waste)], [2,3,4,5,6,10,20])
+plot_bucket_analysis_results(results, 'bucket_analysis_bar_gaussian.svg')
+
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/run_demo_squad.py b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/run_demo_squad.py
new file mode 100644
index 0000000000000000000000000000000000000000..3b2fb87720c1558853549a3b8632154a5821cb17
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/run_demo_squad.py
@@ -0,0 +1,9 @@
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+
+from datasets_library import squad
+from plotting import plotter
+
+
+if __name__ == '__main__':
+ print("Plotting squad, takes 2-3 mins to run")
+ plotter([squad(1), squad(4), squad(16), squad(64), squad(256), squad(512)], 'squad.svg', ['bs='+str(bs) for bs in [1,4,16,64,256,512]])
\ No newline at end of file
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/squad.svg b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/squad.svg
new file mode 100644
index 0000000000000000000000000000000000000000..bc32a92d1d79ebc4bc8b6bd52f66ec8d417bf824
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/squad.svg
@@ -0,0 +1,1473 @@
+
+
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/test.py b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/test.py
new file mode 100644
index 0000000000000000000000000000000000000000..25efd9c8256735551371e6eec2e9fadfd09fcc84
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/test.py
@@ -0,0 +1,88 @@
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+
+from datasets_library import gaussian, batched_gaussian, batch_by_formula, sample_from_pdf, generate_random_gaussian
+import numpy as np
+np.random.seed(0)
+from bucket import bucket_analysis, lp_bucket, const_bucket, uniform_bucket, percentile_bucket, lloyd_max_bucketing, brute_force_min_pad_waste
+import itertools
+
+def test_squad_batching():
+ print("Plotting gaussian")
+ num_samples = 100000
+ bs = 4
+ gs = gaussian(num_samples)
+ print(sum(gs))
+ assert len(gs) == 100000
+ assert np.abs(np.mean(gs) - 500) <= 2
+ assert np.abs(np.var(gs) - 2486.8457) <= 20
+ orig = batched_gaussian(gs, 1, max)
+ assert len(orig) == 100000
+ assert set(orig) == set(gs)
+ max_batch4 = batched_gaussian(gs, bs, max)
+ assert len(max_batch4) == 25000
+ assert np.mean(max_batch4) > np.mean(gs)
+ assert np.var(max_batch4) < np.var(gs)
+ min_batch4 = batched_gaussian(gs, bs, min)
+ assert len(min_batch4) == 25000
+ assert np.mean(min_batch4) < np.mean(gs)
+ assert np.var(min_batch4) < np.var(gs)
+ max_formula_batch4 = sample_from_pdf(batch_by_formula(gs, bs, 'max'), num_samples)
+ assert len(max_formula_batch4) == 100000
+ assert np.abs(np.mean(max_formula_batch4) - np.mean(max_batch4)) < 5
+ assert np.abs(np.var(max_formula_batch4) - np.var(max_batch4)) < 40
+ min_formula_batch4 = sample_from_pdf(batch_by_formula(gs, bs, 'min'), num_samples)
+ assert len(min_formula_batch4) == 100000
+ assert np.abs(np.mean(min_formula_batch4) - np.mean(min_batch4)) < 5
+ assert np.abs(np.var(min_formula_batch4) - np.var(min_batch4)) < 40
+
+
+def test_bucketing():
+ shapes = list(itertools.islice(generate_random_gaussian(), 1000))
+ assert sum(shapes) == 498957
+ assert len(set(shapes)) == 229
+ #("lp_bucket", lp_bucket) # this takes quite long, so skipping its test
+ results = bucket_analysis(shapes, [("const_bucket", const_bucket), ("uniform_bucket", uniform_bucket), \
+ ("percentile_bucket", percentile_bucket), ("lloyd_max_bucketing", lloyd_max_bucketing), \
+ ("brute_force_min_pad_waste", brute_force_min_pad_waste)], [2,20])
+ expected = {'const_bucket': {2: {'totwaste': 662000, 'avgwaste': 662.0}, 20: {'totwaste': 662000, 'avgwaste': 662.0}}, \
+ 'uniform_bucket': {2: {'totwaste': 579218, 'avgwaste': 579.218}, 20: {'totwaste': 506507, 'avgwaste': 506.507}}, \
+ 'percentile_bucket': {2: {'totwaste': 579522, 'avgwaste': 579.522}, 20: {'totwaste': 506122, 'avgwaste': 506.122}}, \
+ 'lloyd_max_bucketing': {2: {'totwaste': 594004, 'avgwaste': 594.004}, 20: {'totwaste': 506218, 'avgwaste': 506.218}}, \
+ 'brute_force_min_pad_waste': {2: {'totwaste': 562739, 'avgwaste': 562.739,}, 20: {'totwaste': 504726, 'avgwaste': 504.726}}}
+ for algo_name in ["const_bucket", "uniform_bucket", "percentile_bucket", "lloyd_max_bucketing", "brute_force_min_pad_waste"]:
+ assert algo_name in results
+ val = results[algo_name]
+ for bkt in [2,20]:
+ assert bkt in val
+ bkt_result = val[bkt]
+ bkt_result.pop('time')
+ assert bkt_result == expected[algo_name][bkt]
+
+
+def test_numsteps():
+
+ shapes = list(itertools.islice(generate_random_gaussian(), 10000))
+ lloyd_max_set_step = lambda step : (lambda shp, num_buckets : lloyd_max_bucketing(shp, num_buckets, step))
+
+ results = bucket_analysis(shapes, [("lloyd_max_02", lloyd_max_set_step(2)), ("lloyd_max_10", lloyd_max_set_step(10)), ("lloyd_max_20", lloyd_max_set_step(20))], [6, 10])
+ expected = {'lloyd_max_02': {6: {'totwaste': 5284440, 'avgwaste': 528.444}, \
+ 10: {'totwaste': 5172300, 'avgwaste': 517.23,}}, \
+ 'lloyd_max_10': {6: {'totwaste': 5226954, 'avgwaste': 522.6954}, \
+ 10: {'totwaste': 5149487, 'avgwaste': 514.9487}}, \
+ 'lloyd_max_20': {6: {'totwaste': 5209336, 'avgwaste': 520.9336}, \
+ 10: {'totwaste': 5137341, 'avgwaste': 513.7341}}, \
+ 'lloyd_max_30': {6: {'totwaste': 5203774, 'avgwaste': 520.3774}, \
+ 10: {'totwaste': 5131550, 'avgwaste': 513.155}}}
+ expected = {'lloyd_max_02': {6: {'totwaste': 5284440, 'avgwaste': 528.444}, 10: {'totwaste': 5172300, 'avgwaste': 517.23}}, \
+ 'lloyd_max_10': {6: {'totwaste': 5226191, 'avgwaste': 522.6191}, 10: {'totwaste': 5147715, 'avgwaste': 514.7715}}, \
+ 'lloyd_max_20': {6: {'totwaste': 5209807, 'avgwaste': 520.9807}, 10: {'totwaste': 5135907, 'avgwaste': 513.5907}}}
+ for algo_name in ["lloyd_max_02", "lloyd_max_10", "lloyd_max_20"]:
+ assert algo_name in results
+ val = results[algo_name]
+ for bkt in [6,10]:
+ assert bkt in val
+ bkt_result = val[bkt]
+ bkt_result.pop('time')
+ #print(algo_name, bkt, bkt_result, expected[algo_name][bkt])
+ assert bkt_result == expected[algo_name][bkt]
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/dev_mn.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/dev_mn.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..edbcd178e821b7c31582979b72b80e1c027e0e0b
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/dev_mn.yaml
@@ -0,0 +1,128 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: true
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32
+ in_channels: 4
+ out_channels: 4
+ model_channels: 32 # 320 # TODO increase
+ attention_resolutions: [ ] # is equal to fixed spatial resolution: 32 , 16 , 8
+ num_res_blocks: 2
+ channel_mult: [ 1, ]
+ #num_head_channels: 32
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 32
+ use_checkpoint: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.BERTEmbedder
+ params:
+ n_embed: 32
+ n_layer: 1 #32 # TODO: increase
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
+ batch_size: 4
+ num_workers: 4
+ n_nodes: 4
+ train:
+ shards: '{000000..231339}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 256
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{231346..231349}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 256
+
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 500 # 5000
+ max_images: 8
+ increase_log_steps: False
+ log_first_step: False
+
+
+ trainer:
+ #replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 1000 # every 20k training steps
+ num_sanity_val_steps: 0
+
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/dev_mn_dummy.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/dev_mn_dummy.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..dca26b34f36d56ae6b7119ac181021c89d72f782
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/dev_mn_dummy.yaml
@@ -0,0 +1,109 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: true
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32
+ in_channels: 4
+ out_channels: 4
+ model_channels: 32 # 320 # TODO increase
+ attention_resolutions: [ ] # is equal to fixed spatial resolution: 32 , 16 , 8
+ num_res_blocks: 2
+ channel_mult: [ 1, ]
+ #num_head_channels: 32
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 32
+ use_checkpoint: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.BERTEmbedder
+ params:
+ n_embed: 32
+ n_layer: 1 #32 # TODO: increase
+
+
+data:
+ target: main.DataModuleFromConfig
+ params:
+ batch_size: 4
+ num_workers: 4
+ wrap: false
+ train:
+ target: ldm.data.dummy.DummyData
+ params:
+ length: 20000
+ size: [256, 256, 3]
+ validation:
+ target: ldm.data.dummy.DummyData
+ params:
+ length: 10000
+ size: [256, 256, 3]
+
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 500 # 5000
+ max_images: 8
+ increase_log_steps: False
+ log_first_step: False
+
+
+ trainer:
+ #replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 1000 # every 20k training steps
+ num_sanity_val_steps: 0
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-edgeinpainting.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-edgeinpainting.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..eb786e157f6d0c40246de0ea196525ed0748c577
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-edgeinpainting.yaml
@@ -0,0 +1,157 @@
+model:
+ base_learning_rate: 7.5e-05
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: hybrid # important
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints/v1pp/v1pp-flatlined-hr.ckpt"
+
+ concat_keys:
+ - mask
+ - masked_image
+ - smoothing_strength
+
+ c_concat_log_start: 1
+ c_concat_log_end: 5
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 2500 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 10 # 4 data + 4 downscaled image + 1 mask + 1 smoothing strength
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "__improvedaesthetic__"
+ batch_size: 2
+ num_workers: 4
+ multinode: True
+ min_size: 512
+ max_pwatermark: 0.8
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 512
+ postprocess:
+ target: ldm.data.laion.AddEdge
+ params:
+ mode: "512train-large"
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 512
+ postprocess:
+ target: ldm.data.laion.AddEdge
+ params:
+ mode: "512train-large"
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 2000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ disabled: False
+ batch_frequency: 1000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+ ddim_steps: 100 # todo check these out for inpainting,
+ ddim_eta: 1.0 # todo check these out for inpainting,
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks-and-ucfg.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks-and-ucfg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..109987725ef36c8b13205ed1a5125deda1464a5d
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks-and-ucfg.yaml
@@ -0,0 +1,156 @@
+model:
+ base_learning_rate: 7.5e-05
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: hybrid # important
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints/v1pp/v1pphrflatlined2-pruned.ckpt"
+
+ ucg_training:
+ txt:
+ p: 0.1
+ val: ""
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "__improvedaesthetic__"
+ batch_size: 2
+ num_workers: 4
+ multinode: True
+ min_size: 512
+ max_pwatermark: 0.8
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 512
+ postprocess:
+ target: ldm.data.laion.AddMask
+ params:
+ mode: "512train-large"
+ p_drop: 0.25
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 512
+ postprocess:
+ target: ldm.data.laion.AddMask
+ params:
+ mode: "512train-large"
+ p_drop: 0.25
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 2000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ disabled: False
+ batch_frequency: 1000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+ ddim_steps: 100 # todo check these out for inpainting,
+ ddim_eta: 1.0 # todo check these out for inpainting,
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0f0df0742f03dd47e699f0f07f0f10af87608b7d
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks.yaml
@@ -0,0 +1,149 @@
+model:
+ base_learning_rate: 7.5e-05
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: hybrid # important
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints/v1pp/v1pp-flatlined-hr.ckpt"
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "__improvedaesthetic__"
+ batch_size: 2
+ num_workers: 4
+ multinode: True
+ min_size: 512
+ max_pwatermark: 0.8
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 512
+ postprocess:
+ target: ldm.data.laion.AddMask
+ params:
+ mode: "512train-large"
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 512
+ postprocess:
+ target: ldm.data.laion.AddMask
+ params:
+ mode: "512train-large"
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 2000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ disabled: False
+ batch_frequency: 1000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+ ddim_steps: 100 # todo check these out for inpainting,
+ ddim_eta: 1.0 # todo check these out for inpainting,
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-iaesthe.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-iaesthe.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..af9c568fba5f4a99fd0a28606be58e25f7309b60
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-iaesthe.yaml
@@ -0,0 +1,144 @@
+model:
+ base_learning_rate: 7.5e-05
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: hybrid # important
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints2/v1pp/v1pp-flatline-pruned.ckpt"
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
+ batch_size: 4
+ num_workers: 4
+ multinode: True
+ min_size: 512
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 512
+ postprocess:
+ target: ldm.data.laion.AddMask
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 512
+ postprocess:
+ target: ldm.data.laion.AddMask
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 2000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ disabled: False
+ batch_frequency: 1000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+ ddim_steps: 100 # todo check these out for inpainting,
+ ddim_eta: 1.0 # todo check these out for inpainting,
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..15f773964d01a7a1b56b36b1dd0e631468f0a508
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml
@@ -0,0 +1,135 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
+ batch_size: 4
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 512
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 512
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 5000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..316ad7ab542674361ca16cf13faa24e1f698c77c
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder.yaml
@@ -0,0 +1,131 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
+ batch_size: 50
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{000000..231317}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 256
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{231318..231349}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 256
+
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ #replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..02f8764456d028cfdef3ee0a5336f8c4a5a208e0
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode.yaml
@@ -0,0 +1,128 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: true
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 1280
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.BERTEmbedder
+ params:
+ n_embed: 1280
+ n_layer: 32
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
+ batch_size: 12
+ num_workers: 4
+ train:
+ shards: '{000000..231317}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 256
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{231318..231349}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 256
+
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 8
+ increase_log_steps: False
+ log_first_step: False
+
+
+ trainer:
+ #replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 50000
+ num_sanity_val_steps: 0
+
+
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-clip-encoder-dev.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-clip-encoder-dev.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..313998c23f285d59a7a1ae2764227afdbf80becd
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-clip-encoder-dev.yaml
@@ -0,0 +1,127 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
+ batch_size: 56
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{000000..231317}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 256
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{231318..231349}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 256
+
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 8
+ increase_log_steps: False
+ log_first_step: False
+
+
+ trainer:
+ #replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 50000
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
+
+
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-ldm-unfrozen-dev.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-ldm-unfrozen-dev.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..317109ecf7792717baec2577436399f42362c935
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-ldm-unfrozen-dev.yaml
@@ -0,0 +1,129 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: true
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 1280
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.BERTEmbedder
+ params:
+ n_embed: 1280
+ n_layer: 32
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
+ batch_size: 12
+ num_workers: 4
+ multinode: False
+ train:
+ shards: '{000000..231317}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 256
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{231318..231349}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 256
+
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 8
+ increase_log_steps: False
+ log_first_step: False
+
+
+ trainer:
+ #replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 50000
+ num_sanity_val_steps: 0
+
+
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-ldm-vae-f8.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-ldm-vae-f8.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9cb8e8b16e20966804f257f461431d8fa09174da
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-ldm-vae-f8.yaml
@@ -0,0 +1,130 @@
+model:
+ base_learning_rate: 1.0e-04 # TODO: run with scale_lr False
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: true
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32
+ in_channels: 4
+ out_channels: 4
+ model_channels: 128 # 320 # TODO increase
+ attention_resolutions: [ 4, 2, 1 ] # is equal to fixed spatial resolution: 32 , 16 , 8
+ num_res_blocks: 2
+ channel_mult: [ 1,2,4,4 ]
+ #num_head_channels: 32
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 1280
+ use_checkpoint: True
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "/home/robin/projects/latent-diffusion/models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.BERTEmbedder
+ params:
+ n_embed: 1280
+ n_layer: 3 #32 # TODO: increase
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
+ batch_size: 60
+ num_workers: 4
+ n_nodes: 2 # TODO: runs with two gpus
+ train:
+ shards: '{000000..000010}.tar -' # TODO: wild guess, change
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 512
+
+ shuffle: 5000
+ n_examples: 16519100 # TODO: find out
+ validation:
+ shards: '{000011..000012}.tar -' # TODO: wild guess, change
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 512
+
+ shuffle: 0
+ n_examples: 60000 # TODO: find out
+ val_num_workers: 2
+
+
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000 # 5000
+ max_images: 8
+ increase_log_steps: False
+ log_first_step: True
+
+
+ trainer:
+ replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 20000 # every 20k training steps
+ num_sanity_val_steps: 0
\ No newline at end of file
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-1024-laion-hr.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-1024-laion-hr.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a3acd6a73224df382ed902b28a79bf9d9404ae9e
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-1024-laion-hr.yaml
@@ -0,0 +1,133 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.001
+ linear_end: 0.015
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 16
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.22765929 # magic number
+
+ #ckpt_path: "/home/mchorse/stable-diffusion-ckpts/768f16-2022-06-23-pruned.ckpt"
+
+ #scheduler_config: # 10000 warmup steps
+ # target: ldm.lr_scheduler.LambdaLinearScheduler
+ # params:
+ # warm_up_steps: [ 10000 ]
+ # cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ # f_start: [ 1.e-6 ]
+ # f_max: [ 1. ]
+ # f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 64 # not really needed
+ in_channels: 16
+ out_channels: 16
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 16
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: True
+ z_channels: 16
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
+ num_res_blocks: 2
+ attn_resolutions: [ 16 ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
+ batch_size: 3
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 1024
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 1024
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 1024
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 1024
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 2000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 2000
+ max_images: 2
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 2
+ unconditional_guidance_scale: 5.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 4
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-256-pretraining.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-256-pretraining.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..68c633a6c7980b5657a234b1612ca01b7db3a281
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-256-pretraining.yaml
@@ -0,0 +1,127 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.001
+ linear_end: 0.015
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 16
+ channels: 16
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.22765929 # magic number
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 16 # not really needed
+ in_channels: 16
+ out_channels: 16
+ model_channels: 320 # TODO: scale model here
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 16
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
+ ddconfig:
+ double_z: True
+ z_channels: 16
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
+ num_res_blocks: 2
+ attn_resolutions: [ 16 ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
+ batch_size: 55
+ num_workers: 4
+ multinode: True
+ min_size: 256 # TODO: experiment. Note: for 2B, images are stored at max 384 resolution
+ train:
+ shards: '{000000..231317}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 256
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{231318..231349}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 256
+
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr-inference.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr-inference.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..92ad949a621696cdedff1bbdb917c11ccaf33ed0
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr-inference.yaml
@@ -0,0 +1,65 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.001
+ linear_end: 0.015
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 48
+ channels: 16
+ cond_stage_trainable: false
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.22765929 # magic number
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 48
+ in_channels: 16
+ out_channels: 16
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 16
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: True
+ z_channels: 16
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
+ num_res_blocks: 2
+ attn_resolutions: [ 16 ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
\ No newline at end of file
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..dc685cd09f96b82ea646f014f2232f8163c01d4f
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr.yaml
@@ -0,0 +1,133 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.001
+ linear_end: 0.015
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 48
+ channels: 16
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.22765929 # magic number
+
+ ckpt_path: "/home/mchorse/stable-diffusion-ckpts/768f16-2022-06-23-pruned.ckpt"
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 48 # not really needed
+ in_channels: 16
+ out_channels: 16
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 16
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: True
+ z_channels: 16
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
+ num_res_blocks: 2
+ attn_resolutions: [ 16 ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
+ batch_size: 6
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 768
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 768
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 768
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 768
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 5000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f9012941e20e37c3a207e3aa3ff6c998b3dbdcf1
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768.yaml
@@ -0,0 +1,130 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.001
+ linear_end: 0.015
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 48
+ channels: 16
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.22765929 # magic number
+
+ ckpt_path: "/home/mchorse/stable-diffusion-ckpts/256f16-2022-06-15-216k-pruned.ckpt"
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 48 # not really needed
+ in_channels: 16
+ out_channels: 16
+ model_channels: 320 # TODO: scale model here
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 16
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: True
+ z_channels: 16
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
+ num_res_blocks: 2
+ attn_resolutions: [ 16 ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
+ batch_size: 6
+ num_workers: 4
+ multinode: True
+ min_size: 384 # TODO: experiment. Note: for 2B, images are stored at max 384 resolution
+ train:
+ shards: '{000000..231317}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 768
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 768
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{231318..231349}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 768
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 768
+
+
+lightning:
+ find_unused_parameters: False
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-t5-encoder-dev.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-t5-encoder-dev.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e87de0d164d08de8b8109b7424fffe00f81cd4cc
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-t5-encoder-dev.yaml
@@ -0,0 +1,128 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 2048
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenT5Embedder
+ params:
+ version: "google/t5-v1_1-xl"
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
+ batch_size: 40
+ num_workers: 4
+ multinode: False
+ train:
+ shards: '{000000..231317}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 256
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{231318..231349}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 256
+
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 8
+ increase_log_steps: False
+ log_first_step: False
+
+
+ trainer:
+ #replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 50000
+ num_sanity_val_steps: 0
+
+
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..053238d9ba5f245656e7bcdbe00e0123a30a3dd5
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml
@@ -0,0 +1,170 @@
+model:
+ base_learning_rate: 5.0e-05
+ target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
+ params:
+ low_scale_key: "lr"
+ linear_start: 0.001
+ linear_end: 0.015
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 16
+ cond_stage_trainable: false
+ conditioning_key: "hybrid-adm"
+ monitor: val/loss_simple_ema
+ scale_factor: 0.22765929 # magic number
+
+ low_scale_config:
+ target: ldm.modules.encoders.modules.LowScaleEncoder
+ params:
+ scale_factor: 0.18215
+ linear_start: 0.00085
+ linear_end: 0.0120
+ timesteps: 1000
+ max_noise_level: 100
+ output_size: 64
+ model_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: [ ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ num_classes: 1000 # timesteps for noise conditoining
+ image_size: 64 # not really needed
+ in_channels: 20
+ out_channels: 16
+ model_channels: 96
+ attention_resolutions: [ 8, 4, 2 ] # -> at 32, 16, 8
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 8, 8 ]
+ # -> res, ds: (64, 1), (32, 2), (16, 4), (8, 8), (4, 16)
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 16
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
+ ddconfig:
+ double_z: True
+ z_channels: 16
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
+ num_res_blocks: 2
+ attn_resolutions: [ 16 ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
+ batch_size: 10
+ num_workers: 4
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 1024
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 1024
+ postprocess:
+ target: ldm.data.laion.AddLR
+ params:
+ factor: 4
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 1024
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 1024
+ postprocess:
+ target: ldm.data.laion.AddLR
+ params:
+ factor: 4
+
+lightning:
+ find_unused_parameters: False
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 1000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 4
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..2aa78d43191e0042a4325da1b85ba19be8fc7d5d
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml
@@ -0,0 +1,137 @@
+model:
+ base_learning_rate: 8.e-05
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 416
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: [ 2, 2, 2, 2 ]
+ channel_mult: [ 1, 2, 4, 4 ]
+ disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "__improvedaesthetic__"
+ batch_size: 8
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 256
+
+# # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 256
+
+
+lightning:
+ find_unused_parameters: false
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 5000
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ disabled: True
+ batch_frequency: 2500
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ #replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 1
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-512.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-512.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0fe26f5e3d88313cb00391205df046cad3cb2ead
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-512.yaml
@@ -0,0 +1,135 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 416
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: [ 2, 2, 2, 2 ]
+ channel_mult: [ 1, 2, 4, 4 ]
+ disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "__improvedaesthetic__"
+ batch_size: 1
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 512
+
+# # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 512
+
+
+lightning:
+ find_unused_parameters: false
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 5000
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 2500
+ max_images: 2
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 2
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ #replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/upscaling/upscale-v1-with-f16.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/upscaling/upscale-v1-with-f16.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..7fe5d9af68d8e25b4020ff0105829349e3965f33
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/upscaling/upscale-v1-with-f16.yaml
@@ -0,0 +1,214 @@
+model:
+ base_learning_rate: 5.0e-05
+ target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
+ params:
+ low_scale_key: "lr"
+ linear_start: 0.001
+ linear_end: 0.015
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 16
+ cond_stage_trainable: false
+ conditioning_key: "hybrid-adm"
+ monitor: val/loss_simple_ema
+ scale_factor: 0.22765929 # magic number
+
+ low_scale_config:
+ target: ldm.modules.encoders.modules.LowScaleEncoder
+ params:
+ scale_factor: 0.18215
+ linear_start: 0.00085
+ linear_end: 0.0120
+ timesteps: 1000
+ max_noise_level: 250
+ output_size: null
+ model_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: [ ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ num_classes: 251 # timesteps for noise conditoining
+ image_size: 64 # not really needed
+ in_channels: 20
+ out_channels: 16
+ model_channels: 128
+ attention_resolutions: [ 8, 4, 2 ] # -> at 32, 16, 8
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 6, 8 ]
+ # -> res, ds: (64, 1), (32, 2), (16, 4), (6, 8), (4, 16)
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 16
+ monitor: val/rec_loss
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f16/model.ckpt"
+ ddconfig:
+ double_z: True
+ z_channels: 16
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
+ num_res_blocks: 2
+ attn_resolutions: [ 16 ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+#data: # TODO: finetune here later
+# target: ldm.data.laion.WebDataModuleFromConfig
+# params:
+# tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
+# batch_size: 10
+# num_workers: 4
+# train:
+# shards: '{00000..17279}.tar -'
+# shuffle: 10000
+# image_key: jpg
+# image_transforms:
+# - target: torchvision.transforms.Resize
+# params:
+# size: 1024
+# interpolation: 3
+# - target: torchvision.transforms.RandomCrop
+# params:
+# size: 1024
+# postprocess:
+# target: ldm.data.laion.AddLR
+# params:
+# factor: 2
+#
+# # NOTE use enough shards to avoid empty validation loops in workers
+# validation:
+# shards: '{17280..17535}.tar -'
+# shuffle: 0
+# image_key: jpg
+# image_transforms:
+# - target: torchvision.transforms.Resize
+# params:
+# size: 1024
+# interpolation: 3
+# - target: torchvision.transforms.CenterCrop
+# params:
+# size: 1024
+# postprocess:
+# target: ldm.data.laion.AddLR
+# params:
+# factor: 2
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "__improvedaesthetic__"
+ batch_size: 28
+ num_workers: 4
+ multinode: True
+ min_size: 512
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 512
+ postprocess:
+ target: ldm.data.laion.AddLR
+ params:
+ factor: 2
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 512
+ postprocess:
+ target: ldm.data.laion.AddLR
+ params:
+ factor: 2
+
+
+lightning:
+ find_unused_parameters: False
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 1000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1-inference.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1-inference.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..aa9e5e7b59992e3bff4176c3c272932c7702cec3
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1-inference.yaml
@@ -0,0 +1,69 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..58b9df464f8ae0e85cc3864d4b479315f1e40952
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml
@@ -0,0 +1,135 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "__improvedaesthetic__"
+ batch_size: 4
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 512
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 512
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 5000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1_laionhr.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1_laionhr.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..15f773964d01a7a1b56b36b1dd0e631468f0a508
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1_laionhr.yaml
@@ -0,0 +1,135 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
+ batch_size: 4
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 512
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 512
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 512
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 5000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_laionhr1024.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_laionhr1024.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..22837a193e47baf2f8731ca0fd0c059714e603d0
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_laionhr1024.yaml
@@ -0,0 +1,132 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.001
+ linear_end: 0.015
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 16
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.22765929 # magic number
+
+ # NOTE disabled for resuming
+ #scheduler_config: # 10000 warmup steps
+ # target: ldm.lr_scheduler.LambdaLinearScheduler
+ # params:
+ # warm_up_steps: [ 10000 ]
+ # cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ # f_start: [ 1.e-6 ]
+ # f_max: [ 1. ]
+ # f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 64 # not really needed
+ in_channels: 16
+ out_channels: 16
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 16
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: True
+ z_channels: 16
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
+ num_res_blocks: 2
+ attn_resolutions: [ 16 ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
+ batch_size: 3
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 1024
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 1024
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 1024
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 1024
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 2000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 2000
+ max_images: 2
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 2
+ unconditional_guidance_scale: 5.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 4
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_laionhr1024_2.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_laionhr1024_2.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f2c721d4732e600ffcda02d9765e1ffeea34441c
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_laionhr1024_2.yaml
@@ -0,0 +1,132 @@
+model:
+ base_learning_rate: 7.5e-05
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.001
+ linear_end: 0.015
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 16
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.22765929 # magic number
+
+ # NOTE disabled for resuming
+ #scheduler_config: # 10000 warmup steps
+ # target: ldm.lr_scheduler.LambdaLinearScheduler
+ # params:
+ # warm_up_steps: [ 10000 ]
+ # cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ # f_start: [ 1.e-6 ]
+ # f_max: [ 1. ]
+ # f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 64 # not really needed
+ in_channels: 16
+ out_channels: 16
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 16
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: True
+ z_channels: 16
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
+ num_res_blocks: 2
+ attn_resolutions: [ 16 ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
+ batch_size: 3
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 1024
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 1024
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 1024
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 1024
+
+
+lightning:
+ find_unused_parameters: False
+
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 2000
+
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 2000
+ max_images: 2
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 2
+ unconditional_guidance_scale: 5.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 2
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_pretraining.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_pretraining.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..acd42af7dbd29f3032f23dd75f4fdb9339079e6e
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_pretraining.yaml
@@ -0,0 +1,131 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.001
+ linear_end: 0.015
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 16
+ channels: 16
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.22765929 # magic number
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 16 # not really needed
+ in_channels: 16
+ out_channels: 16
+ model_channels: 320 # TODO: scale model here
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 16
+ monitor: val/rec_loss
+ ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
+ ddconfig:
+ double_z: True
+ z_channels: 16
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
+ num_res_blocks: 2
+ attn_resolutions: [ 16 ]
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
+ batch_size: 55
+ num_workers: 4
+ multinode: True
+ min_size: 256
+ train:
+ shards: '{000000..231317}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 256
+
+ # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{231318..231349}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 256
+
+
+lightning:
+ find_unused_parameters: false
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 5000
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 5000
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 1
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v3_pretraining.yaml b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v3_pretraining.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..2aa78d43191e0042a4325da1b85ba19be8fc7d5d
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v3_pretraining.yaml
@@ -0,0 +1,137 @@
+model:
+ base_learning_rate: 8.e-05
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 32
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 416
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: [ 2, 2, 2, 2 ]
+ channel_mult: [ 1, 2, 4, 4 ]
+ disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f8/model.ckpt"
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+
+data:
+ target: ldm.data.laion.WebDataModuleFromConfig
+ params:
+ tar_base: "__improvedaesthetic__"
+ batch_size: 8
+ num_workers: 4
+ multinode: True
+ train:
+ shards: '{00000..17279}.tar -'
+ shuffle: 10000
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.RandomCrop
+ params:
+ size: 256
+
+# # NOTE use enough shards to avoid empty validation loops in workers
+ validation:
+ shards: '{17280..17535}.tar -'
+ shuffle: 0
+ image_key: jpg
+ image_transforms:
+ - target: torchvision.transforms.Resize
+ params:
+ size: 256
+ interpolation: 3
+ - target: torchvision.transforms.CenterCrop
+ params:
+ size: 256
+
+
+lightning:
+ find_unused_parameters: false
+ modelcheckpoint:
+ params:
+ every_n_train_steps: 5000
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ disabled: True
+ batch_frequency: 2500
+ max_images: 4
+ increase_log_steps: False
+ log_first_step: False
+ log_images_kwargs:
+ use_ema_scope: False
+ inpaint: False
+ plot_progressive_rows: False
+ plot_diffusion_rows: False
+ N: 4
+ unconditional_guidance_scale: 3.0
+ unconditional_guidance_label: [""]
+
+ trainer:
+ #replace_sampler_ddp: False
+ benchmark: True
+ val_check_interval: 5000000 # really sorry
+ num_sanity_val_steps: 0
+ accumulate_grad_batches: 1
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/__init__.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/base.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/base.py
new file mode 100644
index 0000000000000000000000000000000000000000..fbf9809f2023de57b74f7bedbe84cc5657410c6a
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/base.py
@@ -0,0 +1,125 @@
+import math
+from abc import abstractmethod
+
+import torch
+from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
+import os
+import numpy as np
+#import cv2
+from PIL import Image
+import torch.distributed as dist
+
+def get_rank():
+ if not dist.is_available():
+ return 0
+ if not dist.is_initialized():
+ return 0
+ return dist.get_rank()
+
+class Txt2ImgIterableBaseDataset(IterableDataset):
+ '''
+ Define an interface to make the IterableDatasets for text2img data chainable
+ '''
+ def __init__(self, file_path: str, rank, world_size,**kwargs):
+ super().__init__()
+ self.file_path = file_path
+ self.folder_list = []
+ self.file_list = []
+ self.txt_list = []
+ self.info = self._get_file_info(file_path)
+ self.start = self.info['start']
+ self.end = self.info['end']
+ #self.rank = int(rank)
+ self.rank = get_rank()
+ self.world_size = world_size
+ self.per_worker = int(math.floor((self.end - self.start) / float(self.world_size)))
+ self.iter_start = self.start + self.rank * self.per_worker
+ self.iter_end = min(self.iter_start + self.per_worker, self.end)
+ self.num_records = self.iter_end - self.iter_start
+ self.valid_ids = [i for i in range(self.iter_end)]
+ #self.num_records = self.end - self.start
+ #self.valid_ids = [i for i in range(self.end)]
+ self.transforms = self.get_transforms(kwargs)
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples (rank: {self.rank}/{world_size})\nstart {self.iter_start} end {self.iter_end}')
+
+ def get_transforms(self,dataset_config):
+ import torchvision
+ from ldm.util import instantiate_from_config
+ from einops import rearrange
+ if 'image_transforms' in dataset_config:
+ image_transforms = [instantiate_from_config(tt) for tt in dataset_config['image_transforms']]
+ else:
+ image_transforms = []
+
+ image_transforms.extend([torchvision.transforms.ToTensor(),
+ torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
+ return torchvision.transforms.Compose(image_transforms)
+
+ # if 'transforms' in dataset_config:
+ # transforms_config = OmegaConf.to_container(dataset_config.transforms)
+ # else:
+ # transforms_config = dict()
+
+ # transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
+ # if transforms_config[dkey] != 'identity' else identity
+ # for dkey in transforms_config}
+ # img_key = dataset_config.get('image_key', 'jpeg')
+ # transform_dict.update({img_key: image_transforms})
+
+ def __len__(self):
+ return self.iter_end - self.iter_start
+ #return self.end - self.start
+
+ def __iter__(self):
+ #sample_iterator = self._sample_generator(self.start, self.end)
+ sample_iterator = self._sample_generator(self.iter_start, self.iter_end)
+ return sample_iterator
+
+ def _sample_generator(self, start, end):
+ for idx in range(start, end):
+ file_name = self.file_list[idx]
+ txt_name = self.txt_list[idx]
+ f_ = open(txt_name, 'r')
+ txt_ = f_.read()
+ f_.close()
+ #image = cv2.imdecode(np.fromfile(file_name, dtype=np.uint8), 1)
+ #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ #image = torch.from_numpy(image) / 255
+ image = Image.open(file_name).convert('RGB')
+ image = self.transforms(image)
+ yield {"caption": txt_, "image":image}
+
+
+ def _get_file_info(self, file_path):
+ info = \
+ {
+ "start": 1,
+ "end": 0,
+ }
+ self.folder_list = [file_path + i for i in os.listdir(file_path) if '.' not in i]
+ for folder in self.folder_list:
+ files = [folder + '/' + i for i in os.listdir(folder) if 'jpg' in i]
+ txts = [k.replace('jpg', 'txt') for k in files]
+ self.file_list.extend(files)
+ self.txt_list.extend(txts)
+ info['end'] = len(self.file_list)
+ # with open(file_path, 'r') as fin:
+ # for _ in enumerate(fin):
+ # info['end'] += 1
+ # self.txt_list = [k.replace('jpg', 'txt') for k in self.file_list]
+ return info
+
+class PRNGMixin(object):
+ """
+ Adds a prng property which is a numpy RandomState which gets
+ reinitialized whenever the pid changes to avoid synchronized sampling
+ behavior when used in conjunction with multiprocessing.
+ """
+ @property
+ def prng(self):
+ currentpid = os.getpid()
+ if getattr(self, "_initpid", None) != currentpid:
+ self._initpid = currentpid
+ self._prng = np.random.RandomState()
+ return self._prng
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/coco.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/coco.py
new file mode 100644
index 0000000000000000000000000000000000000000..5e5e27e6ec6a51932f67b83dd88533cb39631e26
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/coco.py
@@ -0,0 +1,253 @@
+import os
+import json
+import albumentations
+import numpy as np
+from PIL import Image
+from tqdm import tqdm
+from torch.utils.data import Dataset
+from abc import abstractmethod
+
+
+class CocoBase(Dataset):
+ """needed for (image, caption, segmentation) pairs"""
+ def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
+ crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
+ self.split = self.get_split()
+ self.size = size
+ if crop_size is None:
+ self.crop_size = size
+ else:
+ self.crop_size = crop_size
+
+ assert crop_type in [None, 'random', 'center']
+ self.crop_type = crop_type
+ self.use_segmenation = use_segmentation
+ self.onehot = onehot_segmentation # return segmentation as rgb or one hot
+ self.stuffthing = use_stuffthing # include thing in segmentation
+ if self.onehot and not self.stuffthing:
+ raise NotImplemented("One hot mode is only supported for the "
+ "stuffthings version because labels are stored "
+ "a bit different.")
+
+ data_json = datajson
+ with open(data_json) as json_file:
+ self.json_data = json.load(json_file)
+ self.img_id_to_captions = dict()
+ self.img_id_to_filepath = dict()
+ self.img_id_to_segmentation_filepath = dict()
+
+ assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
+ f"captions_val{self.year()}.json"]
+ # TODO currently hardcoded paths, would be better to follow logic in
+ # cocstuff pixelmaps
+ if self.use_segmenation:
+ if self.stuffthing:
+ self.segmentation_prefix = (
+ f"data/cocostuffthings/val{self.year()}" if
+ data_json.endswith(f"captions_val{self.year()}.json") else
+ f"data/cocostuffthings/train{self.year()}")
+ else:
+ self.segmentation_prefix = (
+ f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
+ data_json.endswith(f"captions_val{self.year()}.json") else
+ f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
+
+ imagedirs = self.json_data["images"]
+ self.labels = {"image_ids": list()}
+ for imgdir in tqdm(imagedirs, desc="ImgToPath"):
+ self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
+ self.img_id_to_captions[imgdir["id"]] = list()
+ pngfilename = imgdir["file_name"].replace("jpg", "png")
+ if self.use_segmenation:
+ self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
+ self.segmentation_prefix, pngfilename)
+ if given_files is not None:
+ if pngfilename in given_files:
+ self.labels["image_ids"].append(imgdir["id"])
+ else:
+ self.labels["image_ids"].append(imgdir["id"])
+
+ capdirs = self.json_data["annotations"]
+ for capdir in tqdm(capdirs, desc="ImgToCaptions"):
+ # there are in average 5 captions per image
+ #self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
+ self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
+
+ self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
+ if self.split=="validation":
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
+ else:
+ # default option for train is random crop
+ if self.crop_type in [None, 'random']:
+ self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
+ else:
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
+ self.preprocessor = albumentations.Compose(
+ [self.rescaler, self.cropper],
+ additional_targets={"segmentation": "image"})
+ if force_no_crop:
+ self.rescaler = albumentations.Resize(height=self.size, width=self.size)
+ self.preprocessor = albumentations.Compose(
+ [self.rescaler],
+ additional_targets={"segmentation": "image"})
+
+ @abstractmethod
+ def year(self):
+ raise NotImplementedError()
+
+ def __len__(self):
+ return len(self.labels["image_ids"])
+
+ def preprocess_image(self, image_path, segmentation_path=None):
+ image = Image.open(image_path)
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+ image = np.array(image).astype(np.uint8)
+ if segmentation_path:
+ segmentation = Image.open(segmentation_path)
+ if not self.onehot and not segmentation.mode == "RGB":
+ segmentation = segmentation.convert("RGB")
+ segmentation = np.array(segmentation).astype(np.uint8)
+ if self.onehot:
+ assert self.stuffthing
+ # stored in caffe format: unlabeled==255. stuff and thing from
+ # 0-181. to be compatible with the labels in
+ # https://github.com/nightrome/cocostuff/blob/master/labels.txt
+ # we shift stuffthing one to the right and put unlabeled in zero
+ # as long as segmentation is uint8 shifting to right handles the
+ # latter too
+ assert segmentation.dtype == np.uint8
+ segmentation = segmentation + 1
+
+ processed = self.preprocessor(image=image, segmentation=segmentation)
+
+ image, segmentation = processed["image"], processed["segmentation"]
+ else:
+ image = self.preprocessor(image=image,)['image']
+
+ image = (image / 127.5 - 1.0).astype(np.float32)
+ if segmentation_path:
+ if self.onehot:
+ assert segmentation.dtype == np.uint8
+ # make it one hot
+ n_labels = 183
+ flatseg = np.ravel(segmentation)
+ onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
+ onehot[np.arange(flatseg.size), flatseg] = True
+ onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
+ segmentation = onehot
+ else:
+ segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
+ return image, segmentation
+ else:
+ return image
+
+ def __getitem__(self, i):
+ img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
+ if self.use_segmenation:
+ seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
+ image, segmentation = self.preprocess_image(img_path, seg_path)
+ else:
+ image = self.preprocess_image(img_path)
+ captions = self.img_id_to_captions[self.labels["image_ids"][i]]
+ # randomly draw one of all available captions per image
+ caption = captions[np.random.randint(0, len(captions))]
+ example = {"image": image,
+ #"caption": [str(caption[0])],
+ "caption": caption,
+ "img_path": img_path,
+ "filename_": img_path.split(os.sep)[-1]
+ }
+ if self.use_segmenation:
+ example.update({"seg_path": seg_path, 'segmentation': segmentation})
+ return example
+
+
+class CocoImagesAndCaptionsTrain2017(CocoBase):
+ """returns a pair of (image, caption)"""
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
+ super().__init__(size=size,
+ dataroot="data/coco/train2017",
+ datajson="data/coco/annotations/captions_train2017.json",
+ onehot_segmentation=onehot_segmentation,
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
+
+ def get_split(self):
+ return "train"
+
+ def year(self):
+ return '2017'
+
+
+class CocoImagesAndCaptionsValidation2017(CocoBase):
+ """returns a pair of (image, caption)"""
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
+ given_files=None):
+ super().__init__(size=size,
+ dataroot="data/coco/val2017",
+ datajson="data/coco/annotations/captions_val2017.json",
+ onehot_segmentation=onehot_segmentation,
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
+ given_files=given_files)
+
+ def get_split(self):
+ return "validation"
+
+ def year(self):
+ return '2017'
+
+
+
+class CocoImagesAndCaptionsTrain2014(CocoBase):
+ """returns a pair of (image, caption)"""
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
+ super().__init__(size=size,
+ dataroot="data/coco/train2014",
+ datajson="data/coco/annotations2014/annotations/captions_train2014.json",
+ onehot_segmentation=onehot_segmentation,
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
+ use_segmentation=False,
+ crop_type=crop_type)
+
+ def get_split(self):
+ return "train"
+
+ def year(self):
+ return '2014'
+
+class CocoImagesAndCaptionsValidation2014(CocoBase):
+ """returns a pair of (image, caption)"""
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
+ given_files=None,crop_type='center',**kwargs):
+ super().__init__(size=size,
+ dataroot="data/coco/val2014",
+ datajson="data/coco/annotations2014/annotations/captions_val2014.json",
+ onehot_segmentation=onehot_segmentation,
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
+ given_files=given_files,
+ use_segmentation=False,
+ crop_type=crop_type)
+
+ def get_split(self):
+ return "validation"
+
+ def year(self):
+ return '2014'
+
+if __name__ == '__main__':
+ with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
+ json_data = json.load(json_file)
+ capdirs = json_data["annotations"]
+ import pudb; pudb.set_trace()
+ #d2 = CocoImagesAndCaptionsTrain2014(size=256)
+ d2 = CocoImagesAndCaptionsValidation2014(size=256)
+ print("constructed dataset.")
+ print(f"length of {d2.__class__.__name__}: {len(d2)}")
+
+ ex2 = d2[0]
+ # ex3 = d3[0]
+ # print(ex1["image"].shape)
+ print(ex2["image"].shape)
+ # print(ex3["image"].shape)
+ # print(ex1["segmentation"].shape)
+ print(ex2["caption"].__class__.__name__)
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/dummy.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/dummy.py
new file mode 100644
index 0000000000000000000000000000000000000000..3b74a77fe8954686e480d28aaed19e52d3e3c9b7
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/dummy.py
@@ -0,0 +1,34 @@
+import numpy as np
+import random
+import string
+from torch.utils.data import Dataset, Subset
+
+class DummyData(Dataset):
+ def __init__(self, length, size):
+ self.length = length
+ self.size = size
+
+ def __len__(self):
+ return self.length
+
+ def __getitem__(self, i):
+ x = np.random.randn(*self.size)
+ letters = string.ascii_lowercase
+ y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
+ return {"jpg": x, "txt": y}
+
+
+class DummyDataWithEmbeddings(Dataset):
+ def __init__(self, length, size, emb_size):
+ self.length = length
+ self.size = size
+ self.emb_size = emb_size
+
+ def __len__(self):
+ return self.length
+
+ def __getitem__(self, i):
+ x = np.random.randn(*self.size)
+ y = np.random.randn(*self.emb_size).astype(np.float32)
+ return {"jpg": x, "txt": y}
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/imagenet.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/imagenet.py
new file mode 100644
index 0000000000000000000000000000000000000000..66231964a685cc875243018461a6aaa63a96dbf0
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/imagenet.py
@@ -0,0 +1,394 @@
+import os, yaml, pickle, shutil, tarfile, glob
+import cv2
+import albumentations
+import PIL
+import numpy as np
+import torchvision.transforms.functional as TF
+from omegaconf import OmegaConf
+from functools import partial
+from PIL import Image
+from tqdm import tqdm
+from torch.utils.data import Dataset, Subset
+
+import taming.data.utils as tdu
+from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
+from taming.data.imagenet import ImagePaths
+
+from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
+
+
+def synset2idx(path_to_yaml="data/index_synset.yaml"):
+ with open(path_to_yaml) as f:
+ di2s = yaml.load(f)
+ return dict((v,k) for k,v in di2s.items())
+
+
+class ImageNetBase(Dataset):
+ def __init__(self, config=None):
+ self.config = config or OmegaConf.create()
+ if not type(self.config)==dict:
+ self.config = OmegaConf.to_container(self.config)
+ self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
+ self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
+ self._prepare()
+ self._prepare_synset_to_human()
+ self._prepare_idx_to_synset()
+ self._prepare_human_to_integer_label()
+ self._load()
+
+ def __len__(self):
+ return len(self.data)
+
+ def __getitem__(self, i):
+ return self.data[i]
+
+ def _prepare(self):
+ raise NotImplementedError()
+
+ def _filter_relpaths(self, relpaths):
+ ignore = set([
+ "n06596364_9591.JPEG",
+ ])
+ relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
+ if "sub_indices" in self.config:
+ indices = str_to_indices(self.config["sub_indices"])
+ synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
+ self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
+ files = []
+ for rpath in relpaths:
+ syn = rpath.split("/")[0]
+ if syn in synsets:
+ files.append(rpath)
+ return files
+ else:
+ return relpaths
+
+ def _prepare_synset_to_human(self):
+ SIZE = 2655750
+ URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
+ self.human_dict = os.path.join(self.root, "synset_human.txt")
+ if (not os.path.exists(self.human_dict) or
+ not os.path.getsize(self.human_dict)==SIZE):
+ download(URL, self.human_dict)
+
+ def _prepare_idx_to_synset(self):
+ URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
+ self.idx2syn = os.path.join(self.root, "index_synset.yaml")
+ if (not os.path.exists(self.idx2syn)):
+ download(URL, self.idx2syn)
+
+ def _prepare_human_to_integer_label(self):
+ URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
+ self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
+ if (not os.path.exists(self.human2integer)):
+ download(URL, self.human2integer)
+ with open(self.human2integer, "r") as f:
+ lines = f.read().splitlines()
+ assert len(lines) == 1000
+ self.human2integer_dict = dict()
+ for line in lines:
+ value, key = line.split(":")
+ self.human2integer_dict[key] = int(value)
+
+ def _load(self):
+ with open(self.txt_filelist, "r") as f:
+ self.relpaths = f.read().splitlines()
+ l1 = len(self.relpaths)
+ self.relpaths = self._filter_relpaths(self.relpaths)
+ print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
+
+ self.synsets = [p.split("/")[0] for p in self.relpaths]
+ self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
+
+ unique_synsets = np.unique(self.synsets)
+ class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
+ if not self.keep_orig_class_label:
+ self.class_labels = [class_dict[s] for s in self.synsets]
+ else:
+ self.class_labels = [self.synset2idx[s] for s in self.synsets]
+
+ with open(self.human_dict, "r") as f:
+ human_dict = f.read().splitlines()
+ human_dict = dict(line.split(maxsplit=1) for line in human_dict)
+
+ self.human_labels = [human_dict[s] for s in self.synsets]
+
+ labels = {
+ "relpath": np.array(self.relpaths),
+ "synsets": np.array(self.synsets),
+ "class_label": np.array(self.class_labels),
+ "human_label": np.array(self.human_labels),
+ }
+
+ if self.process_images:
+ self.size = retrieve(self.config, "size", default=256)
+ self.data = ImagePaths(self.abspaths,
+ labels=labels,
+ size=self.size,
+ random_crop=self.random_crop,
+ )
+ else:
+ self.data = self.abspaths
+
+
+class ImageNetTrain(ImageNetBase):
+ NAME = "ILSVRC2012_train"
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
+ AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
+ FILES = [
+ "ILSVRC2012_img_train.tar",
+ ]
+ SIZES = [
+ 147897477120,
+ ]
+
+ def __init__(self, process_images=True, data_root=None, **kwargs):
+ self.process_images = process_images
+ self.data_root = data_root
+ super().__init__(**kwargs)
+
+ def _prepare(self):
+ if self.data_root:
+ self.root = os.path.join(self.data_root, self.NAME)
+ else:
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
+
+ self.datadir = os.path.join(self.root, "data")
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
+ self.expected_length = 1281167
+ self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
+ default=True)
+ if not tdu.is_prepared(self.root):
+ # prep
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
+
+ datadir = self.datadir
+ if not os.path.exists(datadir):
+ path = os.path.join(self.root, self.FILES[0])
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
+ import academictorrents as at
+ atpath = at.get(self.AT_HASH, datastore=self.root)
+ assert atpath == path
+
+ print("Extracting {} to {}".format(path, datadir))
+ os.makedirs(datadir, exist_ok=True)
+ with tarfile.open(path, "r:") as tar:
+ tar.extractall(path=datadir)
+
+ print("Extracting sub-tars.")
+ subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
+ for subpath in tqdm(subpaths):
+ subdir = subpath[:-len(".tar")]
+ os.makedirs(subdir, exist_ok=True)
+ with tarfile.open(subpath, "r:") as tar:
+ tar.extractall(path=subdir)
+
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
+ filelist = sorted(filelist)
+ filelist = "\n".join(filelist)+"\n"
+ with open(self.txt_filelist, "w") as f:
+ f.write(filelist)
+
+ tdu.mark_prepared(self.root)
+
+
+class ImageNetValidation(ImageNetBase):
+ NAME = "ILSVRC2012_validation"
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
+ AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
+ VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
+ FILES = [
+ "ILSVRC2012_img_val.tar",
+ "validation_synset.txt",
+ ]
+ SIZES = [
+ 6744924160,
+ 1950000,
+ ]
+
+ def __init__(self, process_images=True, data_root=None, **kwargs):
+ self.data_root = data_root
+ self.process_images = process_images
+ super().__init__(**kwargs)
+
+ def _prepare(self):
+ if self.data_root:
+ self.root = os.path.join(self.data_root, self.NAME)
+ else:
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
+ self.datadir = os.path.join(self.root, "data")
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
+ self.expected_length = 50000
+ self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
+ default=False)
+ if not tdu.is_prepared(self.root):
+ # prep
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
+
+ datadir = self.datadir
+ if not os.path.exists(datadir):
+ path = os.path.join(self.root, self.FILES[0])
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
+ import academictorrents as at
+ atpath = at.get(self.AT_HASH, datastore=self.root)
+ assert atpath == path
+
+ print("Extracting {} to {}".format(path, datadir))
+ os.makedirs(datadir, exist_ok=True)
+ with tarfile.open(path, "r:") as tar:
+ tar.extractall(path=datadir)
+
+ vspath = os.path.join(self.root, self.FILES[1])
+ if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
+ download(self.VS_URL, vspath)
+
+ with open(vspath, "r") as f:
+ synset_dict = f.read().splitlines()
+ synset_dict = dict(line.split() for line in synset_dict)
+
+ print("Reorganizing into synset folders")
+ synsets = np.unique(list(synset_dict.values()))
+ for s in synsets:
+ os.makedirs(os.path.join(datadir, s), exist_ok=True)
+ for k, v in synset_dict.items():
+ src = os.path.join(datadir, k)
+ dst = os.path.join(datadir, v)
+ shutil.move(src, dst)
+
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
+ filelist = sorted(filelist)
+ filelist = "\n".join(filelist)+"\n"
+ with open(self.txt_filelist, "w") as f:
+ f.write(filelist)
+
+ tdu.mark_prepared(self.root)
+
+
+
+class ImageNetSR(Dataset):
+ def __init__(self, size=None,
+ degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
+ random_crop=True):
+ """
+ Imagenet Superresolution Dataloader
+ Performs following ops in order:
+ 1. crops a crop of size s from image either as random or center crop
+ 2. resizes crop to size with cv2.area_interpolation
+ 3. degrades resized crop with degradation_fn
+
+ :param size: resizing to size after cropping
+ :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
+ :param downscale_f: Low Resolution Downsample factor
+ :param min_crop_f: determines crop size s,
+ where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
+ :param max_crop_f: ""
+ :param data_root:
+ :param random_crop:
+ """
+ self.base = self.get_base()
+ assert size
+ assert (size / downscale_f).is_integer()
+ self.size = size
+ self.LR_size = int(size / downscale_f)
+ self.min_crop_f = min_crop_f
+ self.max_crop_f = max_crop_f
+ assert(max_crop_f <= 1.)
+ self.center_crop = not random_crop
+
+ self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
+
+ self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
+
+ if degradation == "bsrgan":
+ self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
+
+ elif degradation == "bsrgan_light":
+ self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
+
+ else:
+ interpolation_fn = {
+ "cv_nearest": cv2.INTER_NEAREST,
+ "cv_bilinear": cv2.INTER_LINEAR,
+ "cv_bicubic": cv2.INTER_CUBIC,
+ "cv_area": cv2.INTER_AREA,
+ "cv_lanczos": cv2.INTER_LANCZOS4,
+ "pil_nearest": PIL.Image.NEAREST,
+ "pil_bilinear": PIL.Image.BILINEAR,
+ "pil_bicubic": PIL.Image.BICUBIC,
+ "pil_box": PIL.Image.BOX,
+ "pil_hamming": PIL.Image.HAMMING,
+ "pil_lanczos": PIL.Image.LANCZOS,
+ }[degradation]
+
+ self.pil_interpolation = degradation.startswith("pil_")
+
+ if self.pil_interpolation:
+ self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
+
+ else:
+ self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
+ interpolation=interpolation_fn)
+
+ def __len__(self):
+ return len(self.base)
+
+ def __getitem__(self, i):
+ example = self.base[i]
+ image = Image.open(example["file_path_"])
+
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+
+ image = np.array(image).astype(np.uint8)
+
+ min_side_len = min(image.shape[:2])
+ crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
+ crop_side_len = int(crop_side_len)
+
+ if self.center_crop:
+ self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
+
+ else:
+ self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
+
+ image = self.cropper(image=image)["image"]
+ image = self.image_rescaler(image=image)["image"]
+
+ if self.pil_interpolation:
+ image_pil = PIL.Image.fromarray(image)
+ LR_image = self.degradation_process(image_pil)
+ LR_image = np.array(LR_image).astype(np.uint8)
+
+ else:
+ LR_image = self.degradation_process(image=image)["image"]
+
+ example["image"] = (image/127.5 - 1.0).astype(np.float32)
+ example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
+ example["caption"] = example["human_label"] # dummy caption
+ return example
+
+
+class ImageNetSRTrain(ImageNetSR):
+ def __init__(self, **kwargs):
+ super().__init__(**kwargs)
+
+ def get_base(self):
+ with open("data/imagenet_train_hr_indices.p", "rb") as f:
+ indices = pickle.load(f)
+ dset = ImageNetTrain(process_images=False,)
+ return Subset(dset, indices)
+
+
+class ImageNetSRValidation(ImageNetSR):
+ def __init__(self, **kwargs):
+ super().__init__(**kwargs)
+
+ def get_base(self):
+ with open("data/imagenet_val_hr_indices.p", "rb") as f:
+ indices = pickle.load(f)
+ dset = ImageNetValidation(process_images=False,)
+ return Subset(dset, indices)
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/inpainting/__init__.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/inpainting/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/inpainting/synthetic_mask.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/inpainting/synthetic_mask.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb4c38f3a79b8eb40553469d6f0656ad2f54609a
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/inpainting/synthetic_mask.py
@@ -0,0 +1,166 @@
+from PIL import Image, ImageDraw
+import numpy as np
+
+settings = {
+ "256narrow": {
+ "p_irr": 1,
+ "min_n_irr": 4,
+ "max_n_irr": 50,
+ "max_l_irr": 40,
+ "max_w_irr": 10,
+ "min_n_box": None,
+ "max_n_box": None,
+ "min_s_box": None,
+ "max_s_box": None,
+ "marg": None,
+ },
+ "256train": {
+ "p_irr": 0.5,
+ "min_n_irr": 1,
+ "max_n_irr": 5,
+ "max_l_irr": 200,
+ "max_w_irr": 100,
+ "min_n_box": 1,
+ "max_n_box": 4,
+ "min_s_box": 30,
+ "max_s_box": 150,
+ "marg": 10,
+ },
+ "512train": { # TODO: experimental
+ "p_irr": 0.5,
+ "min_n_irr": 1,
+ "max_n_irr": 5,
+ "max_l_irr": 450,
+ "max_w_irr": 250,
+ "min_n_box": 1,
+ "max_n_box": 4,
+ "min_s_box": 30,
+ "max_s_box": 300,
+ "marg": 10,
+ },
+ "512train-large": { # TODO: experimental
+ "p_irr": 0.5,
+ "min_n_irr": 1,
+ "max_n_irr": 5,
+ "max_l_irr": 450,
+ "max_w_irr": 400,
+ "min_n_box": 1,
+ "max_n_box": 4,
+ "min_s_box": 75,
+ "max_s_box": 450,
+ "marg": 10,
+ },
+}
+
+
+def gen_segment_mask(mask, start, end, brush_width):
+ mask = mask > 0
+ mask = (255 * mask).astype(np.uint8)
+ mask = Image.fromarray(mask)
+ draw = ImageDraw.Draw(mask)
+ draw.line([start, end], fill=255, width=brush_width, joint="curve")
+ mask = np.array(mask) / 255
+ return mask
+
+
+def gen_box_mask(mask, masked):
+ x_0, y_0, w, h = masked
+ mask[y_0:y_0 + h, x_0:x_0 + w] = 1
+ return mask
+
+
+def gen_round_mask(mask, masked, radius):
+ x_0, y_0, w, h = masked
+ xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
+
+ mask = mask > 0
+ mask = (255 * mask).astype(np.uint8)
+ mask = Image.fromarray(mask)
+ draw = ImageDraw.Draw(mask)
+ draw.rounded_rectangle(xy, radius=radius, fill=255)
+ mask = np.array(mask) / 255
+ return mask
+
+
+def gen_large_mask(prng, img_h, img_w,
+ marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
+ min_n_box, max_n_box, min_s_box, max_s_box):
+ """
+ img_h: int, an image height
+ img_w: int, an image width
+ marg: int, a margin for a box starting coordinate
+ p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
+
+ min_n_irr: int, min number of segments
+ max_n_irr: int, max number of segments
+ max_l_irr: max length of a segment in polygonal chain
+ max_w_irr: max width of a segment in polygonal chain
+
+ min_n_box: int, min bound for the number of box primitives
+ max_n_box: int, max bound for the number of box primitives
+ min_s_box: int, min length of a box side
+ max_s_box: int, max length of a box side
+ """
+
+ mask = np.zeros((img_h, img_w))
+ uniform = prng.randint
+
+ if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
+ n = uniform(min_n_irr, max_n_irr) # sample number of segments
+
+ for _ in range(n):
+ y = uniform(0, img_h) # sample a starting point
+ x = uniform(0, img_w)
+
+ a = uniform(0, 360) # sample angle
+ l = uniform(10, max_l_irr) # sample segment length
+ w = uniform(5, max_w_irr) # sample a segment width
+
+ # draw segment starting from (x,y) to (x_,y_) using brush of width w
+ x_ = x + l * np.sin(a)
+ y_ = y + l * np.cos(a)
+
+ mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
+ x, y = x_, y_
+ else: # generate Box masks
+ n = uniform(min_n_box, max_n_box) # sample number of rectangles
+
+ for _ in range(n):
+ h = uniform(min_s_box, max_s_box) # sample box shape
+ w = uniform(min_s_box, max_s_box)
+
+ x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
+ y_0 = uniform(marg, img_h - marg - h)
+
+ if np.random.uniform(0, 1) < 0.5:
+ mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
+ else:
+ r = uniform(0, 60) # sample radius
+ mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
+ return mask
+
+
+make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
+make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
+make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
+make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
+
+
+MASK_MODES = {
+ "256train": make_lama_mask,
+ "256narrow": make_narrow_lama_mask,
+ "512train": make_512_lama_mask,
+ "512train-large": make_512_lama_mask_large
+}
+
+if __name__ == "__main__":
+ import sys
+
+ out = sys.argv[1]
+
+ prng = np.random.RandomState(1)
+ kwargs = settings["256train"]
+ mask = gen_large_mask(prng, 256, 256, **kwargs)
+ mask = (255 * mask).astype(np.uint8)
+ mask = Image.fromarray(mask)
+ mask.save(out)
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/laion.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/laion.py
new file mode 100644
index 0000000000000000000000000000000000000000..2159bacd68afaf24dad97e98a231f9195b7d85e4
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/laion.py
@@ -0,0 +1,516 @@
+import webdataset as wds
+import kornia
+from PIL import Image
+import io
+import os
+import torchvision
+from PIL import Image
+import glob
+import random
+import numpy as np
+from lightning_utilities import module_available
+
+if module_available("lightning"):
+ import lightning.pytorch as pl
+elif module_available("pytorch_lightning"):
+ import pytorch_lightning as pl
+from tqdm import tqdm
+from omegaconf import OmegaConf
+from einops import rearrange
+import torch
+from webdataset.handlers import warn_and_continue
+
+
+from ldm.util import instantiate_from_config
+from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
+from ldm.data.base import PRNGMixin
+
+
+class DataWithWings(torch.utils.data.IterableDataset):
+ def __init__(self, min_size, transform=None, target_transform=None):
+ self.min_size = min_size
+ self.transform = transform if transform is not None else nn.Identity()
+ self.target_transform = target_transform if target_transform is not None else nn.Identity()
+ self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
+ self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
+ self.pwatermark_threshold = 0.8
+ self.punsafe_threshold = 0.5
+ self.aesthetic_threshold = 5.
+ self.total_samples = 0
+ self.samples = 0
+ location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
+
+ self.inner_dataset = wds.DataPipeline(
+ wds.ResampledShards(location),
+ wds.tarfile_to_samples(handler=wds.warn_and_continue),
+ wds.shuffle(1000, handler=wds.warn_and_continue),
+ wds.decode('pilrgb', handler=wds.warn_and_continue),
+ wds.map(self._add_tags, handler=wds.ignore_and_continue),
+ wds.select(self._filter_predicate),
+ wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
+ wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
+ )
+
+ @staticmethod
+ def _compute_hash(url, text):
+ if url is None:
+ url = ''
+ if text is None:
+ text = ''
+ total = (url + text).encode('utf-8')
+ return mmh3.hash64(total)[0]
+
+ def _add_tags(self, x):
+ hsh = self._compute_hash(x['json']['url'], x['txt'])
+ pwatermark, punsafe = self.kv[hsh]
+ aesthetic = self.kv_aesthetic[hsh][0]
+ return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
+
+ def _punsafe_to_class(self, punsafe):
+ return torch.tensor(punsafe >= self.punsafe_threshold).long()
+
+ def _filter_predicate(self, x):
+ try:
+ return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
+ except:
+ return False
+
+ def __iter__(self):
+ return iter(self.inner_dataset)
+
+
+def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
+ """Take a list of samples (as dictionary) and create a batch, preserving the keys.
+ If `tensors` is True, `ndarray` objects are combined into
+ tensor batches.
+ :param dict samples: list of samples
+ :param bool tensors: whether to turn lists of ndarrays into a single ndarray
+ :returns: single sample consisting of a batch
+ :rtype: dict
+ """
+ keys = set.intersection(*[set(sample.keys()) for sample in samples])
+ batched = {key: [] for key in keys}
+
+ for s in samples:
+ [batched[key].append(s[key]) for key in batched]
+
+ result = {}
+ for key in batched:
+ if isinstance(batched[key][0], (int, float)):
+ if combine_scalars:
+ result[key] = np.array(list(batched[key]))
+ elif isinstance(batched[key][0], torch.Tensor):
+ if combine_tensors:
+ result[key] = torch.stack(list(batched[key]))
+ elif isinstance(batched[key][0], np.ndarray):
+ if combine_tensors:
+ result[key] = np.array(list(batched[key]))
+ else:
+ result[key] = list(batched[key])
+ return result
+
+
+class WebDataModuleFromConfig(pl.LightningDataModule):
+ def __init__(self, tar_base, batch_size, train=None, validation=None,
+ test=None, num_workers=4, multinode=True, min_size=None,
+ max_pwatermark=1.0,
+ **kwargs):
+ super().__init__()
+ print(f'Setting tar base to {tar_base}')
+ self.tar_base = tar_base
+ self.batch_size = batch_size
+ self.num_workers = num_workers
+ self.train = train
+ self.validation = validation
+ self.test = test
+ self.multinode = multinode
+ self.min_size = min_size # filter out very small images
+ self.max_pwatermark = max_pwatermark # filter out watermarked images
+
+ def make_loader(self, dataset_config, train=True):
+ if 'image_transforms' in dataset_config:
+ image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
+ else:
+ image_transforms = []
+
+ image_transforms.extend([torchvision.transforms.ToTensor(),
+ torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
+ image_transforms = torchvision.transforms.Compose(image_transforms)
+
+ if 'transforms' in dataset_config:
+ transforms_config = OmegaConf.to_container(dataset_config.transforms)
+ else:
+ transforms_config = dict()
+
+ transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
+ if transforms_config[dkey] != 'identity' else identity
+ for dkey in transforms_config}
+ img_key = dataset_config.get('image_key', 'jpeg')
+ transform_dict.update({img_key: image_transforms})
+
+ if 'postprocess' in dataset_config:
+ postprocess = instantiate_from_config(dataset_config['postprocess'])
+ else:
+ postprocess = None
+
+ shuffle = dataset_config.get('shuffle', 0)
+ shardshuffle = shuffle > 0
+
+ nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
+
+ if self.tar_base == "__improvedaesthetic__":
+ print("## Warning, loading the same improved aesthetic dataset "
+ "for all splits and ignoring shards parameter.")
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
+ else:
+ tars = os.path.join(self.tar_base, dataset_config.shards)
+
+ dset = wds.WebDataset(
+ tars,
+ nodesplitter=nodesplitter,
+ shardshuffle=shardshuffle,
+ handler=wds.warn_and_continue).repeat().shuffle(shuffle)
+ print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
+
+ dset = (dset
+ .select(self.filter_keys)
+ .decode('pil', handler=wds.warn_and_continue)
+ .select(self.filter_size)
+ .map_dict(**transform_dict, handler=wds.warn_and_continue)
+ )
+ if postprocess is not None:
+ dset = dset.map(postprocess)
+ dset = (dset
+ .batched(self.batch_size, partial=False,
+ collation_fn=dict_collation_fn)
+ )
+
+ num_workers = self.num_workers
+ if not train:
+ num_workers = 1
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
+ num_workers=num_workers)
+
+ return loader
+
+ def filter_size(self, x):
+ try:
+ valid = True
+ if self.min_size is not None and self.min_size > 1:
+ try:
+ valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
+ except Exception:
+ valid = False
+ if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
+ try:
+ valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
+ except Exception:
+ valid = False
+ return valid
+ except Exception:
+ return False
+
+ def filter_keys(self, x):
+ try:
+ return ("jpg" in x) and ("txt" in x)
+ except Exception:
+ return False
+
+ def train_dataloader(self):
+ return self.make_loader(self.train)
+
+ def val_dataloader(self):
+ return self.make_loader(self.validation, train=False)
+
+ def test_dataloader(self):
+ return self.make_loader(self.test, train=False)
+
+
+from ldm.modules.image_degradation import degradation_fn_bsr_light
+
+class AddLR(object):
+ def __init__(self, factor):
+ self.factor = factor
+
+ def pt2np(self, x):
+ x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
+ return x
+
+ def np2pt(self, x):
+ x = torch.from_numpy(x)/127.5-1.0
+ return x
+
+ def __call__(self, sample):
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
+ x = self.pt2np(sample['jpg'])
+ x = degradation_fn_bsr_light(x, sf=self.factor)['image']
+ x = self.np2pt(x)
+ sample['lr'] = x
+ return sample
+
+
+class AddMask(PRNGMixin):
+ def __init__(self, mode="512train", p_drop=0.):
+ super().__init__()
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
+ self.make_mask = MASK_MODES[mode]
+ self.p_drop = p_drop
+
+ def __call__(self, sample):
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
+ x = sample['jpg']
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
+ if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
+ mask = np.ones_like(mask)
+ mask[mask < 0.5] = 0
+ mask[mask > 0.5] = 1
+ mask = torch.from_numpy(mask[..., None])
+ sample['mask'] = mask
+ sample['masked_image'] = x * (mask < 0.5)
+ return sample
+
+
+class AddEdge(PRNGMixin):
+ def __init__(self, mode="512train", mask_edges=True):
+ super().__init__()
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
+ self.make_mask = MASK_MODES[mode]
+ self.n_down_choices = [0]
+ self.sigma_choices = [1, 2]
+ self.mask_edges = mask_edges
+
+ @torch.no_grad()
+ def __call__(self, sample):
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
+ x = sample['jpg']
+
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
+ mask[mask < 0.5] = 0
+ mask[mask > 0.5] = 1
+ mask = torch.from_numpy(mask[..., None])
+ sample['mask'] = mask
+
+ n_down_idx = self.prng.choice(len(self.n_down_choices))
+ sigma_idx = self.prng.choice(len(self.sigma_choices))
+
+ n_choices = len(self.n_down_choices)*len(self.sigma_choices)
+ raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
+ (len(self.n_down_choices), len(self.sigma_choices)))
+ normalized_idx = raveled_idx/max(1, n_choices-1)
+
+ n_down = self.n_down_choices[n_down_idx]
+ sigma = self.sigma_choices[sigma_idx]
+
+ kernel_size = 4*sigma+1
+ kernel_size = (kernel_size, kernel_size)
+ sigma = (sigma, sigma)
+ canny = kornia.filters.Canny(
+ low_threshold=0.1,
+ high_threshold=0.2,
+ kernel_size=kernel_size,
+ sigma=sigma,
+ hysteresis=True,
+ )
+ y = (x+1.0)/2.0 # in 01
+ y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
+
+ # down
+ for i_down in range(n_down):
+ size = min(y.shape[-2], y.shape[-1])//2
+ y = kornia.geometry.transform.resize(y, size, antialias=True)
+
+ # edge
+ _, y = canny(y)
+
+ if n_down > 0:
+ size = x.shape[0], x.shape[1]
+ y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
+
+ y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
+ y = y*2.0-1.0
+
+ if self.mask_edges:
+ sample['masked_image'] = y * (mask < 0.5)
+ else:
+ sample['masked_image'] = y
+ sample['mask'] = torch.zeros_like(sample['mask'])
+
+ # concat normalized idx
+ sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
+
+ return sample
+
+
+def example00():
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
+ dataset = wds.WebDataset(url)
+ example = next(iter(dataset))
+ for k in example:
+ print(k, type(example[k]))
+
+ print(example["__key__"])
+ for k in ["json", "txt"]:
+ print(example[k].decode())
+
+ image = Image.open(io.BytesIO(example["jpg"]))
+ outdir = "tmp"
+ os.makedirs(outdir, exist_ok=True)
+ image.save(os.path.join(outdir, example["__key__"] + ".png"))
+
+
+ def load_example(example):
+ return {
+ "key": example["__key__"],
+ "image": Image.open(io.BytesIO(example["jpg"])),
+ "text": example["txt"].decode(),
+ }
+
+
+ for i, example in tqdm(enumerate(dataset)):
+ ex = load_example(example)
+ print(ex["image"].size, ex["text"])
+ if i >= 100:
+ break
+
+
+def example01():
+ # the first laion shards contain ~10k examples each
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
+
+ batch_size = 3
+ shuffle_buffer = 10000
+ dset = wds.WebDataset(
+ url,
+ nodesplitter=wds.shardlists.split_by_node,
+ shardshuffle=True,
+ )
+ dset = (dset
+ .shuffle(shuffle_buffer, initial=shuffle_buffer)
+ .decode('pil', handler=warn_and_continue)
+ .batched(batch_size, partial=False,
+ collation_fn=dict_collation_fn)
+ )
+
+ num_workers = 2
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
+
+ batch_sizes = list()
+ keys_per_epoch = list()
+ for epoch in range(5):
+ keys = list()
+ for batch in tqdm(loader):
+ batch_sizes.append(len(batch["__key__"]))
+ keys.append(batch["__key__"])
+
+ for bs in batch_sizes:
+ assert bs==batch_size
+ print(f"{len(batch_sizes)} batches of size {batch_size}.")
+ batch_sizes = list()
+
+ keys_per_epoch.append(keys)
+ for i_batch in [0, 1, -1]:
+ print(f"Batch {i_batch} of epoch {epoch}:")
+ print(keys[i_batch])
+ print("next epoch.")
+
+
+def example02():
+ from omegaconf import OmegaConf
+ from torch.utils.data.distributed import DistributedSampler
+ from torch.utils.data import IterableDataset
+ from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
+ from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
+
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
+ config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
+ datamod = WebDataModuleFromConfig(**config["data"]["params"])
+ dataloader = datamod.train_dataloader()
+
+ for batch in dataloader:
+ print(batch.keys())
+ print(batch["jpg"].shape)
+ break
+
+
+def example03():
+ # improved aesthetics
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
+ dataset = wds.WebDataset(tars)
+
+ def filter_keys(x):
+ try:
+ return ("jpg" in x) and ("txt" in x)
+ except Exception:
+ return False
+
+ def filter_size(x):
+ try:
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
+ except Exception:
+ return False
+
+ def filter_watermark(x):
+ try:
+ return x['json']['pwatermark'] < 0.5
+ except Exception:
+ return False
+
+ dataset = (dataset
+ .select(filter_keys)
+ .decode('pil', handler=wds.warn_and_continue))
+ n_save = 20
+ n_total = 0
+ n_large = 0
+ n_large_nowm = 0
+ for i, example in enumerate(dataset):
+ n_total += 1
+ if filter_size(example):
+ n_large += 1
+ if filter_watermark(example):
+ n_large_nowm += 1
+ if n_large_nowm < n_save+1:
+ image = example["jpg"]
+ image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
+
+ if i%500 == 0:
+ print(i)
+ print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
+ if n_large > 0:
+ print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
+
+
+
+def example04():
+ # improved aesthetics
+ for i_shard in range(60208)[::-1]:
+ print(i_shard)
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
+ dataset = wds.WebDataset(tars)
+
+ def filter_keys(x):
+ try:
+ return ("jpg" in x) and ("txt" in x)
+ except Exception:
+ return False
+
+ def filter_size(x):
+ try:
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
+ except Exception:
+ return False
+
+ dataset = (dataset
+ .select(filter_keys)
+ .decode('pil', handler=wds.warn_and_continue))
+ try:
+ example = next(iter(dataset))
+ except Exception:
+ print(f"Error @ {i_shard}")
+
+
+if __name__ == "__main__":
+ #example01()
+ #example02()
+ example03()
+ #example04()
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/lsun.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/lsun.py
new file mode 100644
index 0000000000000000000000000000000000000000..6256e45715ff0b57c53f985594d27cbbbff0e68e
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/lsun.py
@@ -0,0 +1,92 @@
+import os
+import numpy as np
+import PIL
+from PIL import Image
+from torch.utils.data import Dataset
+from torchvision import transforms
+
+
+class LSUNBase(Dataset):
+ def __init__(self,
+ txt_file,
+ data_root,
+ size=None,
+ interpolation="bicubic",
+ flip_p=0.5
+ ):
+ self.data_paths = txt_file
+ self.data_root = data_root
+ with open(self.data_paths, "r") as f:
+ self.image_paths = f.read().splitlines()
+ self._length = len(self.image_paths)
+ self.labels = {
+ "relative_file_path_": [l for l in self.image_paths],
+ "file_path_": [os.path.join(self.data_root, l)
+ for l in self.image_paths],
+ }
+
+ self.size = size
+ self.interpolation = {"linear": PIL.Image.LINEAR,
+ "bilinear": PIL.Image.BILINEAR,
+ "bicubic": PIL.Image.BICUBIC,
+ "lanczos": PIL.Image.LANCZOS,
+ }[interpolation]
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
+
+ def __len__(self):
+ return self._length
+
+ def __getitem__(self, i):
+ example = dict((k, self.labels[k][i]) for k in self.labels)
+ image = Image.open(example["file_path_"])
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+
+ # default to score-sde preprocessing
+ img = np.array(image).astype(np.uint8)
+ crop = min(img.shape[0], img.shape[1])
+ h, w, = img.shape[0], img.shape[1]
+ img = img[(h - crop) // 2:(h + crop) // 2,
+ (w - crop) // 2:(w + crop) // 2]
+
+ image = Image.fromarray(img)
+ if self.size is not None:
+ image = image.resize((self.size, self.size), resample=self.interpolation)
+
+ image = self.flip(image)
+ image = np.array(image).astype(np.uint8)
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
+ return example
+
+
+class LSUNChurchesTrain(LSUNBase):
+ def __init__(self, **kwargs):
+ super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
+
+
+class LSUNChurchesValidation(LSUNBase):
+ def __init__(self, flip_p=0., **kwargs):
+ super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
+ flip_p=flip_p, **kwargs)
+
+
+class LSUNBedroomsTrain(LSUNBase):
+ def __init__(self, **kwargs):
+ super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
+
+
+class LSUNBedroomsValidation(LSUNBase):
+ def __init__(self, flip_p=0.0, **kwargs):
+ super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
+ flip_p=flip_p, **kwargs)
+
+
+class LSUNCatsTrain(LSUNBase):
+ def __init__(self, **kwargs):
+ super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
+
+
+class LSUNCatsValidation(LSUNBase):
+ def __init__(self, flip_p=0., **kwargs):
+ super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
+ flip_p=flip_p, **kwargs)
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/lr_scheduler.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/lr_scheduler.py
new file mode 100644
index 0000000000000000000000000000000000000000..be39da9ca6dacc22bf3df9c7389bbb403a4a3ade
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/lr_scheduler.py
@@ -0,0 +1,98 @@
+import numpy as np
+
+
+class LambdaWarmUpCosineScheduler:
+ """
+ note: use with a base_lr of 1.0
+ """
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
+ self.lr_warm_up_steps = warm_up_steps
+ self.lr_start = lr_start
+ self.lr_min = lr_min
+ self.lr_max = lr_max
+ self.lr_max_decay_steps = max_decay_steps
+ self.last_lr = 0.
+ self.verbosity_interval = verbosity_interval
+
+ def schedule(self, n, **kwargs):
+ if self.verbosity_interval > 0:
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
+ if n < self.lr_warm_up_steps:
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
+ self.last_lr = lr
+ return lr
+ else:
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
+ t = min(t, 1.0)
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
+ 1 + np.cos(t * np.pi))
+ self.last_lr = lr
+ return lr
+
+ def __call__(self, n, **kwargs):
+ return self.schedule(n,**kwargs)
+
+
+class LambdaWarmUpCosineScheduler2:
+ """
+ supports repeated iterations, configurable via lists
+ note: use with a base_lr of 1.0.
+ """
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
+ self.lr_warm_up_steps = warm_up_steps
+ self.f_start = f_start
+ self.f_min = f_min
+ self.f_max = f_max
+ self.cycle_lengths = cycle_lengths
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
+ self.last_f = 0.
+ self.verbosity_interval = verbosity_interval
+
+ def find_in_interval(self, n):
+ interval = 0
+ for cl in self.cum_cycles[1:]:
+ if n <= cl:
+ return interval
+ interval += 1
+
+ def schedule(self, n, **kwargs):
+ cycle = self.find_in_interval(n)
+ n = n - self.cum_cycles[cycle]
+ if self.verbosity_interval > 0:
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
+ f"current cycle {cycle}")
+ if n < self.lr_warm_up_steps[cycle]:
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
+ self.last_f = f
+ return f
+ else:
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
+ t = min(t, 1.0)
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
+ 1 + np.cos(t * np.pi))
+ self.last_f = f
+ return f
+
+ def __call__(self, n, **kwargs):
+ return self.schedule(n, **kwargs)
+
+
+class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
+
+ def schedule(self, n, **kwargs):
+ cycle = self.find_in_interval(n)
+ n = n - self.cum_cycles[cycle]
+ if self.verbosity_interval > 0:
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
+ f"current cycle {cycle}")
+
+ if n < self.lr_warm_up_steps[cycle]:
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
+ self.last_f = f
+ return f
+ else:
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
+ self.last_f = f
+ return f
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/autoencoder.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/autoencoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..e4ab4cf79c9b3d6a24d606d6a5461d4c5345cd22
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/autoencoder.py
@@ -0,0 +1,449 @@
+import torch
+
+from lightning_utilities import module_available
+
+if module_available("lightning"):
+ import lightning.pytorch as pl
+elif module_available("pytorch_lightning"):
+ import pytorch_lightning as pl
+import torch.nn.functional as F
+from contextlib import contextmanager
+
+from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
+
+from ldm.modules.diffusionmodules.model import Encoder, Decoder
+from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
+
+from ldm.util import instantiate_from_config
+
+
+class VQModel(pl.LightningModule):
+ def __init__(self,
+ ddconfig,
+ lossconfig,
+ n_embed,
+ embed_dim,
+ ckpt_path=None,
+ ignore_keys=[],
+ image_key="image",
+ colorize_nlabels=None,
+ monitor=None,
+ batch_resize_range=None,
+ scheduler_config=None,
+ lr_g_factor=1.0,
+ remap=None,
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
+ use_ema=False
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.n_embed = n_embed
+ self.image_key = image_key
+ self.encoder = Encoder(**ddconfig)
+ self.decoder = Decoder(**ddconfig)
+ self.loss = instantiate_from_config(lossconfig)
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
+ remap=remap,
+ sane_index_shape=sane_index_shape)
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
+ if colorize_nlabels is not None:
+ assert type(colorize_nlabels)==int
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
+ if monitor is not None:
+ self.monitor = monitor
+ self.batch_resize_range = batch_resize_range
+ if self.batch_resize_range is not None:
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
+
+ self.use_ema = use_ema
+ if self.use_ema:
+ self.model_ema = LitEma(self)
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+ self.scheduler_config = scheduler_config
+ self.lr_g_factor = lr_g_factor
+
+ @contextmanager
+ def ema_scope(self, context=None):
+ if self.use_ema:
+ self.model_ema.store(self.parameters())
+ self.model_ema.copy_to(self)
+ if context is not None:
+ print(f"{context}: Switched to EMA weights")
+ try:
+ yield None
+ finally:
+ if self.use_ema:
+ self.model_ema.restore(self.parameters())
+ if context is not None:
+ print(f"{context}: Restored training weights")
+
+ def init_from_ckpt(self, path, ignore_keys=list()):
+ sd = torch.load(path, map_location="cpu")["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ missing, unexpected = self.load_state_dict(sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ print(f"Unexpected Keys: {unexpected}")
+
+ def on_train_batch_end(self, *args, **kwargs):
+ if self.use_ema:
+ self.model_ema(self)
+
+ def encode(self, x):
+ h = self.encoder(x)
+ h = self.quant_conv(h)
+ quant, emb_loss, info = self.quantize(h)
+ return quant, emb_loss, info
+
+ def encode_to_prequant(self, x):
+ h = self.encoder(x)
+ h = self.quant_conv(h)
+ return h
+
+ def decode(self, quant):
+ quant = self.post_quant_conv(quant)
+ dec = self.decoder(quant)
+ return dec
+
+ def decode_code(self, code_b):
+ quant_b = self.quantize.embed_code(code_b)
+ dec = self.decode(quant_b)
+ return dec
+
+ def forward(self, input, return_pred_indices=False):
+ quant, diff, (_,_,ind) = self.encode(input)
+ dec = self.decode(quant)
+ if return_pred_indices:
+ return dec, diff, ind
+ return dec, diff
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
+ if self.batch_resize_range is not None:
+ lower_size = self.batch_resize_range[0]
+ upper_size = self.batch_resize_range[1]
+ if self.global_step <= 4:
+ # do the first few batches with max size to avoid later oom
+ new_resize = upper_size
+ else:
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
+ if new_resize != x.shape[2]:
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
+ x = x.detach()
+ return x
+
+ def training_step(self, batch, batch_idx, optimizer_idx):
+ # https://github.com/pytorch/pytorch/issues/37142
+ # try not to fool the heuristics
+ x = self.get_input(batch, self.image_key)
+ xrec, qloss, ind = self(x, return_pred_indices=True)
+
+ if optimizer_idx == 0:
+ # autoencode
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train",
+ predicted_indices=ind)
+
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
+ return aeloss
+
+ if optimizer_idx == 1:
+ # discriminator
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
+ return discloss
+
+ def validation_step(self, batch, batch_idx):
+ log_dict = self._validation_step(batch, batch_idx)
+ with self.ema_scope():
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
+ return log_dict
+
+ def _validation_step(self, batch, batch_idx, suffix=""):
+ x = self.get_input(batch, self.image_key)
+ xrec, qloss, ind = self(x, return_pred_indices=True)
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
+ self.global_step,
+ last_layer=self.get_last_layer(),
+ split="val"+suffix,
+ predicted_indices=ind
+ )
+
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
+ self.global_step,
+ last_layer=self.get_last_layer(),
+ split="val"+suffix,
+ predicted_indices=ind
+ )
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
+ self.log(f"val{suffix}/rec_loss", rec_loss,
+ prog_bar=True, logger=True, on_step=False, on_epoch=True)
+ self.log(f"val{suffix}/aeloss", aeloss,
+ prog_bar=True, logger=True, on_step=False, on_epoch=True)
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
+ del log_dict_ae[f"val{suffix}/rec_loss"]
+ self.log_dict(log_dict_ae)
+ self.log_dict(log_dict_disc)
+ return self.log_dict
+
+ def configure_optimizers(self):
+ lr_d = self.learning_rate
+ lr_g = self.lr_g_factor*self.learning_rate
+ print("lr_d", lr_d)
+ print("lr_g", lr_g)
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
+ list(self.decoder.parameters())+
+ list(self.quantize.parameters())+
+ list(self.quant_conv.parameters())+
+ list(self.post_quant_conv.parameters()),
+ lr=lr_g, betas=(0.5, 0.9))
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
+ lr=lr_d, betas=(0.5, 0.9))
+
+ if self.scheduler_config is not None:
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ },
+ {
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ },
+ ]
+ return [opt_ae, opt_disc], scheduler
+ return [opt_ae, opt_disc], []
+
+ def get_last_layer(self):
+ return self.decoder.conv_out.weight
+
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.image_key)
+ x = x.to(self.device)
+ if only_inputs:
+ log["inputs"] = x
+ return log
+ xrec, _ = self(x)
+ if x.shape[1] > 3:
+ # colorize with random projection
+ assert xrec.shape[1] > 3
+ x = self.to_rgb(x)
+ xrec = self.to_rgb(xrec)
+ log["inputs"] = x
+ log["reconstructions"] = xrec
+ if plot_ema:
+ with self.ema_scope():
+ xrec_ema, _ = self(x)
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
+ log["reconstructions_ema"] = xrec_ema
+ return log
+
+ def to_rgb(self, x):
+ assert self.image_key == "segmentation"
+ if not hasattr(self, "colorize"):
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
+ x = F.conv2d(x, weight=self.colorize)
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
+ return x
+
+
+class VQModelInterface(VQModel):
+ def __init__(self, embed_dim, *args, **kwargs):
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
+ self.embed_dim = embed_dim
+
+ def encode(self, x):
+ h = self.encoder(x)
+ h = self.quant_conv(h)
+ return h
+
+ def decode(self, h, force_not_quantize=False):
+ # also go through quantization layer
+ if not force_not_quantize:
+ quant, emb_loss, info = self.quantize(h)
+ else:
+ quant = h
+ quant = self.post_quant_conv(quant)
+ dec = self.decoder(quant)
+ return dec
+
+
+class AutoencoderKL(pl.LightningModule):
+ def __init__(self,
+ ddconfig,
+ lossconfig,
+ embed_dim,
+ ckpt_path=None,
+ ignore_keys=[],
+ image_key="image",
+ colorize_nlabels=None,
+ monitor=None
+ ):
+ super().__init__()
+ self.image_key = image_key
+ self.encoder = Encoder(**ddconfig)
+ self.decoder = Decoder(**ddconfig)
+ self.loss = instantiate_from_config(lossconfig)
+ assert ddconfig["double_z"]
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
+ self.embed_dim = embed_dim
+ if colorize_nlabels is not None:
+ assert type(colorize_nlabels)==int
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
+ if monitor is not None:
+ self.monitor = monitor
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+
+ def init_from_ckpt(self, path, ignore_keys=list()):
+ sd = torch.load(path, map_location="cpu")["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ self.load_state_dict(sd, strict=False)
+ print(f"Restored from {path}")
+
+ def encode(self, x):
+ h = self.encoder(x)
+ moments = self.quant_conv(h)
+ posterior = DiagonalGaussianDistribution(moments)
+ return posterior
+
+ def decode(self, z):
+ z = self.post_quant_conv(z)
+ dec = self.decoder(z)
+ return dec
+
+ def forward(self, input, sample_posterior=True):
+ posterior = self.encode(input)
+ if sample_posterior:
+ z = posterior.sample()
+ else:
+ z = posterior.mode()
+ dec = self.decode(z)
+ return dec, posterior
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
+ return x
+
+ def training_step(self, batch, batch_idx, optimizer_idx):
+ inputs = self.get_input(batch, self.image_key)
+ reconstructions, posterior = self(inputs)
+
+ if optimizer_idx == 0:
+ # train encoder+decoder+logvar
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
+ return aeloss
+
+ if optimizer_idx == 1:
+ # train the discriminator
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
+ return discloss
+
+ def validation_step(self, batch, batch_idx):
+ inputs = self.get_input(batch, self.image_key)
+ reconstructions, posterior = self(inputs)
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
+ last_layer=self.get_last_layer(), split="val")
+
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
+ last_layer=self.get_last_layer(), split="val")
+
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
+ self.log_dict(log_dict_ae)
+ self.log_dict(log_dict_disc)
+ return self.log_dict
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
+ list(self.decoder.parameters())+
+ list(self.quant_conv.parameters())+
+ list(self.post_quant_conv.parameters()),
+ lr=lr, betas=(0.5, 0.9))
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
+ lr=lr, betas=(0.5, 0.9))
+ return [opt_ae, opt_disc], []
+
+ def get_last_layer(self):
+ return self.decoder.conv_out.weight
+
+ @torch.no_grad()
+ def log_images(self, batch, only_inputs=False, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.image_key)
+ x = x.to(self.device)
+ if not only_inputs:
+ xrec, posterior = self(x)
+ if x.shape[1] > 3:
+ # colorize with random projection
+ assert xrec.shape[1] > 3
+ x = self.to_rgb(x)
+ xrec = self.to_rgb(xrec)
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
+ log["reconstructions"] = xrec
+ log["inputs"] = x
+ return log
+
+ def to_rgb(self, x):
+ assert self.image_key == "segmentation"
+ if not hasattr(self, "colorize"):
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
+ x = F.conv2d(x, weight=self.colorize)
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
+ return x
+
+
+class IdentityFirstStage(torch.nn.Module):
+ def __init__(self, *args, vq_interface=False, **kwargs):
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
+ super().__init__()
+
+ def encode(self, x, *args, **kwargs):
+ return x
+
+ def decode(self, x, *args, **kwargs):
+ return x
+
+ def quantize(self, x, *args, **kwargs):
+ if self.vq_interface:
+ return x, None, [None, None, None]
+ return x
+
+ def forward(self, x, *args, **kwargs):
+ return x
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/__init__.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/classifier.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/classifier.py
new file mode 100644
index 0000000000000000000000000000000000000000..d9bf6960aa124dd693fd14af7c7820a410f03978
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/classifier.py
@@ -0,0 +1,272 @@
+import os
+import torch
+from lightning_utilities import module_available
+
+if module_available("lightning"):
+ import lightning.pytorch as pl
+elif module_available("pytorch_lightning"):
+ import pytorch_lightning as pl
+from omegaconf import OmegaConf
+from torch.nn import functional as F
+from torch.optim import AdamW
+from torch.optim.lr_scheduler import LambdaLR
+from copy import deepcopy
+from einops import rearrange
+from glob import glob
+from natsort import natsorted
+
+from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
+from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
+
+__models__ = {
+ 'class_label': EncoderUNetModel,
+ 'segmentation': UNetModel
+}
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+class NoisyLatentImageClassifier(pl.LightningModule):
+
+ def __init__(self,
+ diffusion_path,
+ num_classes,
+ ckpt_path=None,
+ pool='attention',
+ label_key=None,
+ diffusion_ckpt_path=None,
+ scheduler_config=None,
+ weight_decay=1.e-2,
+ log_steps=10,
+ monitor='val/loss',
+ *args,
+ **kwargs):
+ super().__init__(*args, **kwargs)
+ self.num_classes = num_classes
+ # get latest config of diffusion model
+ diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
+ self.diffusion_config = OmegaConf.load(diffusion_config).model
+ self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
+ self.load_diffusion()
+
+ self.monitor = monitor
+ self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
+ self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
+ self.log_steps = log_steps
+
+ self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
+ else self.diffusion_model.cond_stage_key
+
+ assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
+
+ if self.label_key not in __models__:
+ raise NotImplementedError()
+
+ self.load_classifier(ckpt_path, pool)
+
+ self.scheduler_config = scheduler_config
+ self.use_scheduler = self.scheduler_config is not None
+ self.weight_decay = weight_decay
+
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+ sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ if len(unexpected) > 0:
+ print(f"Unexpected Keys: {unexpected}")
+
+ def load_diffusion(self):
+ model = instantiate_from_config(self.diffusion_config)
+ self.diffusion_model = model.eval()
+ self.diffusion_model.train = disabled_train
+ for param in self.diffusion_model.parameters():
+ param.requires_grad = False
+
+ def load_classifier(self, ckpt_path, pool):
+ model_config = deepcopy(self.diffusion_config.params.unet_config.params)
+ model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
+ model_config.out_channels = self.num_classes
+ if self.label_key == 'class_label':
+ model_config.pool = pool
+
+ self.model = __models__[self.label_key](**model_config)
+ if ckpt_path is not None:
+ print('#####################################################################')
+ print(f'load from ckpt "{ckpt_path}"')
+ print('#####################################################################')
+ self.init_from_ckpt(ckpt_path)
+
+ @torch.no_grad()
+ def get_x_noisy(self, x, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x))
+ continuous_sqrt_alpha_cumprod = None
+ if self.diffusion_model.use_continuous_noise:
+ continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
+ # todo: make sure t+1 is correct here
+
+ return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
+ continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
+
+ def forward(self, x_noisy, t, *args, **kwargs):
+ return self.model(x_noisy, t)
+
+ @torch.no_grad()
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = rearrange(x, 'b h w c -> b c h w')
+ x = x.to(memory_format=torch.contiguous_format).float()
+ return x
+
+ @torch.no_grad()
+ def get_conditioning(self, batch, k=None):
+ if k is None:
+ k = self.label_key
+ assert k is not None, 'Needs to provide label key'
+
+ targets = batch[k].to(self.device)
+
+ if self.label_key == 'segmentation':
+ targets = rearrange(targets, 'b h w c -> b c h w')
+ for down in range(self.numd):
+ h, w = targets.shape[-2:]
+ targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
+
+ # targets = rearrange(targets,'b c h w -> b h w c')
+
+ return targets
+
+ def compute_top_k(self, logits, labels, k, reduction="mean"):
+ _, top_ks = torch.topk(logits, k, dim=1)
+ if reduction == "mean":
+ return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
+ elif reduction == "none":
+ return (top_ks == labels[:, None]).float().sum(dim=-1)
+
+ def on_train_epoch_start(self):
+ # save some memory
+ self.diffusion_model.model.to('cpu')
+
+ @torch.no_grad()
+ def write_logs(self, loss, logits, targets):
+ log_prefix = 'train' if self.training else 'val'
+ log = {}
+ log[f"{log_prefix}/loss"] = loss.mean()
+ log[f"{log_prefix}/acc@1"] = self.compute_top_k(
+ logits, targets, k=1, reduction="mean"
+ )
+ log[f"{log_prefix}/acc@5"] = self.compute_top_k(
+ logits, targets, k=5, reduction="mean"
+ )
+
+ self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
+ self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
+ self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
+ lr = self.optimizers().param_groups[0]['lr']
+ self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
+
+ def shared_step(self, batch, t=None):
+ x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
+ targets = self.get_conditioning(batch)
+ if targets.dim() == 4:
+ targets = targets.argmax(dim=1)
+ if t is None:
+ t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
+ else:
+ t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
+ x_noisy = self.get_x_noisy(x, t)
+ logits = self(x_noisy, t)
+
+ loss = F.cross_entropy(logits, targets, reduction='none')
+
+ self.write_logs(loss.detach(), logits.detach(), targets.detach())
+
+ loss = loss.mean()
+ return loss, logits, x_noisy, targets
+
+ def training_step(self, batch, batch_idx):
+ loss, *_ = self.shared_step(batch)
+ return loss
+
+ def reset_noise_accs(self):
+ self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
+ range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
+
+ def on_validation_start(self):
+ self.reset_noise_accs()
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ loss, *_ = self.shared_step(batch)
+
+ for t in self.noisy_acc:
+ _, logits, _, targets = self.shared_step(batch, t)
+ self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
+ self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
+
+ return loss
+
+ def configure_optimizers(self):
+ optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
+
+ if self.use_scheduler:
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ }]
+ return [optimizer], scheduler
+
+ return optimizer
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, *args, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.diffusion_model.first_stage_key)
+ log['inputs'] = x
+
+ y = self.get_conditioning(batch)
+
+ if self.label_key == 'class_label':
+ y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
+ log['labels'] = y
+
+ if ismap(y):
+ log['labels'] = self.diffusion_model.to_rgb(y)
+
+ for step in range(self.log_steps):
+ current_time = step * self.log_time_interval
+
+ _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
+
+ log[f'inputs@t{current_time}'] = x_noisy
+
+ pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
+ pred = rearrange(pred, 'b h w c -> b c h w')
+
+ log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
+
+ for key in log:
+ log[key] = log[key][:N]
+
+ return log
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/ddim.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..e4857e643df6a2d599abce42246d3bef3210373c
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/ddim.py
@@ -0,0 +1,400 @@
+###############################################################################
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+###############################################################################
+"""SAMPLING ONLY."""
+
+import os
+import torch
+import numpy as np
+from tqdm import tqdm
+from functools import partial
+from einops import rearrange
+
+from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
+from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding
+
+import habana_compat
+import habana_frameworks.torch as ht
+
+class DDIMSampler(object):
+ def __init__(self, model, schedule="linear", **kwargs):
+ super().__init__()
+ self.model = model
+ self.hpu_graph = ht.hpu.HPUGraph()
+ self.hpu_stream = ht.hpu.Stream()
+ self.static_inputs = list()
+ self.static_outputs = None
+ self.ddpm_num_timesteps = model.num_timesteps
+ self.schedule = schedule
+ self.reset_timestep_dependent_params()
+
+ def reset_timestep_dependent_params(self):
+ self.are_timestep_dependent_params_set = False
+ self.a_t_list = []
+ self.a_prev_list = []
+ self.sigma_t_list = []
+ self.sqrt_one_minus_at_list = []
+
+ def register_buffer(self, name, attr):
+ if self.model.device == "cuda":
+ if type(attr) == torch.Tensor:
+ if attr.device != torch.device("cuda"):
+ attr = attr.to(torch.device("cuda"))
+ setattr(self, name, attr)
+
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+ alphas_cumprod = self.model.alphas_cumprod
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+ self.register_buffer('betas', to_torch(self.model.betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+ # ddim sampling parameters
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+ ddim_timesteps=self.ddim_timesteps,
+ eta=ddim_eta,verbose=verbose)
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
+ self.register_buffer('ddim_alphas', ddim_alphas)
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+ def get_params(self, b, use_original_steps, device, total_steps):
+ if (self.are_timestep_dependent_params_set == False):
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+
+ for index in range(total_steps - 1, -1, -1):
+ self.a_t_list.append(torch.full((b, 1, 1, 1), alphas[index], device=device))
+ self.a_prev_list.append(torch.full((b, 1, 1, 1), alphas_prev[index], device=device))
+ self.sigma_t_list.append(torch.full((b, 1, 1, 1), sigmas[index], device=device))
+ self.sqrt_one_minus_at_list.append(torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device))
+
+ self.a_t_list = torch.stack([a_t for a_t in self.a_t_list])
+ self.a_prev_list = torch.stack([a_prev for a_prev in self.a_prev_list])
+ self.sigma_t_list = torch.stack([sigma_t for sigma_t in self.sigma_t_list])
+ self.sqrt_one_minus_at_list = torch.stack([sqrt_one_minus_at for sqrt_one_minus_at in self.sqrt_one_minus_at_list])
+ self.are_timestep_dependent_params_set = True
+
+ a_t = self.a_t_list[0]
+ self.a_t_list = torch.roll(self.a_t_list, shifts=-1, dims=0)
+ a_prev = self.a_prev_list[0]
+ self.a_prev_list = torch.roll(self.a_prev_list, shifts=-1, dims=0)
+ sigma_t = self.sigma_t_list[0]
+ self.sigma_t_list = torch.roll(self.sigma_t_list, shifts=-1, dims=0)
+ sqrt_one_minus_at = self.sqrt_one_minus_at_list[0]
+ self.sqrt_one_minus_at_list = torch.roll(self.sqrt_one_minus_at_list, shifts=-1, dims=0)
+
+ return a_t, a_prev, sigma_t, sqrt_one_minus_at
+
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ dynamic_threshold=None,
+ use_hpu_graph=False,
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ ctmp = conditioning[list(conditioning.keys())[0]]
+ while isinstance(ctmp, list): ctmp = ctmp[0]
+ cbs = ctmp.shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
+
+ samples, intermediates = self.ddim_sampling(conditioning, size,
+ callback=callback,
+ img_callback=img_callback,
+ quantize_denoised=quantize_x0,
+ mask=mask, x0=x0,
+ ddim_use_original_steps=False,
+ noise_dropout=noise_dropout,
+ temperature=temperature,
+ score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ x_T=x_T,
+ log_every_t=log_every_t,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ dynamic_threshold=dynamic_threshold,
+ use_hpu_graph=use_hpu_graph
+ )
+ return samples, intermediates
+
+ @torch.no_grad()
+ def ddim_sampling(self, cond, shape,
+ x_T=None, ddim_use_original_steps=False,
+ callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, log_every_t=100,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, use_hpu_graph=False):
+ device = self.model.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=torch.device('cpu'))
+ img = torch.tensor(img, device=device).clone().detach()
+ else:
+ img = x_T
+
+ if timesteps is None:
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+ elif timesteps is not None and not ddim_use_original_steps:
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+ timesteps = self.ddim_timesteps[:subset_end]
+
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
+
+ ts_list = []
+ for step in timesteps:
+ ts_list.append(torch.full((b,), step, device=device, dtype=torch.long))
+ ts_list = torch.stack([ts for ts in ts_list])
+
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts_list = torch.roll(ts_list, shifts=1, dims=0)
+ ts = ts_list[0]
+
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
+ img = img_orig * mask + (1. - mask) * img
+
+ capture = False
+ if use_hpu_graph:
+ capture = True
+ if i >= 2:
+ capture = False
+
+ outs = self.p_sample_ddim(img, cond, ts, total_steps=total_steps, use_original_steps=ddim_use_original_steps,
+ quantize_denoised=quantize_denoised, temperature=temperature,
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ dynamic_threshold=dynamic_threshold, use_hpu_graph=use_hpu_graph, capture=capture)
+ if not use_hpu_graph:
+ habana_compat.mark_step()
+
+ img, pred_x0 = outs
+ if callback: callback(i)
+ if img_callback: img_callback(pred_x0, i)
+
+ if index % log_every_t == 0 or index == total_steps - 1:
+ intermediates['x_inter'].append(img)
+ intermediates['pred_x0'].append(pred_x0)
+
+ self.reset_timestep_dependent_params()
+
+ return img, intermediates
+
+ @torch.no_grad()
+ def capture_replay(self, x, c, t, capture):
+ if capture:
+ self.static_inputs = [x, t, c]
+ with ht.hpu.stream(self.hpu_stream):
+ self.hpu_graph.capture_begin()
+
+ self.static_outputs = self.model.apply_model(self.static_inputs[0], self.static_inputs[1], self.static_inputs[2])
+
+ self.hpu_graph.capture_end()
+
+ self.static_inputs[0].copy_(x)
+ self.static_inputs[1].copy_(t)
+ self.static_inputs[2].copy_(c)
+ ht.core.mark_step()
+ ht.core.hpu.default_stream().synchronize()
+ self.hpu_graph.replay()
+
+ return self.static_outputs
+
+ @torch.no_grad()
+ def apply_model(self, x, c, t, use_hpu_graph, capture):
+ if use_hpu_graph:
+ return self.capture_replay(x, c, t, capture)
+ else:
+ return self.model.apply_model(x, t, c)
+
+ @torch.no_grad()
+ def p_sample_ddim(self, x, c, t, total_steps, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
+ dynamic_threshold=None, use_hpu_graph=False, capture=False):
+ b, *_, device = *x.shape, x.device
+
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+ e_t = self.apply_model(x, c, t, use_hpu_graph, capture)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t] * 2)
+ if isinstance(c, dict):
+ assert isinstance(unconditional_conditioning, dict)
+ c_in = dict()
+ for k in c:
+ if isinstance(c[k], list):
+ c_in[k] = [torch.cat([
+ unconditional_conditioning[k][i],
+ c[k][i]]) for i in range(len(c[k]))]
+ else:
+ c_in[k] = torch.cat([
+ unconditional_conditioning[k],
+ c[k]])
+ else:
+ c_in = torch.cat([unconditional_conditioning, c])
+ e_t_uncond, e_t = self.apply_model(x_in, c_in, t_in, use_hpu_graph, capture).chunk(2)
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+ if score_corrector is not None:
+ assert self.model.parameterization == "eps"
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+ a_t, a_prev, sigma_t, sqrt_one_minus_at = self.get_params(b, use_original_steps, device, total_steps)
+
+ # current prediction for x_0
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ if quantize_denoised:
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+
+ if dynamic_threshold is not None:
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
+
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+ return x_prev, pred_x0
+
+ @torch.no_grad()
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None):
+ num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
+
+ assert t_enc <= num_reference_steps
+ num_steps = t_enc
+
+ if use_original_steps:
+ alphas_next = self.alphas_cumprod[:num_steps]
+ alphas = self.alphas_cumprod_prev[:num_steps]
+ else:
+ alphas_next = self.ddim_alphas[:num_steps]
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
+
+ x_next = x0
+ intermediates = []
+ inter_steps = []
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
+ t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
+ if unconditional_guidance_scale == 1.:
+ noise_pred = self.model.apply_model(x_next, t, c)
+ else:
+ assert unconditional_conditioning is not None
+ e_t_uncond, noise_pred = torch.chunk(
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
+ torch.cat((unconditional_conditioning, c))), 2)
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
+
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
+ weighted_noise_pred = alphas_next[i].sqrt() * (
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
+ x_next = xt_weighted + weighted_noise_pred
+ if return_intermediates and i % (
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
+ intermediates.append(x_next)
+ inter_steps.append(i)
+ elif return_intermediates and i >= num_steps - 2:
+ intermediates.append(x_next)
+ inter_steps.append(i)
+
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
+ if return_intermediates:
+ out.update({'intermediates': intermediates})
+ return x_next, out
+
+ @torch.no_grad()
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
+ # fast, but does not allow for exact reconstruction
+ # t serves as an index to gather the correct alphas
+ if use_original_steps:
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
+ else:
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
+
+ if noise is None:
+ noise = torch.randn_like(x0)
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
+
+ @torch.no_grad()
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
+ use_original_steps=False):
+
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
+ timesteps = timesteps[:t_start]
+
+ time_range = np.flip(timesteps)
+ total_steps = timesteps.shape[0]
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
+ x_dec = x_latent
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning)
+ return x_dec
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/ddpm.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/ddpm.py
new file mode 100644
index 0000000000000000000000000000000000000000..de2379a658c2a3e1eada8a2e6ae54172718668bc
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/ddpm.py
@@ -0,0 +1,1889 @@
+###############################################################################
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+###############################################################################
+"""
+wild mixture of
+https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
+https://github.com/CompVis/taming-transformers
+-- merci
+"""
+
+import torch
+import torch.nn as nn
+import numpy as np
+from lightning_utilities import module_available
+
+if module_available("lightning"):
+ import lightning.pytorch as pl
+ from lightning.pytorch.utilities import rank_zero_only
+ from lightning.pytorch.callbacks import TQDMProgressBar
+elif module_available("pytorch_lightning"):
+ import pytorch_lightning as pl
+ from pytorch_lightning.utilities import rank_zero_only
+ from pytorch_lightning.callbacks import TQDMProgressBar
+from torch.optim.lr_scheduler import LambdaLR
+from einops import rearrange, repeat
+from contextlib import contextmanager, nullcontext
+from functools import partial
+import itertools
+from tqdm import tqdm
+from torchvision.utils import make_grid
+from omegaconf import ListConfig
+
+from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
+from ldm.modules.ema import LitEma
+from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
+from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
+from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
+from ldm.models.diffusion.ddim import DDIMSampler
+
+import habana_frameworks.torch.core as htcore
+
+
+__conditioning_keys__ = {'concat': 'c_concat',
+ 'crossattn': 'c_crossattn',
+ 'adm': 'y'}
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+def uniform_on_device(r1, r2, shape, device):
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
+
+
+class DDPM(pl.LightningModule):
+ # classic DDPM with Gaussian diffusion, in image space
+ def __init__(self,
+ unet_config,
+ timesteps=1000,
+ beta_schedule="linear",
+ loss_type="l2",
+ ckpt_path=None,
+ ignore_keys=[],
+ load_only_unet=False,
+ monitor="val/loss",
+ use_ema=True,
+ first_stage_key="image",
+ image_size=256,
+ channels=3,
+ log_every_t=100,
+ clip_denoised=True,
+ linear_start=1e-4,
+ linear_end=2e-2,
+ cosine_s=8e-3,
+ given_betas=None,
+ original_elbo_weight=0.,
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
+ l_simple_weight=1.,
+ conditioning_key=None,
+ parameterization="eps", # all assuming fixed variance schedules
+ scheduler_config=None,
+ use_positional_encodings=False,
+ learn_logvar=False,
+ logvar_init=0.,
+ make_it_fit=False,
+ ucg_training=None,
+ use_autocast=False,
+ accumulate_grad_batches=1,
+ ):
+ super().__init__()
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
+ self.parameterization = parameterization
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
+ self.print_freq = 1
+ self.init_print_freq = False
+ self.cond_stage_model = None
+ self.clip_denoised = clip_denoised
+ self.log_every_t = log_every_t
+ self.first_stage_key = first_stage_key
+ self.image_size = image_size # try conv?
+ self.channels = channels
+ self.use_positional_encodings = use_positional_encodings
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
+ self.htcore = None
+ self.iteration_count=0
+ if self.hpu:
+ import habana_frameworks.torch.core as htcore
+ self.htcore = htcore
+ if self.hpu_graph:
+ htcore.hpu.ModuleCacher(max_graphs=10)(model=self.model, inplace=True, have_grad_accumulation=True)
+ count_params(self.model, verbose=True)
+ self.use_ema = use_ema
+ if self.use_ema:
+ self.model_ema = LitEma(self.model)
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+ self.use_scheduler = scheduler_config is not None
+ if self.use_scheduler:
+ self.scheduler_config = scheduler_config
+
+ self.v_posterior = v_posterior
+ self.original_elbo_weight = original_elbo_weight
+ self.l_simple_weight = l_simple_weight
+
+ if monitor is not None:
+ self.monitor = monitor
+ self.make_it_fit = make_it_fit
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
+
+ self.loss_type = loss_type
+
+ self.learn_logvar = learn_logvar
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
+ if self.learn_logvar:
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
+
+ self.ucg_training = ucg_training or dict()
+ if self.ucg_training:
+ self.ucg_prng = np.random.RandomState()
+ self.use_autocast = use_autocast
+ self.accumulate_grad_batches = accumulate_grad_batches
+
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if exists(given_betas):
+ betas = given_betas
+ else:
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
+ cosine_s=cosine_s)
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.linear_start = linear_start
+ self.linear_end = linear_end
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
+ 1. - alphas_cumprod) + self.v_posterior * betas
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch(
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch(
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+ if self.parameterization == "eps":
+ lvlb_weights = self.betas ** 2 / (
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
+ elif self.parameterization == "x0":
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
+ else:
+ raise NotImplementedError("mu not supported")
+ # TODO how to choose this term
+ lvlb_weights[0] = lvlb_weights[1]
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
+ assert not torch.isnan(self.lvlb_weights).all()
+
+ @contextmanager
+ def ema_scope(self, context=None):
+ if self.use_ema:
+ self.model_ema.store(self.model.parameters())
+ self.model_ema.copy_to(self.model)
+ if context is not None:
+ print(f"{context}: Switched to EMA weights")
+ try:
+ yield None
+ finally:
+ if self.use_ema:
+ self.model_ema.restore(self.model.parameters())
+ if context is not None:
+ print(f"{context}: Restored training weights")
+
+ @torch.no_grad()
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ if self.make_it_fit:
+ n_params = len([name for name, _ in
+ itertools.chain(self.named_parameters(),
+ self.named_buffers())])
+ for name, param in tqdm(
+ itertools.chain(self.named_parameters(),
+ self.named_buffers()),
+ desc="Fitting old weights to new weights",
+ total=n_params
+ ):
+ if not name in sd:
+ continue
+ old_shape = sd[name].shape
+ new_shape = param.shape
+ assert len(old_shape)==len(new_shape)
+ if len(new_shape) > 2:
+ # we only modify first two axes
+ assert new_shape[2:] == old_shape[2:]
+ # assumes first axis corresponds to output dim
+ if not new_shape == old_shape:
+ new_param = param.clone()
+ old_param = sd[name]
+ if len(new_shape) == 1:
+ for i in range(new_param.shape[0]):
+ new_param[i] = old_param[i % old_shape[0]]
+ elif len(new_shape) >= 2:
+ for i in range(new_param.shape[0]):
+ for j in range(new_param.shape[1]):
+ new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
+
+ n_used_old = torch.ones(old_shape[1])
+ for j in range(new_param.shape[1]):
+ n_used_old[j % old_shape[1]] += 1
+ n_used_new = torch.zeros(new_shape[1])
+ for j in range(new_param.shape[1]):
+ n_used_new[j] = n_used_old[j % old_shape[1]]
+
+ n_used_new = n_used_new[None, :]
+ while len(n_used_new.shape) < len(new_shape):
+ n_used_new = n_used_new.unsqueeze(-1)
+ new_param /= n_used_new
+
+ sd[name] = new_param
+
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+ sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ if len(unexpected) > 0:
+ print(f"Unexpected Keys: {unexpected}")
+
+ def q_mean_variance(self, x_start, t):
+ """
+ Get the distribution q(x_t | x_0).
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+ """
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+ return mean, variance, log_variance
+
+ def predict_start_from_noise(self, x_t, t, noise):
+ return (
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+ )
+
+ def q_posterior(self, x_start, x_t, t):
+ posterior_mean = (
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(self, x, t, clip_denoised: bool):
+ model_out = self.model(x, t)
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
+ b, *_, device = *x.shape, x.device
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
+ noise = noise_like(x.shape, device, repeat_noise)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_loop(self, shape, return_intermediates=False):
+ device = self.betas.device
+ b = shape[0]
+ img = torch.randn(shape, device=device)
+ intermediates = [img]
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
+ clip_denoised=self.clip_denoised)
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
+ intermediates.append(img)
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, batch_size=16, return_intermediates=False):
+ image_size = self.image_size
+ channels = self.channels
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
+ return_intermediates=return_intermediates)
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
+
+ def get_loss(self, pred, target, mean=True):
+ if self.loss_type == 'l1':
+ loss = (target - pred).abs()
+ if mean:
+ loss = loss.mean()
+ elif self.loss_type == 'l2':
+ if mean:
+ loss = torch.nn.functional.mse_loss(target, pred)
+ else:
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
+ else:
+ raise NotImplementedError("unknown loss type '{loss_type}'")
+
+ return loss
+
+ def p_losses(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_out = self.model(x_noisy, t)
+
+ loss_dict = {}
+ if self.parameterization == "eps":
+ target = noise
+ elif self.parameterization == "x0":
+ target = x_start
+ else:
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
+
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
+
+ log_prefix = 'train' if self.training else 'val'
+
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
+ loss_simple = loss.mean() * self.l_simple_weight
+
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
+
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
+
+ loss_dict.update({f'{log_prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def forward(self, x, *args, **kwargs):
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ return self.p_losses(x, t, *args, **kwargs)
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = rearrange(x, 'b h w c -> b c h w')
+ x = x.to(memory_format=torch.contiguous_format).float()
+ return x
+
+ def shared_step(self, batch):
+ x = self.get_input(batch, self.first_stage_key)
+ loss, loss_dict = self(x)
+ return loss, loss_dict
+
+ def training_step(self, batch, batch_idx):
+ dev = 'cpu'
+ if self.hpu:
+ dev = 'hpu'
+ with torch.autocast(device_type=dev, dtype=torch.bfloat16, enabled=self.use_autocast):
+ for k in self.ucg_training:
+ p = self.ucg_training[k]["p"]
+ val = self.ucg_training[k]["val"]
+ if val is None:
+ val = ""
+ for i in range(len(batch[k])):
+ if self.ucg_prng.choice(2, p=[1-p, p]):
+ batch[k][i] = val
+ if self.hpu and self.hpu_graph:
+ self.model.set_iteration_count(self.iteration_count)
+ self.iteration_count += 1
+ if (batch_idx+1) % self.accumulate_grad_batches== 0:
+ self.iteration_count = 0
+ loss, loss_dict = self.shared_step(batch)
+
+ if not self.init_print_freq:
+ for cb in self.trainer.callbacks:
+ if isinstance(cb, TQDMProgressBar):
+ self.print_freq = cb.refresh_rate
+ break
+ assert self.print_freq != 0, f"self.print_freq should not be {self.print_freq}"
+ self.init_print_freq = True
+
+ if batch_idx % self.print_freq == 0:
+ self.log_dict(loss_dict, prog_bar=True,
+ logger=True, on_step=True, on_epoch=True)
+ self.log("global_step", self.global_step,
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
+ if self.use_scheduler:
+ lr = self.optimizers().param_groups[0]['lr']
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ return loss
+
+ def on_after_backward(self) -> None:
+ # Break lazy accumulation of graph after fwd+bwd
+ if self.htcore:
+ self.htcore.mark_step()
+
+ def on_before_backward(self, loss) -> None:
+ #"""Called before ``loss.backward()``.
+ if self.htcore:
+ self.htcore.mark_step()
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ if self.htcore:
+ self.htcore.mark_step()
+ if torch.distributed.is_initialized():
+ torch.distributed.barrier()
+ _, loss_dict_no_ema = self.shared_step(batch)
+ with self.ema_scope():
+ _, loss_dict_ema = self.shared_step(batch)
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
+
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+
+ @torch.no_grad()
+ def on_validation_batch_end(self, *args, **kwargs):
+ if self.htcore:
+ self.htcore.mark_step()
+ if torch.distributed.is_initialized():
+ torch.distributed.barrier()
+
+ @torch.no_grad()
+ def on_validation_epoch_end(self):
+ if self.htcore:
+ self.htcore.mark_step()
+ if torch.distributed.is_initialized():
+ torch.distributed.barrier()
+
+
+ def on_train_batch_end(self, *args, **kwargs):
+ if self.use_ema:
+ self.model_ema(self.model)
+
+ def _get_rows_from_list(self, samples):
+ n_imgs_per_row = len(samples)
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.first_stage_key)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ x = x.to(self.device)[:N]
+ log["inputs"] = x
+
+ # get diffusion row
+ diffusion_row = list()
+ x_start = x[:n_row]
+
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(x_start)
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ diffusion_row.append(x_noisy)
+
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
+
+ if sample:
+ # get denoise row
+ with self.ema_scope("Plotting"):
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
+
+ log["samples"] = samples
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ params = list(self.model.parameters())
+ if self.learn_logvar:
+ params = params + [self.logvar]
+ opt = torch.optim.AdamW(params, lr=lr)
+ return opt
+
+
+class LatentDiffusion(DDPM):
+ """main class"""
+ def __init__(self,
+ first_stage_config,
+ cond_stage_config,
+ num_timesteps_cond=None,
+ cond_stage_key="image",
+ cond_stage_trainable=False,
+ concat_mode=True,
+ cond_stage_forward=None,
+ conditioning_key=None,
+ scale_factor=1.0,
+ scale_by_std=False,
+ use_autocast=False,
+ *args, **kwargs):
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
+ self.scale_by_std = scale_by_std
+ self.hpu = kwargs.pop("hpu", False)
+ self.use_fused_adamw = kwargs.pop("use_fused_adamw", False)
+ self.hpu_graph = kwargs.pop("hpu_graph", False)
+ assert self.num_timesteps_cond <= kwargs['timesteps']
+ # for backwards compatibility after implementation of DiffusionWrapper
+ if conditioning_key is None:
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
+ if cond_stage_config == '__is_unconditional__':
+ conditioning_key = None
+ ckpt_path = kwargs.pop("ckpt_path", None)
+ ignore_keys = kwargs.pop("ignore_keys", [])
+ super().__init__(conditioning_key=conditioning_key, use_autocast=use_autocast, *args, **kwargs)
+ self.concat_mode = concat_mode
+ self.cond_stage_trainable = cond_stage_trainable
+ self.cond_stage_key = cond_stage_key
+ try:
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
+ except:
+ self.num_downs = 0
+ if not scale_by_std:
+ self.scale_factor = scale_factor
+ else:
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
+ self.instantiate_first_stage(first_stage_config)
+ if self.hpu:
+ self.first_stage_model = self.htcore.hpu.wrap_in_hpu_graph(self.first_stage_model)
+ self.instantiate_cond_stage(cond_stage_config)
+ self.cond_stage_forward = cond_stage_forward
+ self.clip_denoised = False
+ self.bbox_tokenizer = None
+
+ self.restarted_from_ckpt = False
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys)
+ self.restarted_from_ckpt = True
+
+ def make_cond_schedule(self, ):
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
+ self.cond_ids[:self.num_timesteps_cond] = ids
+
+ @rank_zero_only
+ @torch.no_grad()
+ def on_train_batch_start(self, batch, batch_idx):
+ # only for very first batch
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
+ # set rescale weight to 1./std of encodings
+ print("### USING STD-RESCALING ###")
+ x = super().get_input(batch, self.first_stage_key)
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+ del self.scale_factor
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
+ print(f"setting self.scale_factor to {self.scale_factor}")
+ print("### USING STD-RESCALING ###")
+
+ def register_schedule(self,
+ given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
+
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
+ if self.shorten_cond_schedule:
+ self.make_cond_schedule()
+
+ def instantiate_first_stage(self, config):
+ model = instantiate_from_config(config)
+ self.first_stage_model = model.eval()
+ self.first_stage_model.train = disabled_train
+ for param in self.first_stage_model.parameters():
+ param.requires_grad = False
+
+ def instantiate_cond_stage(self, config):
+ if not self.cond_stage_trainable:
+ if config == "__is_first_stage__":
+ print("Using first stage also as cond stage.")
+ self.cond_stage_model = self.first_stage_model
+ elif config == "__is_unconditional__":
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
+ self.cond_stage_model = None
+ # self.be_unconditional = True
+ else:
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model.eval()
+ self.cond_stage_model.train = disabled_train
+ for param in self.cond_stage_model.parameters():
+ param.requires_grad = False
+ else:
+ assert config != '__is_first_stage__'
+ assert config != '__is_unconditional__'
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model
+
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
+ denoise_row = []
+ for zd in tqdm(samples, desc=desc):
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
+ force_not_quantize=force_no_decoder_quantization))
+ n_imgs_per_row = len(denoise_row)
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ def get_first_stage_encoding(self, encoder_posterior):
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
+ z = encoder_posterior.sample()
+ elif isinstance(encoder_posterior, torch.Tensor):
+ z = encoder_posterior
+ else:
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
+ return self.scale_factor * z
+
+ def get_learned_conditioning(self, c):
+ if self.cond_stage_forward is None:
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
+ c = self.cond_stage_model.encode(c)
+ if isinstance(c, DiagonalGaussianDistribution):
+ c = c.mode()
+ else:
+ c = self.cond_stage_model(c)
+ else:
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+ return c
+
+ def meshgrid(self, h, w):
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
+
+ arr = torch.cat([y, x], dim=-1)
+ return arr
+
+ def delta_border(self, h, w):
+ """
+ :param h: height
+ :param w: width
+ :return: normalized distance to image border,
+ wtith min distance = 0 at border and max dist = 0.5 at image center
+ """
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
+ arr = self.meshgrid(h, w) / lower_right_corner
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
+ return edge_dist
+
+ def get_weighting(self, h, w, Ly, Lx, device):
+ weighting = self.delta_border(h, w)
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
+ self.split_input_params["clip_max_weight"], )
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
+
+ if self.split_input_params["tie_braker"]:
+ L_weighting = self.delta_border(Ly, Lx)
+ L_weighting = torch.clip(L_weighting,
+ self.split_input_params["clip_min_tie_weight"],
+ self.split_input_params["clip_max_tie_weight"])
+
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
+ weighting = weighting * L_weighting
+ return weighting
+
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
+ """
+ :param x: img of size (bs, c, h, w)
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
+ """
+ bs, nc, h, w = x.shape
+
+ # number of crops in image
+ Ly = (h - kernel_size[0]) // stride[0] + 1
+ Lx = (w - kernel_size[1]) // stride[1] + 1
+
+ if uf == 1 and df == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
+
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
+
+ elif uf > 1 and df == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
+ dilation=1, padding=0,
+ stride=(stride[0] * uf, stride[1] * uf))
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
+
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
+
+ elif df > 1 and uf == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
+ dilation=1, padding=0,
+ stride=(stride[0] // df, stride[1] // df))
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
+
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
+
+ else:
+ raise NotImplementedError
+
+ return fold, unfold, normalization, weighting
+
+ @torch.no_grad()
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
+ cond_key=None, return_original_cond=False, bs=None, return_x=False):
+ x = super().get_input(batch, k)
+ if bs is not None:
+ x = x[:bs]
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+
+ if self.model.conditioning_key is not None:
+ if cond_key is None:
+ cond_key = self.cond_stage_key
+ if cond_key != self.first_stage_key:
+ if cond_key in ['caption', 'coordinates_bbox', "txt"]:
+ xc = batch[cond_key]
+ elif cond_key == 'class_label':
+ xc = batch
+ else:
+ xc = super().get_input(batch, cond_key).to(self.device)
+ else:
+ xc = x
+ if not self.cond_stage_trainable or force_c_encode:
+ if isinstance(xc, dict) or isinstance(xc, list):
+ c = self.get_learned_conditioning(xc)
+ else:
+ c = self.get_learned_conditioning(xc.to(self.device))
+ else:
+ c = xc
+ if bs is not None:
+ c = c[:bs]
+
+ if self.use_positional_encodings:
+ pos_x, pos_y = self.compute_latent_shifts(batch)
+ ckey = __conditioning_keys__[self.model.conditioning_key]
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
+
+ else:
+ c = None
+ xc = None
+ if self.use_positional_encodings:
+ pos_x, pos_y = self.compute_latent_shifts(batch)
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
+ out = [z, c]
+ if return_first_stage_outputs:
+ xrec = self.decode_first_stage(z)
+ out.extend([x, xrec])
+ if return_x:
+ out.extend([x])
+ if return_original_cond:
+ out.append(xc)
+ return out
+
+ @torch.no_grad()
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+ if predict_cids:
+ if z.dim() == 4:
+ z = torch.argmax(z.exp(), dim=1).long()
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+ z = 1. / self.scale_factor * z
+
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ uf = self.split_input_params["vqf"]
+ bs, nc, h, w = z.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
+
+ z = unfold(z) # (bn, nc * prod(**ks), L)
+ # 1. Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ # 2. apply model loop over last dim
+ if isinstance(self.first_stage_model, VQModelInterface):
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
+ force_not_quantize=predict_cids or force_not_quantize)
+ for i in range(z.shape[-1])]
+ else:
+
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
+ o = o * weighting
+ # Reverse 1. reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
+ return decoded
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ @torch.no_grad()
+ def encode_first_stage(self, x):
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ df = self.split_input_params["vqf"]
+ self.split_input_params['original_image_size'] = x.shape[-2:]
+ bs, nc, h, w = x.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
+ z = unfold(x) # (bn, nc * prod(**ks), L)
+ # Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1)
+ o = o * weighting
+
+ # Reverse reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization
+ return decoded
+
+ else:
+ return self.first_stage_model.encode(x)
+ else:
+ return self.first_stage_model.encode(x)
+
+ def shared_step(self, batch, **kwargs):
+ x, c = self.get_input(batch, self.first_stage_key)
+ loss = self(x, c)
+ return loss
+
+ def forward(self, x, c, *args, **kwargs):
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ if self.model.conditioning_key is not None:
+ assert c is not None
+ if self.cond_stage_trainable:
+ c = self.get_learned_conditioning(c)
+ if self.shorten_cond_schedule: # TODO: drop this option
+ tc = self.cond_ids[t].to(self.device)
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
+ return self.p_losses(x, c, t, *args, **kwargs)
+
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
+ def rescale_bbox(bbox):
+ x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
+ y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
+ return x0, y0, w, h
+
+ return [rescale_bbox(b) for b in bboxes]
+
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
+
+ if isinstance(cond, dict):
+ # hybrid case, cond is exptected to be a dict
+ pass
+ else:
+ if not isinstance(cond, list):
+ cond = [cond]
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
+ cond = {key: cond}
+
+ if hasattr(self, "split_input_params"):
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
+ assert not return_ids
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+
+ h, w = x_noisy.shape[-2:]
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
+
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
+ # Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
+
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
+ c_key = next(iter(cond.keys())) # get key
+ c = next(iter(cond.values())) # get value
+ assert (len(c) == 1) # todo extend to list with more than one elem
+ c = c[0] # get element
+
+ c = unfold(c)
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
+
+ elif self.cond_stage_key == 'coordinates_bbox':
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
+
+ # assuming padding of unfold is always 0 and its dilation is always 1
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
+ # as we are operating on latents, we need the factor from the original image size to the
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
+ rescale_latent = 2 ** (num_downs)
+
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
+ # need to rescale the tl patch coordinates to be in between (0,1)
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
+ for patch_nr in range(z.shape[-1])]
+
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
+ patch_limits = [(x_tl, y_tl,
+ rescale_latent * ks[0] / full_img_w,
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
+
+ # tokenize crop coordinates for the bounding boxes of the respective patches
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
+ print(patch_limits_tknzd[0].shape)
+ # cut tknzd crop position from conditioning
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
+ print(cut_cond.shape)
+
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
+ print(adapted_cond.shape)
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
+ print(adapted_cond.shape)
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
+ print(adapted_cond.shape)
+
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
+
+ else:
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
+
+ # apply model by loop over crops
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
+ assert not isinstance(output_list[0],
+ tuple) # todo cant deal with multiple model outputs check this never happens
+
+ o = torch.stack(output_list, axis=-1)
+ o = o * weighting
+ # Reverse reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ x_recon = fold(o) / normalization
+
+ else:
+ x_recon = self.model(x_noisy, t, **cond)
+
+ if isinstance(x_recon, tuple) and not return_ids:
+ return x_recon[0]
+ else:
+ return x_recon
+
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+ def _prior_bpd(self, x_start):
+ """
+ Get the prior KL term for the variational lower-bound, measured in
+ bits-per-dim.
+ This term can't be optimized, as it only depends on the encoder.
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :return: a batch of [N] KL values (in bits), one per batch element.
+ """
+ batch_size = x_start.shape[0]
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
+ return mean_flat(kl_prior) / np.log(2.0)
+
+ def p_losses(self, x_start, cond, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_output = self.apply_model(x_noisy, t, cond)
+
+ loss_dict = {}
+ prefix = 'train' if self.training else 'val'
+
+ if self.parameterization == "x0":
+ target = x_start
+ elif self.parameterization == "eps":
+ target = noise
+ else:
+ raise NotImplementedError()
+
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
+
+ logvar_t = self.logvar[t].to(self.device)
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
+ if self.learn_logvar:
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
+ loss_dict.update({'logvar': self.logvar.data.mean()})
+
+ loss = self.l_simple_weight * loss.mean()
+
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
+ loss += (self.original_elbo_weight * loss_vlb)
+ loss_dict.update({f'{prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
+ t_in = t
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
+
+ if score_corrector is not None:
+ assert self.parameterization == "eps"
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
+
+ if return_codebook_ids:
+ model_out, logits = model_out
+
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ else:
+ raise NotImplementedError()
+
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+ if quantize_denoised:
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ if return_codebook_ids:
+ return model_mean, posterior_variance, posterior_log_variance, logits
+ elif return_x0:
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
+ else:
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
+ b, *_, device = *x.shape, x.device
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
+ return_codebook_ids=return_codebook_ids,
+ quantize_denoised=quantize_denoised,
+ return_x0=return_x0,
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+ if return_codebook_ids:
+ raise DeprecationWarning("Support dropped.")
+ model_mean, _, model_log_variance, logits = outputs
+ elif return_x0:
+ model_mean, _, model_log_variance, x0 = outputs
+ else:
+ model_mean, _, model_log_variance = outputs
+
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+ if return_codebook_ids:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
+ if return_x0:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
+ else:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
+ log_every_t=None):
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ timesteps = self.num_timesteps
+ if batch_size is not None:
+ b = batch_size if batch_size is not None else shape[0]
+ shape = [batch_size] + list(shape)
+ else:
+ b = batch_size = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=self.device)
+ else:
+ img = x_T
+ intermediates = []
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
+ total=timesteps) if verbose else reversed(
+ range(0, timesteps))
+ if type(temperature) == float:
+ temperature = [temperature] * timesteps
+
+
+ ts_list = []
+ for step in range(timesteps):
+ ts_list.append(torch.full((b,), step, device=self.device, dtype=torch.long))
+ ts_list = torch.stack([ts for ts in ts_list])
+
+ for i in iterator:
+ ts_list = torch.roll(ts_list, shifts=1, dims=0)
+ ts = ts_list[0]
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img, x0_partial = self.p_sample(img, cond, ts,
+ clip_denoised=self.clip_denoised,
+ quantize_denoised=quantize_denoised, return_x0=True,
+ temperature=temperature[i], noise_dropout=noise_dropout,
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ htcore.mark_step()
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(x0_partial)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, start_T=None,
+ log_every_t=None):
+
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ device = self.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ intermediates = [img]
+ if timesteps is None:
+ timesteps = self.num_timesteps
+
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
+ range(0, timesteps))
+
+ if mask is not None:
+ assert x0 is not None
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
+
+ for i in iterator:
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img = self.p_sample(img, cond, ts,
+ clip_denoised=self.clip_denoised,
+ quantize_denoised=quantize_denoised)
+ if mask is not None:
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(img)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
+ verbose=True, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, shape=None,**kwargs):
+ if shape is None:
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+ return self.p_sample_loop(cond,
+ shape,
+ return_intermediates=return_intermediates, x_T=x_T,
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
+ mask=mask, x0=x0)
+
+ @torch.no_grad()
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
+ if ddim:
+ ddim_sampler = DDIMSampler(self)
+ if "shape" in kwargs:
+ shape = kwargs.pop("shape")
+ else:
+ shape = (self.channels, self.image_size, self.image_size)
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
+ shape, cond, verbose=False,
+ use_hpu_graph=True, **kwargs)
+
+ else:
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
+ return_intermediates=True, **kwargs)
+
+ return samples, intermediates
+
+ @torch.no_grad()
+ def get_unconditional_conditioning(self, batch_size, null_label=None):
+ if null_label is not None:
+ xc = null_label
+ if isinstance(xc, ListConfig):
+ xc = list(xc)
+ if isinstance(xc, dict) or isinstance(xc, list):
+ c = self.get_learned_conditioning(xc)
+ else:
+ if hasattr(xc, "to"):
+ xc = xc.to(self.device)
+ c = self.get_learned_conditioning(xc)
+ else:
+ # todo: get null label from cond_stage_model
+ raise NotImplementedError()
+ c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
+ return c
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
+ use_ema_scope=True,
+ **kwargs):
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
+ use_ddim = ddim_steps is not None
+
+ log = dict()
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
+ return_first_stage_outputs=True,
+ force_c_encode=True,
+ return_original_cond=True,
+ bs=N)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ log["inputs"] = x
+ log["reconstruction"] = xrec
+ if self.model.conditioning_key is not None:
+ if hasattr(self.cond_stage_model, "decode"):
+ xc = self.cond_stage_model.decode(c)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ["caption", "txt"]:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
+ log["conditioning"] = xc
+ elif self.cond_stage_key == 'class_label':
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
+ log['conditioning'] = xc
+ elif isimage(xc):
+ log["conditioning"] = xc
+ if ismap(xc):
+ log["original_conditioning"] = self.to_rgb(xc)
+
+ if plot_diffusion_rows:
+ # get diffusion row
+ diffusion_row = list()
+ z_start = z[:n_row]
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(z_start)
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+ diffusion_row.append(self.decode_first_stage(z_noisy))
+
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+ log["diffusion_row"] = diffusion_grid
+
+ if sample:
+ # get denoise row
+ with ema_scope("Sampling"):
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
+ ddim_steps=ddim_steps,eta=ddim_eta)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+ x_samples = self.decode_first_stage(samples)
+ log["samples"] = x_samples
+ if plot_denoise_rows:
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+ log["denoise_row"] = denoise_grid
+
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
+ self.first_stage_model, IdentityFirstStage):
+ # also display when quantizing x0 while sampling
+ with ema_scope("Plotting Quantized Denoised"):
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
+ ddim_steps=ddim_steps,eta=ddim_eta,
+ quantize_denoised=True)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
+ # quantize_denoised=True)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_x0_quantized"] = x_samples
+
+ if unconditional_guidance_scale > 1.0:
+ uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+ with ema_scope("Sampling with classifier-free guidance"):
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=uc,
+ )
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+
+ if inpaint:
+ # make a simple center square
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
+ mask = torch.ones(N, h, w).to(self.device)
+ # zeros will be filled in
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
+ mask = mask[:, None, ...]
+ with ema_scope("Plotting Inpaint"):
+
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_inpainting"] = x_samples
+ log["mask"] = mask
+
+ # outpaint
+ mask = 1. - mask
+ with ema_scope("Plotting Outpaint"):
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_outpainting"] = x_samples
+
+ if plot_progressive_rows:
+ with ema_scope("Plotting Progressives"):
+ img, progressives = self.progressive_denoising(c,
+ shape=(self.channels, self.image_size, self.image_size),
+ batch_size=N)
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+ log["progressive_row"] = prog_row
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def optimizer_zero_grad(self, epoch, batch_idx, optimizer):
+ optimizer.zero_grad(set_to_none=True)
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ params = list(self.model.parameters())
+ if self.cond_stage_trainable:
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
+ params = params + list(self.cond_stage_model.parameters())
+ if self.learn_logvar:
+ print('Diffusion model optimizing logvar')
+ params.append(self.logvar)
+
+ if self.use_fused_adamw and self.hpu:
+ from habana_frameworks.torch.hpex.optimizers import FusedAdamW
+ opt = FusedAdamW(params, lr=lr, eps=1e-08)
+ else:
+ opt = torch.optim.AdamW(params, lr=lr) # Default python implementation
+
+ if self.use_scheduler:
+ assert 'target' in self.scheduler_config
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ }]
+ return [opt], scheduler
+ return opt
+
+ @torch.no_grad()
+ def to_rgb(self, x):
+ x = x.float()
+ if not hasattr(self, "colorize"):
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
+ x = nn.functional.conv2d(x, weight=self.colorize)
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
+ return x
+
+
+class DiffusionWrapper(pl.LightningModule):
+ def __init__(self, diff_model_config, conditioning_key):
+ super().__init__()
+ self.diffusion_model = instantiate_from_config(diff_model_config)
+ self.conditioning_key = conditioning_key
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm']
+
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
+ if self.conditioning_key is None:
+ out = self.diffusion_model(x, t)
+ elif self.conditioning_key == 'concat':
+ xc = torch.cat([x] + c_concat, dim=1)
+ out = self.diffusion_model(xc, t)
+ elif self.conditioning_key == 'crossattn':
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(x, t, context=cc)
+ elif self.conditioning_key == 'hybrid':
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc)
+ elif self.conditioning_key == 'hybrid-adm':
+ assert c_adm is not None
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm)
+ elif self.conditioning_key == 'adm':
+ cc = c_crossattn[0]
+ out = self.diffusion_model(x, t, y=cc)
+ else:
+ raise NotImplementedError()
+
+ return out
+
+
+class LatentUpscaleDiffusion(LatentDiffusion):
+ def __init__(self, *args, low_scale_config, low_scale_key="LR", **kwargs):
+ super().__init__(*args, **kwargs)
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
+ assert not self.cond_stage_trainable
+ self.instantiate_low_stage(low_scale_config)
+ self.low_scale_key = low_scale_key
+
+ def instantiate_low_stage(self, config):
+ model = instantiate_from_config(config)
+ self.low_scale_model = model.eval()
+ self.low_scale_model.train = disabled_train
+ for param in self.low_scale_model.parameters():
+ param.requires_grad = False
+
+ @torch.no_grad()
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
+ if not log_mode:
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
+ else:
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
+ force_c_encode=True, return_original_cond=True, bs=bs)
+ x_low = batch[self.low_scale_key][:bs]
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
+ zx, noise_level = self.low_scale_model(x_low)
+ all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
+ #import pudb; pu.db
+ if log_mode:
+ # TODO: maybe disable if too expensive
+ interpretability = False
+ if interpretability:
+ zx = zx[:, :, ::2, ::2]
+ x_low_rec = self.low_scale_model.decode(zx)
+ return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
+ return z, all_conds
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
+ **kwargs):
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
+ use_ddim = ddim_steps is not None
+
+ log = dict()
+ z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
+ log_mode=True)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ log["inputs"] = x
+ log["reconstruction"] = xrec
+ log["x_lr"] = x_low
+ log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
+ if self.model.conditioning_key is not None:
+ if hasattr(self.cond_stage_model, "decode"):
+ xc = self.cond_stage_model.decode(c)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ["caption", "txt"]:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
+ log["conditioning"] = xc
+ elif self.cond_stage_key == 'class_label':
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
+ log['conditioning'] = xc
+ elif isimage(xc):
+ log["conditioning"] = xc
+ if ismap(xc):
+ log["original_conditioning"] = self.to_rgb(xc)
+
+ if plot_diffusion_rows:
+ # get diffusion row
+ diffusion_row = list()
+ z_start = z[:n_row]
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(z_start)
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+ diffusion_row.append(self.decode_first_stage(z_noisy))
+
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+ log["diffusion_row"] = diffusion_grid
+
+ if sample:
+ # get denoise row
+ with ema_scope("Sampling"):
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+ x_samples = self.decode_first_stage(samples)
+ log["samples"] = x_samples
+ if plot_denoise_rows:
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+ log["denoise_row"] = denoise_grid
+
+ if unconditional_guidance_scale > 1.0:
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+ # TODO explore better "unconditional" choices for the other keys
+ # maybe guide away from empty text label and highest noise level and maximally degraded zx?
+ uc = dict()
+ for k in c:
+ if k == "c_crossattn":
+ assert isinstance(c[k], list) and len(c[k]) == 1
+ uc[k] = [uc_tmp]
+ elif k == "c_adm": # todo: only run with text-based guidance?
+ assert isinstance(c[k], torch.Tensor)
+ uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
+ elif isinstance(c[k], list):
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
+ else:
+ uc[k] = c[k]
+
+ with ema_scope("Sampling with classifier-free guidance"):
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=uc,
+ )
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+
+ if plot_progressive_rows:
+ with ema_scope("Plotting Progressives"):
+ img, progressives = self.progressive_denoising(c,
+ shape=(self.channels, self.image_size, self.image_size),
+ batch_size=N)
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+ log["progressive_row"] = prog_row
+
+ return log
+
+
+class LatentInpaintDiffusion(LatentDiffusion):
+ """
+ can either run as pure inpainting model (only concat mode) or with mixed conditionings,
+ e.g. mask as concat and text via cross-attn.
+ To disable finetuning mode, set finetune_keys to None
+ """
+ def __init__(self,
+ finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
+ "model_ema.diffusion_modelinput_blocks00weight"
+ ),
+ concat_keys=("mask", "masked_image"),
+ masked_image_key="masked_image",
+ keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
+ c_concat_log_start=None, # to log reconstruction of c_concat codes
+ c_concat_log_end=None,
+ *args, **kwargs
+ ):
+ ckpt_path = kwargs.pop("ckpt_path", None)
+ ignore_keys = kwargs.pop("ignore_keys", list())
+ super().__init__(*args, **kwargs)
+ self.masked_image_key = masked_image_key
+ assert self.masked_image_key in concat_keys
+ self.finetune_keys = finetune_keys
+ self.concat_keys = concat_keys
+ self.keep_dims = keep_finetune_dims
+ self.c_concat_log_start = c_concat_log_start
+ self.c_concat_log_end = c_concat_log_end
+ if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
+ if exists(ckpt_path):
+ self.init_from_ckpt(ckpt_path, ignore_keys)
+
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+
+ # make it explicit, finetune by including extra input channels
+ if exists(self.finetune_keys) and k in self.finetune_keys:
+ new_entry = None
+ for name, param in self.named_parameters():
+ if name in self.finetune_keys:
+ print(f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
+ new_entry = torch.zeros_like(param) # zero init
+ assert exists(new_entry), 'did not find matching parameter to modify'
+ new_entry[:, :self.keep_dims, ...] = sd[k]
+ sd[k] = new_entry
+
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ if len(unexpected) > 0:
+ print(f"Unexpected Keys: {unexpected}")
+
+ @torch.no_grad()
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
+ # note: restricted to non-trainable encoders currently
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
+ force_c_encode=True, return_original_cond=True, bs=bs)
+
+ assert exists(self.concat_keys)
+ c_cat = list()
+ for ck in self.concat_keys:
+ cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
+ if bs is not None:
+ cc = cc[:bs]
+ cc = cc.to(self.device)
+ bchw = z.shape
+ if ck != self.masked_image_key:
+ cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
+ else:
+ cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
+ c_cat.append(cc)
+ c_cat = torch.cat(c_cat, dim=1)
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
+ if return_first_stage_outputs:
+ return z, all_conds, x, xrec, xc
+ return z, all_conds
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
+ use_ema_scope=True,
+ **kwargs):
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
+ use_ddim = ddim_steps is not None
+
+ log = dict()
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
+ c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ log["inputs"] = x
+ log["reconstruction"] = xrec
+ if self.model.conditioning_key is not None:
+ if hasattr(self.cond_stage_model, "decode"):
+ xc = self.cond_stage_model.decode(c)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ["caption", "txt"]:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
+ log["conditioning"] = xc
+ elif self.cond_stage_key == 'class_label':
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
+ log['conditioning'] = xc
+ elif isimage(xc):
+ log["conditioning"] = xc
+ if ismap(xc):
+ log["original_conditioning"] = self.to_rgb(xc)
+
+ if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
+ log["c_concat_decoded"] = self.decode_first_stage(c_cat[:,self.c_concat_log_start:self.c_concat_log_end])
+
+ if plot_diffusion_rows:
+ # get diffusion row
+ diffusion_row = list()
+ z_start = z[:n_row]
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(z_start)
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+ diffusion_row.append(self.decode_first_stage(z_noisy))
+
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+ log["diffusion_row"] = diffusion_grid
+
+ if sample:
+ # get denoise row
+ with ema_scope("Sampling"):
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
+ batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+ x_samples = self.decode_first_stage(samples)
+ log["samples"] = x_samples
+ if plot_denoise_rows:
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+ log["denoise_row"] = denoise_grid
+
+ if unconditional_guidance_scale > 1.0:
+ uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+ uc_cat = c_cat
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
+ with ema_scope("Sampling with classifier-free guidance"):
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
+ batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=uc_full,
+ )
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+
+ log["masked_image"] = rearrange(batch["masked_image"],
+ 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
+ return log
+
+
+class Layout2ImgDiffusion(LatentDiffusion):
+ # TODO: move all layout-specific hacks to this class
+ def __init__(self, cond_stage_key, *args, **kwargs):
+ assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
+ super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
+
+ def log_images(self, batch, N=8, *args, **kwargs):
+ logs = super().log_images(batch=batch, N=N, *args, **kwargs)
+
+ key = 'train' if self.training else 'validation'
+ dset = self.trainer.datamodule.datasets[key]
+ mapper = dset.conditional_builders[self.cond_stage_key]
+
+ bbox_imgs = []
+ map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
+ for tknzd_bbox in batch[self.cond_stage_key][:N]:
+ bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
+ bbox_imgs.append(bboximg)
+
+ cond_img = torch.stack(bbox_imgs, dim=0)
+ logs['bbox_image'] = cond_img
+ return logs
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/plms.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/plms.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ddcfd89ea3d3cfc9b7efa3ca8082e6b3ecc1a2a
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/plms.py
@@ -0,0 +1,251 @@
+###############################################################################
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+###############################################################################
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+from functools import partial
+
+from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
+from ldm.models.diffusion.sampling_util import norm_thresholding
+
+import habana_compat
+
+
+class PLMSSampler(object):
+ def __init__(self, model, schedule="linear", **kwargs):
+ super().__init__()
+ self.model = model
+ self.ddpm_num_timesteps = model.num_timesteps
+ self.schedule = schedule
+
+ def register_buffer(self, name, attr):
+ if self.model.device == "cuda":
+ if type(attr) == torch.Tensor:
+ if attr.device != torch.device("cuda"):
+ attr = attr.to(torch.device("cuda"))
+ setattr(self, name, attr)
+
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
+ if ddim_eta != 0:
+ raise ValueError('ddim_eta must be 0 for PLMS')
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+ alphas_cumprod = self.model.alphas_cumprod
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+ self.register_buffer('betas', to_torch(self.model.betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+ # ddim sampling parameters
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+ ddim_timesteps=self.ddim_timesteps,
+ eta=ddim_eta,verbose=verbose)
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
+ self.register_buffer('ddim_alphas', ddim_alphas)
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ dynamic_threshold=None,
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for PLMS sampling is {size}')
+
+ samples, intermediates = self.plms_sampling(conditioning, size,
+ callback=callback,
+ img_callback=img_callback,
+ quantize_denoised=quantize_x0,
+ mask=mask, x0=x0,
+ ddim_use_original_steps=False,
+ noise_dropout=noise_dropout,
+ temperature=temperature,
+ score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ x_T=x_T,
+ log_every_t=log_every_t,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ dynamic_threshold=dynamic_threshold,
+ )
+ return samples, intermediates
+
+ @torch.no_grad()
+ def plms_sampling(self, cond, shape,
+ x_T=None, ddim_use_original_steps=False,
+ callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, log_every_t=100,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
+ dynamic_threshold=None):
+ device = self.model.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ if timesteps is None:
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+ elif timesteps is not None and not ddim_use_original_steps:
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+ timesteps = self.ddim_timesteps[:subset_end]
+
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
+
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
+ old_eps = []
+
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
+
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
+ img = img_orig * mask + (1. - mask) * img
+
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+ quantize_denoised=quantize_denoised, temperature=temperature,
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ old_eps=old_eps, t_next=ts_next,
+ dynamic_threshold=dynamic_threshold)
+ habana_compat.mark_step()
+ img, pred_x0, e_t = outs
+ old_eps.append(e_t)
+ if len(old_eps) >= 4:
+ old_eps.pop(0)
+ if callback: callback(i)
+ if img_callback: img_callback(pred_x0, i)
+
+ if index % log_every_t == 0 or index == total_steps - 1:
+ intermediates['x_inter'].append(img)
+ intermediates['pred_x0'].append(pred_x0)
+
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
+ dynamic_threshold=None):
+ b, *_, device = *x.shape, x.device
+
+ def get_model_output(x, t):
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+ e_t = self.model.apply_model(x, t, c)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t] * 2)
+ c_in = torch.cat([unconditional_conditioning, c])
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+ if score_corrector is not None:
+ assert self.model.parameterization == "eps"
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+ return e_t
+
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+
+ def get_x_prev_and_pred_x0(e_t, index):
+ # select parameters corresponding to the currently considered timestep
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+ # current prediction for x_0
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ if quantize_denoised:
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+ if dynamic_threshold is not None:
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+ return x_prev, pred_x0
+
+ e_t = get_model_output(x, t)
+ if len(old_eps) == 0:
+ # Pseudo Improved Euler (2nd order)
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
+ e_t_next = get_model_output(x_prev, t_next)
+ e_t_prime = (e_t + e_t_next) / 2
+ elif len(old_eps) == 1:
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
+ elif len(old_eps) == 2:
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
+ elif len(old_eps) >= 3:
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
+
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
+
+ return x_prev, pred_x0, e_t
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/sampling_util.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/sampling_util.py
new file mode 100644
index 0000000000000000000000000000000000000000..a0ae00fe86044456fc403af403be71ff15112424
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/diffusion/sampling_util.py
@@ -0,0 +1,50 @@
+import torch
+import numpy as np
+
+
+def append_dims(x, target_dims):
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions.
+ From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
+ dims_to_append = target_dims - x.ndim
+ if dims_to_append < 0:
+ raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
+ return x[(...,) + (None,) * dims_to_append]
+
+
+def renorm_thresholding(x0, value):
+ # renorm
+ pred_max = x0.max()
+ pred_min = x0.min()
+ pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1
+ pred_x0 = 2 * pred_x0 - 1. # -1 ... 1
+
+ s = torch.quantile(
+ rearrange(pred_x0, 'b ... -> b (...)').abs(),
+ value,
+ dim=-1
+ )
+ s.clamp_(min=1.0)
+ s = s.view(-1, *((1,) * (pred_x0.ndim - 1)))
+
+ # clip by threshold
+ # pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max
+
+ # temporary hack: numpy on cpu
+ pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy()
+ pred_x0 = torch.tensor(pred_x0).to(self.model.device)
+
+ # re.renorm
+ pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1
+ pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range
+ return pred_x0
+
+
+def norm_thresholding(x0, value):
+ s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
+ return x0 * (value / s)
+
+
+def spatial_norm_thresholding(x0, value):
+ # b c h w
+ s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
+ return x0 * (value / s)
\ No newline at end of file
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/attention.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..195be7ace1e277e585b7b1719c7d759234ab22e8
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/attention.py
@@ -0,0 +1,266 @@
+from inspect import isfunction
+import math
+import torch
+import torch.nn.functional as F
+from torch import nn, einsum
+from einops import rearrange, repeat
+
+from ldm.modules.diffusionmodules.util import checkpoint
+
+
+def exists(val):
+ return val is not None
+
+
+def uniq(arr):
+ return{el: True for el in arr}.keys()
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def max_neg_value(t):
+ return -torch.finfo(t.dtype).max
+
+
+def init_(tensor):
+ dim = tensor.shape[-1]
+ std = 1 / math.sqrt(dim)
+ tensor.uniform_(-std, std)
+ return tensor
+
+
+# feedforward
+class GEGLU(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x):
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = default(dim_out, dim)
+ project_in = nn.Sequential(
+ nn.Linear(dim, inner_dim),
+ nn.GELU()
+ ) if not glu else GEGLU(dim, inner_dim)
+
+ self.net = nn.Sequential(
+ project_in,
+ nn.Dropout(dropout),
+ nn.Linear(inner_dim, dim_out)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def Normalize(in_channels):
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+class LinearAttention(nn.Module):
+ def __init__(self, dim, heads=4, dim_head=32):
+ super().__init__()
+ self.heads = heads
+ hidden_dim = dim_head * heads
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
+
+ def forward(self, x):
+ b, c, h, w = x.shape
+ qkv = self.to_qkv(x)
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
+ k = k.softmax(dim=-1)
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
+ return self.to_out(out)
+
+
+class SpatialSelfAttention(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.in_channels = in_channels
+
+ self.norm = Normalize(in_channels)
+ self.q = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.k = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.v = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.proj_out = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ def forward(self, x):
+ h_ = x
+ h_ = self.norm(h_)
+ q = self.q(h_)
+ k = self.k(h_)
+ v = self.v(h_)
+
+ # compute attention
+ b,c,h,w = q.shape
+ q = rearrange(q, 'b c h w -> b (h w) c')
+ k = rearrange(k, 'b c h w -> b c (h w)')
+ w_ = torch.einsum('bij,bjk->bik', q, k)
+
+ w_ = w_ * (int(c)**(-0.5))
+ w_ = torch.nn.functional.softmax(w_, dim=2)
+
+ # attend to values
+ v = rearrange(v, 'b c h w -> b c (h w)')
+ w_ = rearrange(w_, 'b i j -> b j i')
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
+ h_ = self.proj_out(h_)
+
+ return x+h_
+
+
+class CrossAttention(nn.Module):
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
+ super().__init__()
+ inner_dim = dim_head * heads
+ context_dim = default(context_dim, query_dim)
+
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
+
+ self.to_out = nn.Sequential(
+ nn.Linear(inner_dim, query_dim),
+ nn.Dropout(dropout)
+ )
+
+ def forward(self, x, context=None, mask=None):
+ h = self.heads
+
+ q = self.to_q(x)
+ context = default(context, x)
+ k = self.to_k(context)
+ v = self.to_v(context)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
+
+ if exists(mask):
+ mask = rearrange(mask, 'b ... -> b (...)')
+ max_neg_value = -torch.finfo(sim.dtype).max
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
+ sim.masked_fill_(~mask, max_neg_value)
+
+ # attention, what we cannot get enough of
+ attn = sim.softmax(dim=-1)
+
+ out = einsum('b i j, b j d -> b i d', attn, v)
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
+ return self.to_out(out)
+
+
+class BasicTransformerBlock(nn.Module):
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=False,
+ disable_self_attn=False):
+ super().__init__()
+ self.disable_self_attn = disable_self_attn
+ self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
+ context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
+ self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
+ self.norm1 = nn.LayerNorm(dim)
+ self.norm2 = nn.LayerNorm(dim)
+ self.norm3 = nn.LayerNorm(dim)
+ self.checkpoint = checkpoint
+
+ def forward(self, x, context=None):
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
+
+ def _forward(self, x, context=None):
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
+ x = self.attn2(self.norm2(x), context=context) + x
+ x = self.ff(self.norm3(x)) + x
+ return x
+
+
+class SpatialTransformer(nn.Module):
+ """
+ Transformer block for image-like data.
+ First, project the input (aka embedding)
+ and reshape to b, t, d.
+ Then apply standard transformer action.
+ Finally, reshape to image
+ """
+ def __init__(self, in_channels, n_heads, d_head,
+ depth=1, dropout=0., context_dim=None,
+ disable_self_attn=False):
+ super().__init__()
+ self.in_channels = in_channels
+ inner_dim = n_heads * d_head
+ self.norm = Normalize(in_channels)
+
+ self.proj_in = nn.Conv2d(in_channels,
+ inner_dim,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ self.transformer_blocks = nn.ModuleList(
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
+ disable_self_attn=disable_self_attn)
+ for d in range(depth)]
+ )
+
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0))
+
+ def forward(self, x, context=None):
+ # note: if no context is given, cross-attention defaults to self-attention
+ b, c, h, w = x.shape
+ x_in = x
+ x = self.norm(x)
+ x = self.proj_in(x)
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
+ for block in self.transformer_blocks:
+ x = block(x, context=context)
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
+ x = self.proj_out(x)
+ return x + x_in
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/diffusionmodules/__init__.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/diffusionmodules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/diffusionmodules/openaimodel.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/diffusionmodules/openaimodel.py
new file mode 100644
index 0000000000000000000000000000000000000000..a1184f0b4cda9290ba3c7e8777b77208cf080168
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/diffusionmodules/openaimodel.py
@@ -0,0 +1,998 @@
+from abc import abstractmethod
+from functools import partial
+import math
+from typing import Iterable
+
+import numpy as np
+import torch as th
+import torch.nn as nn
+import torch.nn.functional as F
+
+from ldm.modules.diffusionmodules.util import (
+ checkpoint,
+ conv_nd,
+ linear,
+ avg_pool_nd,
+ zero_module,
+ normalization,
+ timestep_embedding,
+)
+from ldm.modules.attention import SpatialTransformer
+from ldm.util import exists
+
+
+# dummy replace
+def convert_module_to_f16(x):
+ pass
+
+def convert_module_to_f32(x):
+ pass
+
+
+## go
+class AttentionPool2d(nn.Module):
+ """
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
+ """
+
+ def __init__(
+ self,
+ spacial_dim: int,
+ embed_dim: int,
+ num_heads_channels: int,
+ output_dim: int = None,
+ ):
+ super().__init__()
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
+ self.num_heads = embed_dim // num_heads_channels
+ self.attention = QKVAttention(self.num_heads)
+
+ def forward(self, x):
+ b, c, *_spatial = x.shape
+ x = x.reshape(b, c, -1) # NC(HW)
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
+ x = self.qkv_proj(x)
+ x = self.attention(x)
+ x = self.c_proj(x)
+ return x[:, :, 0]
+
+
+class TimestepBlock(nn.Module):
+ """
+ Any module where forward() takes timestep embeddings as a second argument.
+ """
+
+ @abstractmethod
+ def forward(self, x, emb):
+ """
+ Apply the module to `x` given `emb` timestep embeddings.
+ """
+
+
+class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
+ """
+ A sequential module that passes timestep embeddings to the children that
+ support it as an extra input.
+ """
+
+ def forward(self, x, emb, context=None):
+ for layer in self:
+ if isinstance(layer, TimestepBlock):
+ x = layer(x, emb)
+ elif isinstance(layer, SpatialTransformer):
+ x = layer(x, context)
+ else:
+ x = layer(x)
+ return x
+
+
+class Upsample(nn.Module):
+ """
+ An upsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ upsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ if use_conv:
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ if self.dims == 3:
+ x = F.interpolate(
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
+ )
+ else:
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
+ if self.use_conv:
+ x = self.conv(x)
+ return x
+
+class TransposedUpsample(nn.Module):
+ 'Learned 2x upsampling without padding'
+ def __init__(self, channels, out_channels=None, ks=5):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
+
+ def forward(self,x):
+ return self.up(x)
+
+
+class Downsample(nn.Module):
+ """
+ A downsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ downsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ stride = 2 if dims != 3 else (1, 2, 2)
+ if use_conv:
+ self.op = conv_nd(
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
+ )
+ else:
+ assert self.channels == self.out_channels
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ return self.op(x)
+
+
+class ResBlock(TimestepBlock):
+ """
+ A residual block that can optionally change the number of channels.
+ :param channels: the number of input channels.
+ :param emb_channels: the number of timestep embedding channels.
+ :param dropout: the rate of dropout.
+ :param out_channels: if specified, the number of out channels.
+ :param use_conv: if True and out_channels is specified, use a spatial
+ convolution instead of a smaller 1x1 convolution to change the
+ channels in the skip connection.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
+ :param up: if True, use this block for upsampling.
+ :param down: if True, use this block for downsampling.
+ """
+
+ def __init__(
+ self,
+ channels,
+ emb_channels,
+ dropout,
+ out_channels=None,
+ use_conv=False,
+ use_scale_shift_norm=False,
+ dims=2,
+ use_checkpoint=False,
+ up=False,
+ down=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.emb_channels = emb_channels
+ self.dropout = dropout
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_checkpoint = use_checkpoint
+ self.use_scale_shift_norm = use_scale_shift_norm
+
+ self.in_layers = nn.Sequential(
+ normalization(channels),
+ nn.SiLU(),
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
+ )
+
+ self.updown = up or down
+
+ if up:
+ self.h_upd = Upsample(channels, False, dims)
+ self.x_upd = Upsample(channels, False, dims)
+ elif down:
+ self.h_upd = Downsample(channels, False, dims)
+ self.x_upd = Downsample(channels, False, dims)
+ else:
+ self.h_upd = self.x_upd = nn.Identity()
+
+ self.emb_layers = nn.Sequential(
+ nn.SiLU(),
+ linear(
+ emb_channels,
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
+ ),
+ )
+ self.out_layers = nn.Sequential(
+ normalization(self.out_channels),
+ nn.SiLU(),
+ nn.Dropout(p=dropout),
+ zero_module(
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
+ ),
+ )
+
+ if self.out_channels == channels:
+ self.skip_connection = nn.Identity()
+ elif use_conv:
+ self.skip_connection = conv_nd(
+ dims, channels, self.out_channels, 3, padding=1
+ )
+ else:
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
+
+ def forward(self, x, emb):
+ """
+ Apply the block to a Tensor, conditioned on a timestep embedding.
+ :param x: an [N x C x ...] Tensor of features.
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ return checkpoint(
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
+ )
+
+
+ def _forward(self, x, emb):
+ if self.updown:
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
+ h = in_rest(x)
+ h = self.h_upd(h)
+ x = self.x_upd(x)
+ h = in_conv(h)
+ else:
+ h = self.in_layers(x)
+ emb_out = self.emb_layers(emb).type(h.dtype)
+ while len(emb_out.shape) < len(h.shape):
+ emb_out = emb_out[..., None]
+ if self.use_scale_shift_norm:
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
+ scale, shift = th.chunk(emb_out, 2, dim=1)
+ h = out_norm(h) * (1 + scale) + shift
+ h = out_rest(h)
+ else:
+ h = h + emb_out
+ h = self.out_layers(h)
+ return self.skip_connection(x) + h
+
+
+class AttentionBlock(nn.Module):
+ """
+ An attention block that allows spatial positions to attend to each other.
+ Originally ported from here, but adapted to the N-d case.
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
+ """
+
+ def __init__(
+ self,
+ channels,
+ num_heads=1,
+ num_head_channels=-1,
+ use_checkpoint=False,
+ use_new_attention_order=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ if num_head_channels == -1:
+ self.num_heads = num_heads
+ else:
+ assert (
+ channels % num_head_channels == 0
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
+ self.num_heads = channels // num_head_channels
+ self.use_checkpoint = use_checkpoint
+ self.norm = normalization(channels)
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
+ if use_new_attention_order:
+ # split qkv before split heads
+ self.attention = QKVAttention(self.num_heads)
+ else:
+ # split heads before split qkv
+ self.attention = QKVAttentionLegacy(self.num_heads)
+
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
+
+ def forward(self, x):
+ #return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
+ return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
+ #return pt_checkpoint(self._forward, x) # pytorch
+
+ def _forward(self, x):
+ b, c, *spatial = x.shape
+ x = x.reshape(b, c, -1)
+ qkv = self.qkv(self.norm(x))
+ h = self.attention(qkv)
+ h = self.proj_out(h)
+ return (x + h).reshape(b, c, *spatial)
+
+
+def count_flops_attn(model, _x, y):
+ """
+ A counter for the `thop` package to count the operations in an
+ attention operation.
+ Meant to be used like:
+ macs, params = thop.profile(
+ model,
+ inputs=(inputs, timestamps),
+ custom_ops={QKVAttention: QKVAttention.count_flops},
+ )
+ """
+ b, c, *spatial = y[0].shape
+ num_spatial = int(np.prod(spatial))
+ # We perform two matmuls with the same number of ops.
+ # The first computes the weight matrix, the second computes
+ # the combination of the value vectors.
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
+ model.total_ops += th.DoubleTensor([matmul_ops])
+
+
+class QKVAttentionLegacy(nn.Module):
+ """
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
+ """
+
+ def __init__(self, n_heads):
+ super().__init__()
+ self.n_heads = n_heads
+
+ def forward(self, qkv):
+ """
+ Apply QKV attention.
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x (H * C) x T] tensor after attention.
+ """
+ bs, width, length = qkv.shape
+ assert width % (3 * self.n_heads) == 0
+ ch = width // (3 * self.n_heads)
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ weight = th.einsum(
+ "bct,bcs->bts", q * scale, k * scale
+ ) # More stable with f16 than dividing afterwards
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+ a = th.einsum("bts,bcs->bct", weight, v)
+ return a.reshape(bs, -1, length)
+
+ @staticmethod
+ def count_flops(model, _x, y):
+ return count_flops_attn(model, _x, y)
+
+
+class QKVAttention(nn.Module):
+ """
+ A module which performs QKV attention and splits in a different order.
+ """
+
+ def __init__(self, n_heads):
+ super().__init__()
+ self.n_heads = n_heads
+
+ def forward(self, qkv):
+ """
+ Apply QKV attention.
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x (H * C) x T] tensor after attention.
+ """
+ bs, width, length = qkv.shape
+ assert width % (3 * self.n_heads) == 0
+ ch = width // (3 * self.n_heads)
+ q, k, v = qkv.chunk(3, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ weight = th.einsum(
+ "bct,bcs->bts",
+ (q * scale).view(bs * self.n_heads, ch, length),
+ (k * scale).view(bs * self.n_heads, ch, length),
+ ) # More stable with f16 than dividing afterwards
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
+ return a.reshape(bs, -1, length)
+
+ @staticmethod
+ def count_flops(model, _x, y):
+ return count_flops_attn(model, _x, y)
+
+
+class UNetModel(nn.Module):
+ """
+ The full UNet model with attention and timestep embedding.
+ :param in_channels: channels in the input Tensor.
+ :param model_channels: base channel count for the model.
+ :param out_channels: channels in the output Tensor.
+ :param num_res_blocks: number of residual blocks per downsample.
+ :param attention_resolutions: a collection of downsample rates at which
+ attention will take place. May be a set, list, or tuple.
+ For example, if this contains 4, then at 4x downsampling, attention
+ will be used.
+ :param dropout: the dropout probability.
+ :param channel_mult: channel multiplier for each level of the UNet.
+ :param conv_resample: if True, use learned convolutions for upsampling and
+ downsampling.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param num_classes: if specified (as an int), then this model will be
+ class-conditional with `num_classes` classes.
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
+ :param num_heads: the number of attention heads in each attention layer.
+ :param num_heads_channels: if specified, ignore num_heads and instead use
+ a fixed channel width per attention head.
+ :param num_heads_upsample: works with num_heads to set a different number
+ of heads for upsampling. Deprecated.
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
+ :param resblock_updown: use residual blocks for up/downsampling.
+ :param use_new_attention_order: use a different attention pattern for potentially
+ increased efficiency.
+ """
+
+ def __init__(
+ self,
+ image_size,
+ in_channels,
+ model_channels,
+ out_channels,
+ num_res_blocks,
+ attention_resolutions,
+ dropout=0,
+ channel_mult=(1, 2, 4, 8),
+ conv_resample=True,
+ dims=2,
+ num_classes=None,
+ use_checkpoint=False,
+ use_fp16=False,
+ num_heads=-1,
+ num_head_channels=-1,
+ num_heads_upsample=-1,
+ use_scale_shift_norm=False,
+ resblock_updown=False,
+ use_new_attention_order=False,
+ use_spatial_transformer=False, # custom transformer support
+ transformer_depth=1, # custom transformer support
+ context_dim=None, # custom transformer support
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
+ legacy=True,
+ disable_self_attentions=None,
+ num_attention_blocks=None
+ ):
+ super().__init__()
+ if use_spatial_transformer:
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
+
+ if context_dim is not None:
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
+ from omegaconf.listconfig import ListConfig
+ if type(context_dim) == ListConfig:
+ context_dim = list(context_dim)
+
+ if num_heads_upsample == -1:
+ num_heads_upsample = num_heads
+
+ if num_heads == -1:
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
+
+ if num_head_channels == -1:
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
+
+ self.image_size = image_size
+ self.in_channels = in_channels
+ self.model_channels = model_channels
+ self.out_channels = out_channels
+ if isinstance(num_res_blocks, int):
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
+ else:
+ if len(num_res_blocks) != len(channel_mult):
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
+ "as a list/tuple (per-level) with the same length as channel_mult")
+ self.num_res_blocks = num_res_blocks
+ #self.num_res_blocks = num_res_blocks
+ if disable_self_attentions is not None:
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
+ assert len(disable_self_attentions) == len(channel_mult)
+ if num_attention_blocks is not None:
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
+ f"attention will still not be set.") # todo: convert to warning
+
+ self.attention_resolutions = attention_resolutions
+ self.dropout = dropout
+ self.channel_mult = channel_mult
+ self.conv_resample = conv_resample
+ self.num_classes = num_classes
+ self.use_checkpoint = use_checkpoint
+ self.dtype = th.float16 if use_fp16 else th.float32
+ self.num_heads = num_heads
+ self.num_head_channels = num_head_channels
+ self.num_heads_upsample = num_heads_upsample
+ self.predict_codebook_ids = n_embed is not None
+
+ time_embed_dim = model_channels * 4
+ self.time_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ nn.SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+
+ if self.num_classes is not None:
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
+
+ self.input_blocks = nn.ModuleList(
+ [
+ TimestepEmbedSequential(
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
+ )
+ ]
+ )
+ self._feature_size = model_channels
+ input_block_chans = [model_channels]
+ ch = model_channels
+ ds = 1
+ for level, mult in enumerate(channel_mult):
+ for nr in range(self.num_res_blocks[level]):
+ layers = [
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=mult * model_channels,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = mult * model_channels
+ if ds in attention_resolutions:
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ if legacy:
+ #num_heads = 1
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+ if exists(disable_self_attentions):
+ disabled_sa = disable_self_attentions[level]
+ else:
+ disabled_sa = False
+
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=dim_head,
+ use_new_attention_order=use_new_attention_order,
+ ) if not use_spatial_transformer else SpatialTransformer(
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
+ disable_self_attn=disabled_sa
+ )
+ )
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+ input_block_chans.append(ch)
+ if level != len(channel_mult) - 1:
+ out_ch = ch
+ self.input_blocks.append(
+ TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ down=True,
+ )
+ if resblock_updown
+ else Downsample(
+ ch, conv_resample, dims=dims, out_channels=out_ch
+ )
+ )
+ )
+ ch = out_ch
+ input_block_chans.append(ch)
+ ds *= 2
+ self._feature_size += ch
+
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ if legacy:
+ #num_heads = 1
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+ self.middle_block = TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=dim_head,
+ use_new_attention_order=use_new_attention_order,
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
+ ),
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ )
+ self._feature_size += ch
+
+ self.output_blocks = nn.ModuleList([])
+ for level, mult in list(enumerate(channel_mult))[::-1]:
+ for i in range(self.num_res_blocks[level] + 1):
+ ich = input_block_chans.pop()
+ layers = [
+ ResBlock(
+ ch + ich,
+ time_embed_dim,
+ dropout,
+ out_channels=model_channels * mult,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = model_channels * mult
+ if ds in attention_resolutions:
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ if legacy:
+ #num_heads = 1
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+ if exists(disable_self_attentions):
+ disabled_sa = disable_self_attentions[level]
+ else:
+ disabled_sa = False
+
+ if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads_upsample,
+ num_head_channels=dim_head,
+ use_new_attention_order=use_new_attention_order,
+ ) if not use_spatial_transformer else SpatialTransformer(
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
+ disable_self_attn=disabled_sa
+ )
+ )
+ if level and i == self.num_res_blocks[level]:
+ out_ch = ch
+ layers.append(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ up=True,
+ )
+ if resblock_updown
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
+ )
+ ds //= 2
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
+ )
+ if self.predict_codebook_ids:
+ self.id_predictor = nn.Sequential(
+ normalization(ch),
+ conv_nd(dims, model_channels, n_embed, 1),
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
+ )
+
+ def convert_to_fp16(self):
+ """
+ Convert the torso of the model to float16.
+ """
+ self.input_blocks.apply(convert_module_to_f16)
+ self.middle_block.apply(convert_module_to_f16)
+ self.output_blocks.apply(convert_module_to_f16)
+
+ def convert_to_fp32(self):
+ """
+ Convert the torso of the model to float32.
+ """
+ self.input_blocks.apply(convert_module_to_f32)
+ self.middle_block.apply(convert_module_to_f32)
+ self.output_blocks.apply(convert_module_to_f32)
+
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
+ """
+ Apply the model to an input batch.
+ :param x: an [N x C x ...] Tensor of inputs.
+ :param timesteps: a 1-D batch of timesteps.
+ :param context: conditioning plugged in via crossattn
+ :param y: an [N] Tensor of labels, if class-conditional.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ assert (y is not None) == (
+ self.num_classes is not None
+ ), "must specify y if and only if the model is class-conditional"
+ hs = []
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
+ emb = self.time_embed(t_emb)
+
+ if self.num_classes is not None:
+ assert y.shape == (x.shape[0],)
+ emb = emb + self.label_emb(y)
+
+ #h = x.type(self.dtype)
+ h = x
+ for module in self.input_blocks:
+ h = module(h, emb, context)
+ hs.append(h)
+ h = self.middle_block(h, emb, context)
+ for module in self.output_blocks:
+ h = th.cat([h, hs.pop()], dim=1)
+ h = module(h, emb, context)
+ #h = h.type(x.dtype)
+ if self.predict_codebook_ids:
+ return self.id_predictor(h)
+ else:
+ return self.out(h)
+
+
+class EncoderUNetModel(nn.Module):
+ """
+ The half UNet model with attention and timestep embedding.
+ For usage, see UNet.
+ """
+
+ def __init__(
+ self,
+ image_size,
+ in_channels,
+ model_channels,
+ out_channels,
+ num_res_blocks,
+ attention_resolutions,
+ dropout=0,
+ channel_mult=(1, 2, 4, 8),
+ conv_resample=True,
+ dims=2,
+ use_checkpoint=False,
+ use_fp16=False,
+ num_heads=1,
+ num_head_channels=-1,
+ num_heads_upsample=-1,
+ use_scale_shift_norm=False,
+ resblock_updown=False,
+ use_new_attention_order=False,
+ pool="adaptive",
+ *args,
+ **kwargs
+ ):
+ super().__init__()
+
+ if num_heads_upsample == -1:
+ num_heads_upsample = num_heads
+
+ self.in_channels = in_channels
+ self.model_channels = model_channels
+ self.out_channels = out_channels
+ self.num_res_blocks = num_res_blocks
+ self.attention_resolutions = attention_resolutions
+ self.dropout = dropout
+ self.channel_mult = channel_mult
+ self.conv_resample = conv_resample
+ self.use_checkpoint = use_checkpoint
+ self.dtype = th.float16 if use_fp16 else th.float32
+ self.num_heads = num_heads
+ self.num_head_channels = num_head_channels
+ self.num_heads_upsample = num_heads_upsample
+
+ time_embed_dim = model_channels * 4
+ self.time_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ nn.SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+
+ self.input_blocks = nn.ModuleList(
+ [
+ TimestepEmbedSequential(
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
+ )
+ ]
+ )
+ self._feature_size = model_channels
+ input_block_chans = [model_channels]
+ ch = model_channels
+ ds = 1
+ for level, mult in enumerate(channel_mult):
+ for _ in range(num_res_blocks):
+ layers = [
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=mult * model_channels,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = mult * model_channels
+ if ds in attention_resolutions:
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ use_new_attention_order=use_new_attention_order,
+ )
+ )
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+ input_block_chans.append(ch)
+ if level != len(channel_mult) - 1:
+ out_ch = ch
+ self.input_blocks.append(
+ TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ down=True,
+ )
+ if resblock_updown
+ else Downsample(
+ ch, conv_resample, dims=dims, out_channels=out_ch
+ )
+ )
+ )
+ ch = out_ch
+ input_block_chans.append(ch)
+ ds *= 2
+ self._feature_size += ch
+
+ self.middle_block = TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ use_new_attention_order=use_new_attention_order,
+ ),
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ )
+ self._feature_size += ch
+ self.pool = pool
+ if pool == "adaptive":
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ nn.AdaptiveAvgPool2d((1, 1)),
+ zero_module(conv_nd(dims, ch, out_channels, 1)),
+ nn.Flatten(),
+ )
+ elif pool == "attention":
+ assert num_head_channels != -1
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ AttentionPool2d(
+ (image_size // ds), ch, num_head_channels, out_channels
+ ),
+ )
+ elif pool == "spatial":
+ self.out = nn.Sequential(
+ nn.Linear(self._feature_size, 2048),
+ nn.ReLU(),
+ nn.Linear(2048, self.out_channels),
+ )
+ elif pool == "spatial_v2":
+ self.out = nn.Sequential(
+ nn.Linear(self._feature_size, 2048),
+ normalization(2048),
+ nn.SiLU(),
+ nn.Linear(2048, self.out_channels),
+ )
+ else:
+ raise NotImplementedError(f"Unexpected {pool} pooling")
+
+ def convert_to_fp16(self):
+ """
+ Convert the torso of the model to float16.
+ """
+ self.input_blocks.apply(convert_module_to_f16)
+ self.middle_block.apply(convert_module_to_f16)
+
+ def convert_to_fp32(self):
+ """
+ Convert the torso of the model to float32.
+ """
+ self.input_blocks.apply(convert_module_to_f32)
+ self.middle_block.apply(convert_module_to_f32)
+
+ def forward(self, x, timesteps):
+ """
+ Apply the model to an input batch.
+ :param x: an [N x C x ...] Tensor of inputs.
+ :param timesteps: a 1-D batch of timesteps.
+ :return: an [N x K] Tensor of outputs.
+ """
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
+
+ results = []
+ h = x.type(self.dtype)
+ for module in self.input_blocks:
+ h = module(h, emb)
+ if self.pool.startswith("spatial"):
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
+ h = self.middle_block(h, emb)
+ if self.pool.startswith("spatial"):
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
+ h = th.cat(results, axis=-1)
+ return self.out(h)
+ else:
+ h = h.type(x.dtype)
+ return self.out(h)
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/diffusionmodules/util.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/diffusionmodules/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa18337899fb2638afc5ec167c9b5ef86649e964
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/diffusionmodules/util.py
@@ -0,0 +1,269 @@
+###############################################################################
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+###############################################################################
+# adopted from
+# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
+# and
+# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+# and
+# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
+#
+# thanks!
+
+
+import os
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import repeat
+
+from ldm.util import instantiate_from_config
+
+
+def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if schedule == "linear":
+ betas = (
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
+ )
+
+ elif schedule == "cosine":
+ timesteps = (
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
+ )
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
+ alphas = torch.cos(alphas).pow(2)
+ alphas = alphas / alphas[0]
+ betas = 1 - alphas[1:] / alphas[:-1]
+ betas = np.clip(betas, a_min=0, a_max=0.999)
+
+ elif schedule == "sqrt_linear":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
+ elif schedule == "sqrt":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
+ else:
+ raise ValueError(f"schedule '{schedule}' unknown.")
+ return betas.numpy()
+
+
+def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
+ if ddim_discr_method == 'uniform':
+ c = num_ddpm_timesteps // num_ddim_timesteps
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
+ elif ddim_discr_method == 'quad':
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
+ else:
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
+
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
+ steps_out = ddim_timesteps + 1
+ if verbose:
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
+ return steps_out
+
+
+def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
+ # select alphas for computing the variance schedule
+ alphas = alphacums[ddim_timesteps]
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
+
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
+ if verbose:
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
+ print(f'For the chosen value of eta, which is {eta}, '
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
+ return sigmas, alphas, alphas_prev
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function,
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
+ :param num_diffusion_timesteps: the number of betas to produce.
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
+ produces the cumulative product of (1-beta) up to that
+ part of the diffusion process.
+ :param max_beta: the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+ """
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return np.array(betas)
+
+
+def extract_into_tensor(a, t, x_shape):
+ b, *_ = t.shape
+ out = a.gather(-1, t)
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
+
+
+def checkpoint(func, inputs, params, flag):
+ """
+ Evaluate a function without caching intermediate activations, allowing for
+ reduced memory at the expense of extra compute in the backward pass.
+ :param func: the function to evaluate.
+ :param inputs: the argument sequence to pass to `func`.
+ :param params: a sequence of parameters `func` depends on but does not
+ explicitly take as arguments.
+ :param flag: if False, disable gradient checkpointing.
+ """
+ if flag:
+ args = tuple(inputs) + tuple(params)
+ return CheckpointFunction.apply(func, len(inputs), *args)
+ else:
+ return func(*inputs)
+
+
+class CheckpointFunction(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, run_function, length, *args):
+ ctx.run_function = run_function
+ ctx.input_tensors = list(args[:length])
+ ctx.input_params = list(args[length:])
+
+ with torch.no_grad():
+ output_tensors = ctx.run_function(*ctx.input_tensors)
+ return output_tensors
+
+ @staticmethod
+ def backward(ctx, *output_grads):
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
+ with torch.enable_grad():
+ # Fixes a bug where the first op in run_function modifies the
+ # Tensor storage in place, which is not allowed for detach()'d
+ # Tensors.
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
+ output_tensors = ctx.run_function(*shallow_copies)
+ input_grads = torch.autograd.grad(
+ output_tensors,
+ ctx.input_tensors + ctx.input_params,
+ output_grads,
+ allow_unused=True,
+ )
+ del ctx.input_tensors
+ del ctx.input_params
+ del output_tensors
+ return (None, None) + input_grads
+
+
+def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
+ """
+ Create sinusoidal timestep embeddings.
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an [N x dim] Tensor of positional embeddings.
+ """
+ if not repeat_only:
+ half = dim // 2
+ freqs = torch.exp(
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
+ ).to(device=timesteps.device)
+ args = timesteps[:, None].float() * freqs[None]
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+ else:
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
+ return embedding
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def scale_module(module, scale):
+ """
+ Scale the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().mul_(scale)
+ return module
+
+
+def mean_flat(tensor):
+ """
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def normalization(channels):
+ """
+ Make a standard normalization layer.
+ :param channels: number of input channels.
+ :return: an nn.Module for normalization.
+ """
+ return GroupNorm32(32, channels)
+
+
+# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
+class SiLU(nn.Module):
+ def forward(self, x):
+ return x * torch.sigmoid(x)
+
+class GroupNorm32(nn.GroupNorm):
+ def forward(self, x):
+ return super().forward(x)
+
+def conv_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def linear(*args, **kwargs):
+ """
+ Create a linear module.
+ """
+ return nn.Linear(*args, **kwargs)
+
+
+def avg_pool_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D average pooling module.
+ """
+ if dims == 1:
+ return nn.AvgPool1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.AvgPool2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.AvgPool3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+class HybridConditioner(nn.Module):
+
+ def __init__(self, c_concat_config, c_crossattn_config):
+ super().__init__()
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
+
+ def forward(self, c_concat, c_crossattn):
+ c_concat = self.concat_conditioner(c_concat)
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
+
+
+def noise_like(shape, device, repeat=False):
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+ noise = lambda: torch.randn(shape, device=device)
+ return repeat_noise() if repeat else noise()
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/ema.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/ema.py
new file mode 100644
index 0000000000000000000000000000000000000000..314c3314353fea710c58ecd75a996665a3480889
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/ema.py
@@ -0,0 +1,84 @@
+###############################################################################
+# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
+###############################################################################
+import torch
+from torch import nn
+import habana_frameworks.torch.core as htcore
+
+
+class LitEma(nn.Module):
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
+ super().__init__()
+ if decay < 0.0 or decay > 1.0:
+ raise ValueError('Decay must be between 0 and 1')
+
+ self.m_name2s_name = {}
+ self.init = False
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
+ self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
+ else torch.tensor(-1,dtype=torch.int))
+
+ for name, p in model.named_parameters():
+ if p.requires_grad:
+ #remove as '.'-character is not allowed in buffers
+ s_name = name.replace('.','')
+ self.m_name2s_name.update({name:s_name})
+ self.register_buffer(s_name,p.clone().detach().data)
+
+ self.collected_params = []
+
+ def forward(self,model):
+ decay = self.decay
+
+ if self.init or self.num_updates >= 0:
+ self.num_updates += 1
+ self.init = True
+ decay = torch.min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
+
+ one_minus_decay = 1.0 - decay
+ htcore.mark_step()
+
+ with torch.no_grad():
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+
+ for key in m_param:
+ if m_param[key].requires_grad:
+ sname = self.m_name2s_name[key]
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
+ else:
+ assert not key in self.m_name2s_name
+ htcore.mark_step()
+
+ def copy_to(self, model):
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+ for key in m_param:
+ if m_param[key].requires_grad:
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
+ else:
+ assert not key in self.m_name2s_name
+
+ def store(self, parameters):
+ """
+ Save the current parameters for restoring later.
+ Args:
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+ temporarily stored.
+ """
+ self.collected_params = [param.clone() for param in parameters]
+
+ def restore(self, parameters):
+ """
+ Restore the parameters stored with the `store` method.
+ Useful to validate the model with EMA parameters without affecting the
+ original optimization process. Store the parameters before the
+ `copy_to` method. After validation (or model saving), use this to
+ restore the former parameters.
+ Args:
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+ updated with the stored parameters.
+ """
+ for c_param, param in zip(self.collected_params, parameters):
+ param.data.copy_(c_param.data)
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/adm_evaluator.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/adm_evaluator.py
new file mode 100644
index 0000000000000000000000000000000000000000..508cddf206e9aa8b2fa1de32e69a7b78acee13c0
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/adm_evaluator.py
@@ -0,0 +1,676 @@
+import argparse
+import io
+import os
+import random
+import warnings
+import zipfile
+from abc import ABC, abstractmethod
+from contextlib import contextmanager
+from functools import partial
+from multiprocessing import cpu_count
+from multiprocessing.pool import ThreadPool
+from typing import Iterable, Optional, Tuple
+import yaml
+
+import numpy as np
+import requests
+import tensorflow.compat.v1 as tf
+from scipy import linalg
+from tqdm.auto import tqdm
+
+INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb"
+INCEPTION_V3_PATH = "classify_image_graph_def.pb"
+
+FID_POOL_NAME = "pool_3:0"
+FID_SPATIAL_NAME = "mixed_6/conv:0"
+
+REQUIREMENTS = f"This script has the following requirements: \n" \
+ 'tensorflow-gpu>=2.0' + "\n" + 'scipy' + "\n" + "requests" + "\n" + "tqdm"
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--ref_batch", help="path to reference batch npz file")
+ parser.add_argument("--sample_batch", help="path to sample batch npz file")
+ args = parser.parse_args()
+
+ config = tf.ConfigProto(
+ allow_soft_placement=True # allows DecodeJpeg to run on CPU in Inception graph
+ )
+ config.gpu_options.allow_growth = True
+ evaluator = Evaluator(tf.Session(config=config))
+
+ print("warming up TensorFlow...")
+ # This will cause TF to print a bunch of verbose stuff now rather
+ # than after the next print(), to help prevent confusion.
+ evaluator.warmup()
+
+ print("computing reference batch activations...")
+ ref_acts = evaluator.read_activations(args.ref_batch)
+ print("computing/reading reference batch statistics...")
+ ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts)
+
+ print("computing sample batch activations...")
+ sample_acts = evaluator.read_activations(args.sample_batch)
+ print("computing/reading sample batch statistics...")
+ sample_stats, sample_stats_spatial = evaluator.read_statistics(args.sample_batch, sample_acts)
+
+ print("Computing evaluations...")
+ is_ = evaluator.compute_inception_score(sample_acts[0])
+ print("Inception Score:", is_)
+ fid = sample_stats.frechet_distance(ref_stats)
+ print("FID:", fid)
+ sfid = sample_stats_spatial.frechet_distance(ref_stats_spatial)
+ print("sFID:", sfid)
+ prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0])
+ print("Precision:", prec)
+ print("Recall:", recall)
+
+ savepath = '/'.join(args.sample_batch.split('/')[:-1])
+ results_file = os.path.join(savepath,'evaluation_metrics.yaml')
+ print(f'Saving evaluation results to "{results_file}"')
+
+ results = {
+ 'IS': is_,
+ 'FID': fid,
+ 'sFID': sfid,
+ 'Precision:':prec,
+ 'Recall': recall
+ }
+
+ with open(results_file, 'w') as f:
+ yaml.dump(results, f, default_flow_style=False)
+
+class InvalidFIDException(Exception):
+ pass
+
+
+class FIDStatistics:
+ def __init__(self, mu: np.ndarray, sigma: np.ndarray):
+ self.mu = mu
+ self.sigma = sigma
+
+ def frechet_distance(self, other, eps=1e-6):
+ """
+ Compute the Frechet distance between two sets of statistics.
+ """
+ # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132
+ mu1, sigma1 = self.mu, self.sigma
+ mu2, sigma2 = other.mu, other.sigma
+
+ mu1 = np.atleast_1d(mu1)
+ mu2 = np.atleast_1d(mu2)
+
+ sigma1 = np.atleast_2d(sigma1)
+ sigma2 = np.atleast_2d(sigma2)
+
+ assert (
+ mu1.shape == mu2.shape
+ ), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}"
+ assert (
+ sigma1.shape == sigma2.shape
+ ), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}"
+
+ diff = mu1 - mu2
+
+ # product might be almost singular
+ covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
+ if not np.isfinite(covmean).all():
+ msg = (
+ "fid calculation produces singular product; adding %s to diagonal of cov estimates"
+ % eps
+ )
+ warnings.warn(msg)
+ offset = np.eye(sigma1.shape[0]) * eps
+ covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
+
+ # numerical error might give slight imaginary component
+ if np.iscomplexobj(covmean):
+ if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
+ m = np.max(np.abs(covmean.imag))
+ raise ValueError("Imaginary component {}".format(m))
+ covmean = covmean.real
+
+ tr_covmean = np.trace(covmean)
+
+ return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
+
+
+class Evaluator:
+ def __init__(
+ self,
+ session,
+ batch_size=64,
+ softmax_batch_size=512,
+ ):
+ self.sess = session
+ self.batch_size = batch_size
+ self.softmax_batch_size = softmax_batch_size
+ self.manifold_estimator = ManifoldEstimator(session)
+ with self.sess.graph.as_default():
+ self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3])
+ self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048])
+ self.pool_features, self.spatial_features = _create_feature_graph(self.image_input)
+ self.softmax = _create_softmax_graph(self.softmax_input)
+
+ def warmup(self):
+ self.compute_activations(np.zeros([1, 8, 64, 64, 3]))
+
+ def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]:
+ with open_npz_array(npz_path, "arr_0") as reader:
+ return self.compute_activations(reader.read_batches(self.batch_size))
+
+ def compute_activations(self, batches: Iterable[np.ndarray],silent=False) -> Tuple[np.ndarray, np.ndarray]:
+ """
+ Compute image features for downstream evals.
+
+ :param batches: a iterator over NHWC numpy arrays in [0, 255].
+ :return: a tuple of numpy arrays of shape [N x X], where X is a feature
+ dimension. The tuple is (pool_3, spatial).
+ """
+ preds = []
+ spatial_preds = []
+ it = batches if silent else tqdm(batches)
+ for batch in it:
+ batch = batch.astype(np.float32)
+ pred, spatial_pred = self.sess.run(
+ [self.pool_features, self.spatial_features], {self.image_input: batch}
+ )
+ preds.append(pred.reshape([pred.shape[0], -1]))
+ spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1]))
+ return (
+ np.concatenate(preds, axis=0),
+ np.concatenate(spatial_preds, axis=0),
+ )
+
+ def read_statistics(
+ self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray]
+ ) -> Tuple[FIDStatistics, FIDStatistics]:
+ obj = np.load(npz_path)
+ if "mu" in list(obj.keys()):
+ return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics(
+ obj["mu_s"], obj["sigma_s"]
+ )
+ return tuple(self.compute_statistics(x) for x in activations)
+
+ def compute_statistics(self, activations: np.ndarray) -> FIDStatistics:
+ mu = np.mean(activations, axis=0)
+ sigma = np.cov(activations, rowvar=False)
+ return FIDStatistics(mu, sigma)
+
+ def compute_inception_score(self, activations: np.ndarray, split_size: int = 5000) -> float:
+ softmax_out = []
+ for i in range(0, len(activations), self.softmax_batch_size):
+ acts = activations[i : i + self.softmax_batch_size]
+ softmax_out.append(self.sess.run(self.softmax, feed_dict={self.softmax_input: acts}))
+ preds = np.concatenate(softmax_out, axis=0)
+ # https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46
+ scores = []
+ for i in range(0, len(preds), split_size):
+ part = preds[i : i + split_size]
+ kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
+ kl = np.mean(np.sum(kl, 1))
+ scores.append(np.exp(kl))
+ return float(np.mean(scores))
+
+ def compute_prec_recall(
+ self, activations_ref: np.ndarray, activations_sample: np.ndarray
+ ) -> Tuple[float, float]:
+ radii_1 = self.manifold_estimator.manifold_radii(activations_ref)
+ radii_2 = self.manifold_estimator.manifold_radii(activations_sample)
+ pr = self.manifold_estimator.evaluate_pr(
+ activations_ref, radii_1, activations_sample, radii_2
+ )
+ return (float(pr[0][0]), float(pr[1][0]))
+
+
+class ManifoldEstimator:
+ """
+ A helper for comparing manifolds of feature vectors.
+
+ Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57
+ """
+
+ def __init__(
+ self,
+ session,
+ row_batch_size=10000,
+ col_batch_size=10000,
+ nhood_sizes=(3,),
+ clamp_to_percentile=None,
+ eps=1e-5,
+ ):
+ """
+ Estimate the manifold of given feature vectors.
+
+ :param session: the TensorFlow session.
+ :param row_batch_size: row batch size to compute pairwise distances
+ (parameter to trade-off between memory usage and performance).
+ :param col_batch_size: column batch size to compute pairwise distances.
+ :param nhood_sizes: number of neighbors used to estimate the manifold.
+ :param clamp_to_percentile: prune hyperspheres that have radius larger than
+ the given percentile.
+ :param eps: small number for numerical stability.
+ """
+ self.distance_block = DistanceBlock(session)
+ self.row_batch_size = row_batch_size
+ self.col_batch_size = col_batch_size
+ self.nhood_sizes = nhood_sizes
+ self.num_nhoods = len(nhood_sizes)
+ self.clamp_to_percentile = clamp_to_percentile
+ self.eps = eps
+
+ def warmup(self):
+ feats, radii = (
+ np.zeros([1, 2048], dtype=np.float32),
+ np.zeros([1, 1], dtype=np.float32),
+ )
+ self.evaluate_pr(feats, radii, feats, radii)
+
+ def manifold_radii(self, features: np.ndarray) -> np.ndarray:
+ num_images = len(features)
+
+ # Estimate manifold of features by calculating distances to k-NN of each sample.
+ radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32)
+ distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32)
+ seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32)
+
+ for begin1 in range(0, num_images, self.row_batch_size):
+ end1 = min(begin1 + self.row_batch_size, num_images)
+ row_batch = features[begin1:end1]
+
+ for begin2 in range(0, num_images, self.col_batch_size):
+ end2 = min(begin2 + self.col_batch_size, num_images)
+ col_batch = features[begin2:end2]
+
+ # Compute distances between batches.
+ distance_batch[
+ 0 : end1 - begin1, begin2:end2
+ ] = self.distance_block.pairwise_distances(row_batch, col_batch)
+
+ # Find the k-nearest neighbor from the current batch.
+ radii[begin1:end1, :] = np.concatenate(
+ [
+ x[:, self.nhood_sizes]
+ for x in _numpy_partition(distance_batch[0 : end1 - begin1, :], seq, axis=1)
+ ],
+ axis=0,
+ )
+
+ if self.clamp_to_percentile is not None:
+ max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0)
+ radii[radii > max_distances] = 0
+ return radii
+
+ def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray):
+ """
+ Evaluate if new feature vectors are at the manifold.
+ """
+ num_eval_images = eval_features.shape[0]
+ num_ref_images = radii.shape[0]
+ distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32)
+ batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32)
+ max_realism_score = np.zeros([num_eval_images], dtype=np.float32)
+ nearest_indices = np.zeros([num_eval_images], dtype=np.int32)
+
+ for begin1 in range(0, num_eval_images, self.row_batch_size):
+ end1 = min(begin1 + self.row_batch_size, num_eval_images)
+ feature_batch = eval_features[begin1:end1]
+
+ for begin2 in range(0, num_ref_images, self.col_batch_size):
+ end2 = min(begin2 + self.col_batch_size, num_ref_images)
+ ref_batch = features[begin2:end2]
+
+ distance_batch[
+ 0 : end1 - begin1, begin2:end2
+ ] = self.distance_block.pairwise_distances(feature_batch, ref_batch)
+
+ # From the minibatch of new feature vectors, determine if they are in the estimated manifold.
+ # If a feature vector is inside a hypersphere of some reference sample, then
+ # the new sample lies at the estimated manifold.
+ # The radii of the hyperspheres are determined from distances of neighborhood size k.
+ samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii
+ batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32)
+
+ max_realism_score[begin1:end1] = np.max(
+ radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1
+ )
+ nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1)
+
+ return {
+ "fraction": float(np.mean(batch_predictions)),
+ "batch_predictions": batch_predictions,
+ "max_realisim_score": max_realism_score,
+ "nearest_indices": nearest_indices,
+ }
+
+ def evaluate_pr(
+ self,
+ features_1: np.ndarray,
+ radii_1: np.ndarray,
+ features_2: np.ndarray,
+ radii_2: np.ndarray,
+ ) -> Tuple[np.ndarray, np.ndarray]:
+ """
+ Evaluate precision and recall efficiently.
+
+ :param features_1: [N1 x D] feature vectors for reference batch.
+ :param radii_1: [N1 x K1] radii for reference vectors.
+ :param features_2: [N2 x D] feature vectors for the other batch.
+ :param radii_2: [N x K2] radii for other vectors.
+ :return: a tuple of arrays for (precision, recall):
+ - precision: an np.ndarray of length K1
+ - recall: an np.ndarray of length K2
+ """
+ features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool)
+ features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool)
+ for begin_1 in range(0, len(features_1), self.row_batch_size):
+ end_1 = begin_1 + self.row_batch_size
+ batch_1 = features_1[begin_1:end_1]
+ for begin_2 in range(0, len(features_2), self.col_batch_size):
+ end_2 = begin_2 + self.col_batch_size
+ batch_2 = features_2[begin_2:end_2]
+ batch_1_in, batch_2_in = self.distance_block.less_thans(
+ batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2]
+ )
+ features_1_status[begin_1:end_1] |= batch_1_in
+ features_2_status[begin_2:end_2] |= batch_2_in
+ return (
+ np.mean(features_2_status.astype(np.float64), axis=0),
+ np.mean(features_1_status.astype(np.float64), axis=0),
+ )
+
+
+class DistanceBlock:
+ """
+ Calculate pairwise distances between vectors.
+
+ Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34
+ """
+
+ def __init__(self, session):
+ self.session = session
+
+ # Initialize TF graph to calculate pairwise distances.
+ with session.graph.as_default():
+ self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None])
+ self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None])
+ distance_block_16 = _batch_pairwise_distances(
+ tf.cast(self._features_batch1, tf.float16),
+ tf.cast(self._features_batch2, tf.float16),
+ )
+ self.distance_block = tf.cond(
+ tf.reduce_all(tf.math.is_finite(distance_block_16)),
+ lambda: tf.cast(distance_block_16, tf.float32),
+ lambda: _batch_pairwise_distances(self._features_batch1, self._features_batch2),
+ )
+
+ # Extra logic for less thans.
+ self._radii1 = tf.placeholder(tf.float32, shape=[None, None])
+ self._radii2 = tf.placeholder(tf.float32, shape=[None, None])
+ dist32 = tf.cast(self.distance_block, tf.float32)[..., None]
+ self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1)
+ self._batch_2_in = tf.math.reduce_any(dist32 <= self._radii1[:, None], axis=0)
+
+ def pairwise_distances(self, U, V):
+ """
+ Evaluate pairwise distances between two batches of feature vectors.
+ """
+ return self.session.run(
+ self.distance_block,
+ feed_dict={self._features_batch1: U, self._features_batch2: V},
+ )
+
+ def less_thans(self, batch_1, radii_1, batch_2, radii_2):
+ return self.session.run(
+ [self._batch_1_in, self._batch_2_in],
+ feed_dict={
+ self._features_batch1: batch_1,
+ self._features_batch2: batch_2,
+ self._radii1: radii_1,
+ self._radii2: radii_2,
+ },
+ )
+
+
+def _batch_pairwise_distances(U, V):
+ """
+ Compute pairwise distances between two batches of feature vectors.
+ """
+ with tf.variable_scope("pairwise_dist_block"):
+ # Squared norms of each row in U and V.
+ norm_u = tf.reduce_sum(tf.square(U), 1)
+ norm_v = tf.reduce_sum(tf.square(V), 1)
+
+ # norm_u as a column and norm_v as a row vectors.
+ norm_u = tf.reshape(norm_u, [-1, 1])
+ norm_v = tf.reshape(norm_v, [1, -1])
+
+ # Pairwise squared Euclidean distances.
+ D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0)
+
+ return D
+
+
+class NpzArrayReader(ABC):
+ @abstractmethod
+ def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
+ pass
+
+ @abstractmethod
+ def remaining(self) -> int:
+ pass
+
+ def read_batches(self, batch_size: int) -> Iterable[np.ndarray]:
+ def gen_fn():
+ while True:
+ batch = self.read_batch(batch_size)
+ if batch is None:
+ break
+ yield batch
+
+ rem = self.remaining()
+ num_batches = rem // batch_size + int(rem % batch_size != 0)
+ return BatchIterator(gen_fn, num_batches)
+
+
+class BatchIterator:
+ def __init__(self, gen_fn, length):
+ self.gen_fn = gen_fn
+ self.length = length
+
+ def __len__(self):
+ return self.length
+
+ def __iter__(self):
+ return self.gen_fn()
+
+
+class StreamingNpzArrayReader(NpzArrayReader):
+ def __init__(self, arr_f, shape, dtype):
+ self.arr_f = arr_f
+ self.shape = shape
+ self.dtype = dtype
+ self.idx = 0
+
+ def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
+ if self.idx >= self.shape[0]:
+ return None
+
+ bs = min(batch_size, self.shape[0] - self.idx)
+ self.idx += bs
+
+ if self.dtype.itemsize == 0:
+ return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype)
+
+ read_count = bs * np.prod(self.shape[1:])
+ read_size = int(read_count * self.dtype.itemsize)
+ data = _read_bytes(self.arr_f, read_size, "array data")
+ return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]])
+
+ def remaining(self) -> int:
+ return max(0, self.shape[0] - self.idx)
+
+
+class MemoryNpzArrayReader(NpzArrayReader):
+ def __init__(self, arr):
+ self.arr = arr
+ self.idx = 0
+
+ @classmethod
+ def load(cls, path: str, arr_name: str):
+ with open(path, "rb") as f:
+ arr = np.load(f)[arr_name]
+ return cls(arr)
+
+ def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
+ if self.idx >= self.arr.shape[0]:
+ return None
+
+ res = self.arr[self.idx : self.idx + batch_size]
+ self.idx += batch_size
+ return res
+
+ def remaining(self) -> int:
+ return max(0, self.arr.shape[0] - self.idx)
+
+
+@contextmanager
+def open_npz_array(path: str, arr_name: str) -> NpzArrayReader:
+ with _open_npy_file(path, arr_name) as arr_f:
+ version = np.lib.format.read_magic(arr_f)
+ if version == (1, 0):
+ header = np.lib.format.read_array_header_1_0(arr_f)
+ elif version == (2, 0):
+ header = np.lib.format.read_array_header_2_0(arr_f)
+ else:
+ yield MemoryNpzArrayReader.load(path, arr_name)
+ return
+ shape, fortran, dtype = header
+ if fortran or dtype.hasobject:
+ yield MemoryNpzArrayReader.load(path, arr_name)
+ else:
+ yield StreamingNpzArrayReader(arr_f, shape, dtype)
+
+
+def _read_bytes(fp, size, error_template="ran out of data"):
+ """
+ Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886
+
+ Read from file-like object until size bytes are read.
+ Raises ValueError if not EOF is encountered before size bytes are read.
+ Non-blocking objects only supported if they derive from io objects.
+ Required as e.g. ZipExtFile in python 2.6 can return less data than
+ requested.
+ """
+ data = bytes()
+ while True:
+ # io files (default in python3) return None or raise on
+ # would-block, python2 file will truncate, probably nothing can be
+ # done about that. note that regular files can't be non-blocking
+ try:
+ r = fp.read(size - len(data))
+ data += r
+ if len(r) == 0 or len(data) == size:
+ break
+ except io.BlockingIOError:
+ pass
+ if len(data) != size:
+ msg = "EOF: reading %s, expected %d bytes got %d"
+ raise ValueError(msg % (error_template, size, len(data)))
+ else:
+ return data
+
+
+@contextmanager
+def _open_npy_file(path: str, arr_name: str):
+ with open(path, "rb") as f:
+ with zipfile.ZipFile(f, "r") as zip_f:
+ if f"{arr_name}.npy" not in zip_f.namelist():
+ raise ValueError(f"missing {arr_name} in npz file")
+ with zip_f.open(f"{arr_name}.npy", "r") as arr_f:
+ yield arr_f
+
+
+def _download_inception_model():
+ if os.path.exists(INCEPTION_V3_PATH):
+ return
+ print("downloading InceptionV3 model...")
+ with requests.get(INCEPTION_V3_URL, stream=True) as r:
+ r.raise_for_status()
+ tmp_path = INCEPTION_V3_PATH + ".tmp"
+ with open(tmp_path, "wb") as f:
+ for chunk in tqdm(r.iter_content(chunk_size=8192)):
+ f.write(chunk)
+ os.rename(tmp_path, INCEPTION_V3_PATH)
+
+
+def _create_feature_graph(input_batch):
+ _download_inception_model()
+ prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
+ with open(INCEPTION_V3_PATH, "rb") as f:
+ graph_def = tf.GraphDef()
+ graph_def.ParseFromString(f.read())
+ pool3, spatial = tf.import_graph_def(
+ graph_def,
+ input_map={f"ExpandDims:0": input_batch},
+ return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME],
+ name=prefix,
+ )
+ _update_shapes(pool3)
+ spatial = spatial[..., :7]
+ return pool3, spatial
+
+
+def _create_softmax_graph(input_batch):
+ _download_inception_model()
+ prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
+ with open(INCEPTION_V3_PATH, "rb") as f:
+ graph_def = tf.GraphDef()
+ graph_def.ParseFromString(f.read())
+ (matmul,) = tf.import_graph_def(
+ graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix
+ )
+ w = matmul.inputs[1]
+ logits = tf.matmul(input_batch, w)
+ return tf.nn.softmax(logits)
+
+
+def _update_shapes(pool3):
+ # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L50-L63
+ ops = pool3.graph.get_operations()
+ for op in ops:
+ for o in op.outputs:
+ shape = o.get_shape()
+ if shape._dims is not None: # pylint: disable=protected-access
+ # shape = [s.value for s in shape] TF 1.x
+ shape = [s for s in shape] # TF 2.x
+ new_shape = []
+ for j, s in enumerate(shape):
+ if s == 1 and j == 0:
+ new_shape.append(None)
+ else:
+ new_shape.append(s)
+ o.__dict__["_shape_val"] = tf.TensorShape(new_shape)
+ return pool3
+
+
+def _numpy_partition(arr, kth, **kwargs):
+ num_workers = min(cpu_count(), len(arr))
+ chunk_size = len(arr) // num_workers
+ extra = len(arr) % num_workers
+
+ start_idx = 0
+ batches = []
+ for i in range(num_workers):
+ size = chunk_size + (1 if i < extra else 0)
+ batches.append(arr[start_idx : start_idx + size])
+ start_idx += size
+
+ with ThreadPool(num_workers) as pool:
+ return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches))
+
+
+if __name__ == "__main__":
+ print(REQUIREMENTS)
+ main()
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/evaluate_perceptualsim.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/evaluate_perceptualsim.py
new file mode 100644
index 0000000000000000000000000000000000000000..c85fef967b60b90e3001b0cc29aa70b1a80ed36f
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/evaluate_perceptualsim.py
@@ -0,0 +1,630 @@
+import argparse
+import glob
+import os
+from tqdm import tqdm
+from collections import namedtuple
+
+import numpy as np
+import torch
+import torchvision.transforms as transforms
+from torchvision import models
+from PIL import Image
+
+from ldm.modules.evaluate.ssim import ssim
+
+
+transform = transforms.Compose([transforms.ToTensor()])
+
+def normalize_tensor(in_feat, eps=1e-10):
+ norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1)).view(
+ in_feat.size()[0], 1, in_feat.size()[2], in_feat.size()[3]
+ )
+ return in_feat / (norm_factor.expand_as(in_feat) + eps)
+
+
+def cos_sim(in0, in1):
+ in0_norm = normalize_tensor(in0)
+ in1_norm = normalize_tensor(in1)
+ N = in0.size()[0]
+ X = in0.size()[2]
+ Y = in0.size()[3]
+
+ return torch.mean(
+ torch.mean(
+ torch.sum(in0_norm * in1_norm, dim=1).view(N, 1, X, Y), dim=2
+ ).view(N, 1, 1, Y),
+ dim=3,
+ ).view(N)
+
+
+class squeezenet(torch.nn.Module):
+ def __init__(self, requires_grad=False, pretrained=True):
+ super(squeezenet, self).__init__()
+ pretrained_features = models.squeezenet1_1(
+ pretrained=pretrained
+ ).features
+ self.slice1 = torch.nn.Sequential()
+ self.slice2 = torch.nn.Sequential()
+ self.slice3 = torch.nn.Sequential()
+ self.slice4 = torch.nn.Sequential()
+ self.slice5 = torch.nn.Sequential()
+ self.slice6 = torch.nn.Sequential()
+ self.slice7 = torch.nn.Sequential()
+ self.N_slices = 7
+ for x in range(2):
+ self.slice1.add_module(str(x), pretrained_features[x])
+ for x in range(2, 5):
+ self.slice2.add_module(str(x), pretrained_features[x])
+ for x in range(5, 8):
+ self.slice3.add_module(str(x), pretrained_features[x])
+ for x in range(8, 10):
+ self.slice4.add_module(str(x), pretrained_features[x])
+ for x in range(10, 11):
+ self.slice5.add_module(str(x), pretrained_features[x])
+ for x in range(11, 12):
+ self.slice6.add_module(str(x), pretrained_features[x])
+ for x in range(12, 13):
+ self.slice7.add_module(str(x), pretrained_features[x])
+ if not requires_grad:
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, X):
+ h = self.slice1(X)
+ h_relu1 = h
+ h = self.slice2(h)
+ h_relu2 = h
+ h = self.slice3(h)
+ h_relu3 = h
+ h = self.slice4(h)
+ h_relu4 = h
+ h = self.slice5(h)
+ h_relu5 = h
+ h = self.slice6(h)
+ h_relu6 = h
+ h = self.slice7(h)
+ h_relu7 = h
+ vgg_outputs = namedtuple(
+ "SqueezeOutputs",
+ ["relu1", "relu2", "relu3", "relu4", "relu5", "relu6", "relu7"],
+ )
+ out = vgg_outputs(
+ h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7
+ )
+
+ return out
+
+
+class alexnet(torch.nn.Module):
+ def __init__(self, requires_grad=False, pretrained=True):
+ super(alexnet, self).__init__()
+ alexnet_pretrained_features = models.alexnet(
+ pretrained=pretrained
+ ).features
+ self.slice1 = torch.nn.Sequential()
+ self.slice2 = torch.nn.Sequential()
+ self.slice3 = torch.nn.Sequential()
+ self.slice4 = torch.nn.Sequential()
+ self.slice5 = torch.nn.Sequential()
+ self.N_slices = 5
+ for x in range(2):
+ self.slice1.add_module(str(x), alexnet_pretrained_features[x])
+ for x in range(2, 5):
+ self.slice2.add_module(str(x), alexnet_pretrained_features[x])
+ for x in range(5, 8):
+ self.slice3.add_module(str(x), alexnet_pretrained_features[x])
+ for x in range(8, 10):
+ self.slice4.add_module(str(x), alexnet_pretrained_features[x])
+ for x in range(10, 12):
+ self.slice5.add_module(str(x), alexnet_pretrained_features[x])
+ if not requires_grad:
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, X):
+ h = self.slice1(X)
+ h_relu1 = h
+ h = self.slice2(h)
+ h_relu2 = h
+ h = self.slice3(h)
+ h_relu3 = h
+ h = self.slice4(h)
+ h_relu4 = h
+ h = self.slice5(h)
+ h_relu5 = h
+ alexnet_outputs = namedtuple(
+ "AlexnetOutputs", ["relu1", "relu2", "relu3", "relu4", "relu5"]
+ )
+ out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)
+
+ return out
+
+
+class vgg16(torch.nn.Module):
+ def __init__(self, requires_grad=False, pretrained=True):
+ super(vgg16, self).__init__()
+ vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
+ self.slice1 = torch.nn.Sequential()
+ self.slice2 = torch.nn.Sequential()
+ self.slice3 = torch.nn.Sequential()
+ self.slice4 = torch.nn.Sequential()
+ self.slice5 = torch.nn.Sequential()
+ self.N_slices = 5
+ for x in range(4):
+ self.slice1.add_module(str(x), vgg_pretrained_features[x])
+ for x in range(4, 9):
+ self.slice2.add_module(str(x), vgg_pretrained_features[x])
+ for x in range(9, 16):
+ self.slice3.add_module(str(x), vgg_pretrained_features[x])
+ for x in range(16, 23):
+ self.slice4.add_module(str(x), vgg_pretrained_features[x])
+ for x in range(23, 30):
+ self.slice5.add_module(str(x), vgg_pretrained_features[x])
+ if not requires_grad:
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, X):
+ h = self.slice1(X)
+ h_relu1_2 = h
+ h = self.slice2(h)
+ h_relu2_2 = h
+ h = self.slice3(h)
+ h_relu3_3 = h
+ h = self.slice4(h)
+ h_relu4_3 = h
+ h = self.slice5(h)
+ h_relu5_3 = h
+ vgg_outputs = namedtuple(
+ "VggOutputs",
+ ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"],
+ )
+ out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
+
+ return out
+
+
+class resnet(torch.nn.Module):
+ def __init__(self, requires_grad=False, pretrained=True, num=18):
+ super(resnet, self).__init__()
+ if num == 18:
+ self.net = models.resnet18(pretrained=pretrained)
+ elif num == 34:
+ self.net = models.resnet34(pretrained=pretrained)
+ elif num == 50:
+ self.net = models.resnet50(pretrained=pretrained)
+ elif num == 101:
+ self.net = models.resnet101(pretrained=pretrained)
+ elif num == 152:
+ self.net = models.resnet152(pretrained=pretrained)
+ self.N_slices = 5
+
+ self.conv1 = self.net.conv1
+ self.bn1 = self.net.bn1
+ self.relu = self.net.relu
+ self.maxpool = self.net.maxpool
+ self.layer1 = self.net.layer1
+ self.layer2 = self.net.layer2
+ self.layer3 = self.net.layer3
+ self.layer4 = self.net.layer4
+
+ def forward(self, X):
+ h = self.conv1(X)
+ h = self.bn1(h)
+ h = self.relu(h)
+ h_relu1 = h
+ h = self.maxpool(h)
+ h = self.layer1(h)
+ h_conv2 = h
+ h = self.layer2(h)
+ h_conv3 = h
+ h = self.layer3(h)
+ h_conv4 = h
+ h = self.layer4(h)
+ h_conv5 = h
+
+ outputs = namedtuple(
+ "Outputs", ["relu1", "conv2", "conv3", "conv4", "conv5"]
+ )
+ out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)
+
+ return out
+
+# Off-the-shelf deep network
+class PNet(torch.nn.Module):
+ """Pre-trained network with all channels equally weighted by default"""
+
+ def __init__(self, pnet_type="vgg", pnet_rand=False, use_gpu=True):
+ super(PNet, self).__init__()
+
+ self.use_gpu = use_gpu
+
+ self.pnet_type = pnet_type
+ self.pnet_rand = pnet_rand
+
+ self.shift = torch.Tensor([-0.030, -0.088, -0.188]).view(1, 3, 1, 1)
+ self.scale = torch.Tensor([0.458, 0.448, 0.450]).view(1, 3, 1, 1)
+
+ if self.pnet_type in ["vgg", "vgg16"]:
+ self.net = vgg16(pretrained=not self.pnet_rand, requires_grad=False)
+ elif self.pnet_type == "alex":
+ self.net = alexnet(
+ pretrained=not self.pnet_rand, requires_grad=False
+ )
+ elif self.pnet_type[:-2] == "resnet":
+ self.net = resnet(
+ pretrained=not self.pnet_rand,
+ requires_grad=False,
+ num=int(self.pnet_type[-2:]),
+ )
+ elif self.pnet_type == "squeeze":
+ self.net = squeezenet(
+ pretrained=not self.pnet_rand, requires_grad=False
+ )
+
+ self.L = self.net.N_slices
+
+ if use_gpu:
+ self.net.cuda()
+ self.shift = self.shift.cuda()
+ self.scale = self.scale.cuda()
+
+ def forward(self, in0, in1, retPerLayer=False):
+ in0_sc = (in0 - self.shift.expand_as(in0)) / self.scale.expand_as(in0)
+ in1_sc = (in1 - self.shift.expand_as(in0)) / self.scale.expand_as(in0)
+
+ outs0 = self.net.forward(in0_sc)
+ outs1 = self.net.forward(in1_sc)
+
+ if retPerLayer:
+ all_scores = []
+ for (kk, out0) in enumerate(outs0):
+ cur_score = 1.0 - cos_sim(outs0[kk], outs1[kk])
+ if kk == 0:
+ val = 1.0 * cur_score
+ else:
+ val = val + cur_score
+ if retPerLayer:
+ all_scores += [cur_score]
+
+ if retPerLayer:
+ return (val, all_scores)
+ else:
+ return val
+
+
+
+
+# The SSIM metric
+def ssim_metric(img1, img2, mask=None):
+ return ssim(img1, img2, mask=mask, size_average=False)
+
+
+# The PSNR metric
+def psnr(img1, img2, mask=None,reshape=False):
+ b = img1.size(0)
+ if not (mask is None):
+ b = img1.size(0)
+ mse_err = (img1 - img2).pow(2) * mask
+ if reshape:
+ mse_err = mse_err.reshape(b, -1).sum(dim=1) / (
+ 3 * mask.reshape(b, -1).sum(dim=1).clamp(min=1)
+ )
+ else:
+ mse_err = mse_err.view(b, -1).sum(dim=1) / (
+ 3 * mask.view(b, -1).sum(dim=1).clamp(min=1)
+ )
+ else:
+ if reshape:
+ mse_err = (img1 - img2).pow(2).reshape(b, -1).mean(dim=1)
+ else:
+ mse_err = (img1 - img2).pow(2).view(b, -1).mean(dim=1)
+
+ psnr = 10 * (1 / mse_err).log10()
+ return psnr
+
+
+# The perceptual similarity metric
+def perceptual_sim(img1, img2, vgg16):
+ # First extract features
+ dist = vgg16(img1 * 2 - 1, img2 * 2 - 1)
+
+ return dist
+
+def load_img(img_name, size=None):
+ try:
+ img = Image.open(img_name)
+
+ if type(size) == int:
+ img = img.resize((size, size))
+ elif size is not None:
+ img = img.resize((size[1], size[0]))
+
+ img = transform(img).cuda()
+ img = img.unsqueeze(0)
+ except Exception as e:
+ print("Failed at loading %s " % img_name)
+ print(e)
+ img = torch.zeros(1, 3, 256, 256).cuda()
+ raise
+ return img
+
+
+def compute_perceptual_similarity(folder, pred_img, tgt_img, take_every_other):
+
+ # Load VGG16 for feature similarity
+ vgg16 = PNet().to("cuda")
+ vgg16.eval()
+ vgg16.cuda()
+
+ values_percsim = []
+ values_ssim = []
+ values_psnr = []
+ folders = os.listdir(folder)
+ for i, f in tqdm(enumerate(sorted(folders))):
+ pred_imgs = glob.glob(folder + f + "/" + pred_img)
+ tgt_imgs = glob.glob(folder + f + "/" + tgt_img)
+ assert len(tgt_imgs) == 1
+
+ perc_sim = 10000
+ ssim_sim = -10
+ psnr_sim = -10
+ for p_img in pred_imgs:
+ t_img = load_img(tgt_imgs[0])
+ p_img = load_img(p_img, size=t_img.shape[2:])
+ t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
+ perc_sim = min(perc_sim, t_perc_sim)
+
+ ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item())
+ psnr_sim = max(psnr_sim, psnr(p_img, t_img).item())
+
+ values_percsim += [perc_sim]
+ values_ssim += [ssim_sim]
+ values_psnr += [psnr_sim]
+
+ if take_every_other:
+ n_valuespercsim = []
+ n_valuesssim = []
+ n_valuespsnr = []
+ for i in range(0, len(values_percsim) // 2):
+ n_valuespercsim += [
+ min(values_percsim[2 * i], values_percsim[2 * i + 1])
+ ]
+ n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
+ n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
+
+ values_percsim = n_valuespercsim
+ values_ssim = n_valuesssim
+ values_psnr = n_valuespsnr
+
+ avg_percsim = np.mean(np.array(values_percsim))
+ std_percsim = np.std(np.array(values_percsim))
+
+ avg_psnr = np.mean(np.array(values_psnr))
+ std_psnr = np.std(np.array(values_psnr))
+
+ avg_ssim = np.mean(np.array(values_ssim))
+ std_ssim = np.std(np.array(values_ssim))
+
+ return {
+ "Perceptual similarity": (avg_percsim, std_percsim),
+ "PSNR": (avg_psnr, std_psnr),
+ "SSIM": (avg_ssim, std_ssim),
+ }
+
+
+def compute_perceptual_similarity_from_list(pred_imgs_list, tgt_imgs_list,
+ take_every_other,
+ simple_format=True):
+
+ # Load VGG16 for feature similarity
+ vgg16 = PNet().to("cuda")
+ vgg16.eval()
+ vgg16.cuda()
+
+ values_percsim = []
+ values_ssim = []
+ values_psnr = []
+ equal_count = 0
+ ambig_count = 0
+ for i, tgt_img in enumerate(tqdm(tgt_imgs_list)):
+ pred_imgs = pred_imgs_list[i]
+ tgt_imgs = [tgt_img]
+ assert len(tgt_imgs) == 1
+
+ if type(pred_imgs) != list:
+ pred_imgs = [pred_imgs]
+
+ perc_sim = 10000
+ ssim_sim = -10
+ psnr_sim = -10
+ assert len(pred_imgs)>0
+ for p_img in pred_imgs:
+ t_img = load_img(tgt_imgs[0])
+ p_img = load_img(p_img, size=t_img.shape[2:])
+ t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
+ perc_sim = min(perc_sim, t_perc_sim)
+
+ ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item())
+ psnr_sim = max(psnr_sim, psnr(p_img, t_img).item())
+
+ values_percsim += [perc_sim]
+ values_ssim += [ssim_sim]
+ if psnr_sim != np.float("inf"):
+ values_psnr += [psnr_sim]
+ else:
+ if torch.allclose(p_img, t_img):
+ equal_count += 1
+ print("{} equal src and wrp images.".format(equal_count))
+ else:
+ ambig_count += 1
+ print("{} ambiguous src and wrp images.".format(ambig_count))
+
+ if take_every_other:
+ n_valuespercsim = []
+ n_valuesssim = []
+ n_valuespsnr = []
+ for i in range(0, len(values_percsim) // 2):
+ n_valuespercsim += [
+ min(values_percsim[2 * i], values_percsim[2 * i + 1])
+ ]
+ n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
+ n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
+
+ values_percsim = n_valuespercsim
+ values_ssim = n_valuesssim
+ values_psnr = n_valuespsnr
+
+ avg_percsim = np.mean(np.array(values_percsim))
+ std_percsim = np.std(np.array(values_percsim))
+
+ avg_psnr = np.mean(np.array(values_psnr))
+ std_psnr = np.std(np.array(values_psnr))
+
+ avg_ssim = np.mean(np.array(values_ssim))
+ std_ssim = np.std(np.array(values_ssim))
+
+ if simple_format:
+ # just to make yaml formatting readable
+ return {
+ "Perceptual similarity": [float(avg_percsim), float(std_percsim)],
+ "PSNR": [float(avg_psnr), float(std_psnr)],
+ "SSIM": [float(avg_ssim), float(std_ssim)],
+ }
+ else:
+ return {
+ "Perceptual similarity": (avg_percsim, std_percsim),
+ "PSNR": (avg_psnr, std_psnr),
+ "SSIM": (avg_ssim, std_ssim),
+ }
+
+
+def compute_perceptual_similarity_from_list_topk(pred_imgs_list, tgt_imgs_list,
+ take_every_other, resize=False):
+
+ # Load VGG16 for feature similarity
+ vgg16 = PNet().to("cuda")
+ vgg16.eval()
+ vgg16.cuda()
+
+ values_percsim = []
+ values_ssim = []
+ values_psnr = []
+ individual_percsim = []
+ individual_ssim = []
+ individual_psnr = []
+ for i, tgt_img in enumerate(tqdm(tgt_imgs_list)):
+ pred_imgs = pred_imgs_list[i]
+ tgt_imgs = [tgt_img]
+ assert len(tgt_imgs) == 1
+
+ if type(pred_imgs) != list:
+ assert False
+ pred_imgs = [pred_imgs]
+
+ perc_sim = 10000
+ ssim_sim = -10
+ psnr_sim = -10
+ sample_percsim = list()
+ sample_ssim = list()
+ sample_psnr = list()
+ for p_img in pred_imgs:
+ if resize:
+ t_img = load_img(tgt_imgs[0], size=(256,256))
+ else:
+ t_img = load_img(tgt_imgs[0])
+ p_img = load_img(p_img, size=t_img.shape[2:])
+
+ t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
+ sample_percsim.append(t_perc_sim)
+ perc_sim = min(perc_sim, t_perc_sim)
+
+ t_ssim = ssim_metric(p_img, t_img).item()
+ sample_ssim.append(t_ssim)
+ ssim_sim = max(ssim_sim, t_ssim)
+
+ t_psnr = psnr(p_img, t_img).item()
+ sample_psnr.append(t_psnr)
+ psnr_sim = max(psnr_sim, t_psnr)
+
+ values_percsim += [perc_sim]
+ values_ssim += [ssim_sim]
+ values_psnr += [psnr_sim]
+ individual_percsim.append(sample_percsim)
+ individual_ssim.append(sample_ssim)
+ individual_psnr.append(sample_psnr)
+
+ if take_every_other:
+ assert False, "Do this later, after specifying topk to get proper results"
+ n_valuespercsim = []
+ n_valuesssim = []
+ n_valuespsnr = []
+ for i in range(0, len(values_percsim) // 2):
+ n_valuespercsim += [
+ min(values_percsim[2 * i], values_percsim[2 * i + 1])
+ ]
+ n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
+ n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
+
+ values_percsim = n_valuespercsim
+ values_ssim = n_valuesssim
+ values_psnr = n_valuespsnr
+
+ avg_percsim = np.mean(np.array(values_percsim))
+ std_percsim = np.std(np.array(values_percsim))
+
+ avg_psnr = np.mean(np.array(values_psnr))
+ std_psnr = np.std(np.array(values_psnr))
+
+ avg_ssim = np.mean(np.array(values_ssim))
+ std_ssim = np.std(np.array(values_ssim))
+
+ individual_percsim = np.array(individual_percsim)
+ individual_psnr = np.array(individual_psnr)
+ individual_ssim = np.array(individual_ssim)
+
+ return {
+ "avg_of_best": {
+ "Perceptual similarity": [float(avg_percsim), float(std_percsim)],
+ "PSNR": [float(avg_psnr), float(std_psnr)],
+ "SSIM": [float(avg_ssim), float(std_ssim)],
+ },
+ "individual": {
+ "PSIM": individual_percsim,
+ "PSNR": individual_psnr,
+ "SSIM": individual_ssim,
+ }
+ }
+
+
+if __name__ == "__main__":
+ args = argparse.ArgumentParser()
+ args.add_argument("--folder", type=str, default="")
+ args.add_argument("--pred_image", type=str, default="")
+ args.add_argument("--target_image", type=str, default="")
+ args.add_argument("--take_every_other", action="store_true", default=False)
+ args.add_argument("--output_file", type=str, default="")
+
+ opts = args.parse_args()
+
+ folder = opts.folder
+ pred_img = opts.pred_image
+ tgt_img = opts.target_image
+
+ results = compute_perceptual_similarity(
+ folder, pred_img, tgt_img, opts.take_every_other
+ )
+
+ f = open(opts.output_file, 'w')
+ for key in results:
+ print("%s for %s: \n" % (key, opts.folder))
+ print(
+ "\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])
+ )
+
+ f.write("%s for %s: \n" % (key, opts.folder))
+ f.write(
+ "\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])
+ )
+
+ f.close()
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/frechet_video_distance.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/frechet_video_distance.py
new file mode 100644
index 0000000000000000000000000000000000000000..d9e13c41505d9895016cdda1a1fd59aec33ab4d0
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/frechet_video_distance.py
@@ -0,0 +1,147 @@
+# coding=utf-8
+# Copyright 2022 The Google Research Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# Lint as: python2, python3
+"""Minimal Reference implementation for the Frechet Video Distance (FVD).
+
+FVD is a metric for the quality of video generation models. It is inspired by
+the FID (Frechet Inception Distance) used for images, but uses a different
+embedding to be better suitable for videos.
+"""
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+
+import six
+import tensorflow.compat.v1 as tf
+import tensorflow_gan as tfgan
+import tensorflow_hub as hub
+
+
+def preprocess(videos, target_resolution):
+ """Runs some preprocessing on the videos for I3D model.
+
+ Args:
+ videos: [batch_size, num_frames, height, width, depth] The videos to be
+ preprocessed. We don't care about the specific dtype of the videos, it can
+ be anything that tf.image.resize_bilinear accepts. Values are expected to
+ be in the range 0-255.
+ target_resolution: (width, height): target video resolution
+
+ Returns:
+ videos: [batch_size, num_frames, height, width, depth]
+ """
+ videos_shape = list(videos.shape)
+ all_frames = tf.reshape(videos, [-1] + videos_shape[-3:])
+ resized_videos = tf.image.resize_bilinear(all_frames, size=target_resolution)
+ target_shape = [videos_shape[0], -1] + list(target_resolution) + [3]
+ output_videos = tf.reshape(resized_videos, target_shape)
+ scaled_videos = 2. * tf.cast(output_videos, tf.float32) / 255. - 1
+ return scaled_videos
+
+
+def _is_in_graph(tensor_name):
+ """Checks whether a given tensor does exists in the graph."""
+ try:
+ tf.get_default_graph().get_tensor_by_name(tensor_name)
+ except KeyError:
+ return False
+ return True
+
+
+def create_id3_embedding(videos,warmup=False,batch_size=16):
+ """Embeds the given videos using the Inflated 3D Convolution ne twork.
+
+ Downloads the graph of the I3D from tf.hub and adds it to the graph on the
+ first call.
+
+ Args:
+ videos: [batch_size, num_frames, height=224, width=224, depth=3].
+ Expected range is [-1, 1].
+
+ Returns:
+ embedding: [batch_size, embedding_size]. embedding_size depends
+ on the model used.
+
+ Raises:
+ ValueError: when a provided embedding_layer is not supported.
+ """
+
+ # batch_size = 16
+ module_spec = "https://tfhub.dev/deepmind/i3d-kinetics-400/1"
+
+
+ # Making sure that we import the graph separately for
+ # each different input video tensor.
+ module_name = "fvd_kinetics-400_id3_module_" + six.ensure_str(
+ videos.name).replace(":", "_")
+
+
+
+ assert_ops = [
+ tf.Assert(
+ tf.reduce_max(videos) <= 1.001,
+ ["max value in frame is > 1", videos]),
+ tf.Assert(
+ tf.reduce_min(videos) >= -1.001,
+ ["min value in frame is < -1", videos]),
+ tf.assert_equal(
+ tf.shape(videos)[0],
+ batch_size, ["invalid frame batch size: ",
+ tf.shape(videos)],
+ summarize=6),
+ ]
+ with tf.control_dependencies(assert_ops):
+ videos = tf.identity(videos)
+
+ module_scope = "%s_apply_default/" % module_name
+
+ # To check whether the module has already been loaded into the graph, we look
+ # for a given tensor name. If this tensor name exists, we assume the function
+ # has been called before and the graph was imported. Otherwise we import it.
+ # Note: in theory, the tensor could exist, but have wrong shapes.
+ # This will happen if create_id3_embedding is called with a frames_placehoder
+ # of wrong size/batch size, because even though that will throw a tf.Assert
+ # on graph-execution time, it will insert the tensor (with wrong shape) into
+ # the graph. This is why we need the following assert.
+ if warmup:
+ video_batch_size = int(videos.shape[0])
+ assert video_batch_size in [batch_size, -1, None], f"Invalid batch size {video_batch_size}"
+ tensor_name = module_scope + "RGB/inception_i3d/Mean:0"
+ if not _is_in_graph(tensor_name):
+ i3d_model = hub.Module(module_spec, name=module_name)
+ i3d_model(videos)
+
+ # gets the kinetics-i3d-400-logits layer
+ tensor_name = module_scope + "RGB/inception_i3d/Mean:0"
+ tensor = tf.get_default_graph().get_tensor_by_name(tensor_name)
+ return tensor
+
+
+def calculate_fvd(real_activations,
+ generated_activations):
+ """Returns a list of ops that compute metrics as funcs of activations.
+
+ Args:
+ real_activations: [num_samples, embedding_size]
+ generated_activations: [num_samples, embedding_size]
+
+ Returns:
+ A scalar that contains the requested FVD.
+ """
+ return tfgan.eval.frechet_classifier_distance_from_activations(
+ real_activations, generated_activations)
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/ssim.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/ssim.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e8883ccb3b30455a76caf2e4d1e04745f75d214
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/ssim.py
@@ -0,0 +1,124 @@
+# MIT Licence
+
+# Methods to predict the SSIM, taken from
+# https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py
+
+from math import exp
+
+import torch
+import torch.nn.functional as F
+from torch.autograd import Variable
+
+def gaussian(window_size, sigma):
+ gauss = torch.Tensor(
+ [
+ exp(-((x - window_size // 2) ** 2) / float(2 * sigma ** 2))
+ for x in range(window_size)
+ ]
+ )
+ return gauss / gauss.sum()
+
+
+def create_window(window_size, channel):
+ _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
+ _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
+ window = Variable(
+ _2D_window.expand(channel, 1, window_size, window_size).contiguous()
+ )
+ return window
+
+
+def _ssim(
+ img1, img2, window, window_size, channel, mask=None, size_average=True
+):
+ mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
+ mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
+
+ mu1_sq = mu1.pow(2)
+ mu2_sq = mu2.pow(2)
+ mu1_mu2 = mu1 * mu2
+
+ sigma1_sq = (
+ F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel)
+ - mu1_sq
+ )
+ sigma2_sq = (
+ F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel)
+ - mu2_sq
+ )
+ sigma12 = (
+ F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel)
+ - mu1_mu2
+ )
+
+ C1 = (0.01) ** 2
+ C2 = (0.03) ** 2
+
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
+ (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
+ )
+
+ if not (mask is None):
+ b = mask.size(0)
+ ssim_map = ssim_map.mean(dim=1, keepdim=True) * mask
+ ssim_map = ssim_map.view(b, -1).sum(dim=1) / mask.view(b, -1).sum(
+ dim=1
+ ).clamp(min=1)
+ return ssim_map
+
+ import pdb
+
+ pdb.set_trace
+
+ if size_average:
+ return ssim_map.mean()
+ else:
+ return ssim_map.mean(1).mean(1).mean(1)
+
+
+class SSIM(torch.nn.Module):
+ def __init__(self, window_size=11, size_average=True):
+ super(SSIM, self).__init__()
+ self.window_size = window_size
+ self.size_average = size_average
+ self.channel = 1
+ self.window = create_window(window_size, self.channel)
+
+ def forward(self, img1, img2, mask=None):
+ (_, channel, _, _) = img1.size()
+
+ if (
+ channel == self.channel
+ and self.window.data.type() == img1.data.type()
+ ):
+ window = self.window
+ else:
+ window = create_window(self.window_size, channel)
+
+ if img1.is_cuda:
+ window = window.cuda(img1.get_device())
+ window = window.type_as(img1)
+
+ self.window = window
+ self.channel = channel
+
+ return _ssim(
+ img1,
+ img2,
+ window,
+ self.window_size,
+ channel,
+ mask,
+ self.size_average,
+ )
+
+
+def ssim(img1, img2, window_size=11, mask=None, size_average=True):
+ (_, channel, _, _) = img1.size()
+ window = create_window(window_size, channel)
+
+ if img1.is_cuda:
+ window = window.cuda(img1.get_device())
+ window = window.type_as(img1)
+
+ return _ssim(img1, img2, window, window_size, channel, mask, size_average)
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/torch_frechet_video_distance.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/torch_frechet_video_distance.py
new file mode 100644
index 0000000000000000000000000000000000000000..04856b828a17cdc97fa88a7b9d2f7fe0f735b3fc
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/evaluate/torch_frechet_video_distance.py
@@ -0,0 +1,294 @@
+# based on https://github.com/universome/fvd-comparison/blob/master/compare_models.py; huge thanks!
+import os
+import numpy as np
+import io
+import re
+import requests
+import html
+import hashlib
+import urllib
+import urllib.request
+import scipy.linalg
+import multiprocessing as mp
+import glob
+
+
+from tqdm import tqdm
+from typing import Any, List, Tuple, Union, Dict, Callable
+
+from torchvision.io import read_video
+import torch; torch.set_grad_enabled(False)
+from einops import rearrange
+
+from nitro.util import isvideo
+
+def compute_frechet_distance(mu_sample,sigma_sample,mu_ref,sigma_ref) -> float:
+ print('Calculate frechet distance...')
+ m = np.square(mu_sample - mu_ref).sum()
+ s, _ = scipy.linalg.sqrtm(np.dot(sigma_sample, sigma_ref), disp=False) # pylint: disable=no-member
+ fid = np.real(m + np.trace(sigma_sample + sigma_ref - s * 2))
+
+ return float(fid)
+
+
+def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
+ mu = feats.mean(axis=0) # [d]
+ sigma = np.cov(feats, rowvar=False) # [d, d]
+
+ return mu, sigma
+
+
+def open_url(url: str, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False) -> Any:
+ """Download the given URL and return a binary-mode file object to access the data."""
+ assert num_attempts >= 1
+
+ # Doesn't look like an URL scheme so interpret it as a local filename.
+ if not re.match('^[a-z]+://', url):
+ return url if return_filename else open(url, "rb")
+
+ # Handle file URLs. This code handles unusual file:// patterns that
+ # arise on Windows:
+ #
+ # file:///c:/foo.txt
+ #
+ # which would translate to a local '/c:/foo.txt' filename that's
+ # invalid. Drop the forward slash for such pathnames.
+ #
+ # If you touch this code path, you should test it on both Linux and
+ # Windows.
+ #
+ # Some internet resources suggest using urllib.request.url2pathname() but
+ # but that converts forward slashes to backslashes and this causes
+ # its own set of problems.
+ if url.startswith('file://'):
+ filename = urllib.parse.urlparse(url).path
+ if re.match(r'^/[a-zA-Z]:', filename):
+ filename = filename[1:]
+ return filename if return_filename else open(filename, "rb")
+
+ url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
+
+ # Download.
+ url_name = None
+ url_data = None
+ with requests.Session() as session:
+ if verbose:
+ print("Downloading %s ..." % url, end="", flush=True)
+ for attempts_left in reversed(range(num_attempts)):
+ try:
+ with session.get(url) as res:
+ res.raise_for_status()
+ if len(res.content) == 0:
+ raise IOError("No data received")
+
+ if len(res.content) < 8192:
+ content_str = res.content.decode("utf-8")
+ if "download_warning" in res.headers.get("Set-Cookie", ""):
+ links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
+ if len(links) == 1:
+ url = requests.compat.urljoin(url, links[0])
+ raise IOError("Google Drive virus checker nag")
+ if "Google Drive - Quota exceeded" in content_str:
+ raise IOError("Google Drive download quota exceeded -- please try again later")
+
+ match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
+ url_name = match[1] if match else url
+ url_data = res.content
+ if verbose:
+ print(" done")
+ break
+ except KeyboardInterrupt:
+ raise
+ except:
+ if not attempts_left:
+ if verbose:
+ print(" failed")
+ raise
+ if verbose:
+ print(".", end="", flush=True)
+
+ # Return data as file object.
+ assert not return_filename
+ return io.BytesIO(url_data)
+
+def load_video(ip):
+ vid, *_ = read_video(ip)
+ vid = rearrange(vid, 't h w c -> t c h w').to(torch.uint8)
+ return vid
+
+def get_data_from_str(input_str,nprc = None):
+ assert os.path.isdir(input_str), f'Specified input folder "{input_str}" is not a directory'
+ vid_filelist = glob.glob(os.path.join(input_str,'*.mp4'))
+ print(f'Found {len(vid_filelist)} videos in dir {input_str}')
+
+ if nprc is None:
+ try:
+ nprc = mp.cpu_count()
+ except NotImplementedError:
+ print('WARNING: cpu_count() not avlailable, using only 1 cpu for video loading')
+ nprc = 1
+
+ pool = mp.Pool(processes=nprc)
+
+ vids = []
+ for v in tqdm(pool.imap_unordered(load_video,vid_filelist),total=len(vid_filelist),desc='Loading videos...'):
+ vids.append(v)
+
+
+ vids = torch.stack(vids,dim=0).float()
+
+ return vids
+
+def get_stats(stats):
+ assert os.path.isfile(stats) and stats.endswith('.npz'), f'no stats found under {stats}'
+
+ print(f'Using precomputed statistics under {stats}')
+ stats = np.load(stats)
+ stats = {key: stats[key] for key in stats.files}
+
+ return stats
+
+
+
+
+@torch.no_grad()
+def compute_fvd(ref_input, sample_input, bs=32,
+ ref_stats=None,
+ sample_stats=None,
+ nprc_load=None):
+
+
+
+ calc_stats = ref_stats is None or sample_stats is None
+
+ if calc_stats:
+
+ only_ref = sample_stats is not None
+ only_sample = ref_stats is not None
+
+
+ if isinstance(ref_input,str) and not only_sample:
+ ref_input = get_data_from_str(ref_input,nprc_load)
+
+ if isinstance(sample_input, str) and not only_ref:
+ sample_input = get_data_from_str(sample_input, nprc_load)
+
+ stats = compute_statistics(sample_input,ref_input,
+ device='cuda' if torch.cuda.is_available() else 'cpu',
+ bs=bs,
+ only_ref=only_ref,
+ only_sample=only_sample)
+
+ if only_ref:
+ stats.update(get_stats(sample_stats))
+ elif only_sample:
+ stats.update(get_stats(ref_stats))
+
+
+
+ else:
+ stats = get_stats(sample_stats)
+ stats.update(get_stats(ref_stats))
+
+ fvd = compute_frechet_distance(**stats)
+
+ return {'FVD' : fvd,}
+
+
+@torch.no_grad()
+def compute_statistics(videos_fake, videos_real, device: str='cuda', bs=32, only_ref=False,only_sample=False) -> Dict:
+ detector_url = 'https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1'
+ detector_kwargs = dict(rescale=True, resize=True, return_features=True) # Return raw features before the softmax layer.
+
+ with open_url(detector_url, verbose=False) as f:
+ detector = torch.jit.load(f).eval().to(device)
+
+
+
+ assert not (only_sample and only_ref), 'only_ref and only_sample arguments are mutually exclusive'
+
+ ref_embed, sample_embed = [], []
+
+ info = f'Computing I3D activations for FVD score with batch size {bs}'
+
+ if only_ref:
+
+ if not isvideo(videos_real):
+ # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
+ videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
+ print(videos_real.shape)
+
+ if videos_real.shape[0] % bs == 0:
+ n_secs = videos_real.shape[0] // bs
+ else:
+ n_secs = videos_real.shape[0] // bs + 1
+
+ videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
+
+ for ref_v in tqdm(videos_real, total=len(videos_real),desc=info):
+
+ feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
+ ref_embed.append(feats_ref)
+
+ elif only_sample:
+
+ if not isvideo(videos_fake):
+ # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
+ videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
+ print(videos_fake.shape)
+
+ if videos_fake.shape[0] % bs == 0:
+ n_secs = videos_fake.shape[0] // bs
+ else:
+ n_secs = videos_fake.shape[0] // bs + 1
+
+ videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
+
+ for sample_v in tqdm(videos_fake, total=len(videos_real),desc=info):
+ feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
+ sample_embed.append(feats_sample)
+
+
+ else:
+
+ if not isvideo(videos_real):
+ # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
+ videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
+
+ if not isvideo(videos_fake):
+ videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
+
+ if videos_fake.shape[0] % bs == 0:
+ n_secs = videos_fake.shape[0] // bs
+ else:
+ n_secs = videos_fake.shape[0] // bs + 1
+
+ videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
+ videos_fake = torch.tensor_split(videos_fake, n_secs, dim=0)
+
+ for ref_v, sample_v in tqdm(zip(videos_real,videos_fake),total=len(videos_fake),desc=info):
+ # print(ref_v.shape)
+ # ref_v = torch.nn.functional.interpolate(ref_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
+ # sample_v = torch.nn.functional.interpolate(sample_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
+
+
+ feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
+ feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
+ sample_embed.append(feats_sample)
+ ref_embed.append(feats_ref)
+
+ out = dict()
+ if len(sample_embed) > 0:
+ sample_embed = np.concatenate(sample_embed,axis=0)
+ mu_sample, sigma_sample = compute_stats(sample_embed)
+ out.update({'mu_sample': mu_sample,
+ 'sigma_sample': sigma_sample})
+
+ if len(ref_embed) > 0:
+ ref_embed = np.concatenate(ref_embed,axis=0)
+ mu_ref, sigma_ref = compute_stats(ref_embed)
+ out.update({'mu_ref': mu_ref,
+ 'sigma_ref': sigma_ref})
+
+
+ return out
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/__init__.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7836cada81f90ded99c58d5942eea4c3477f58fc
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/__init__.py
@@ -0,0 +1,2 @@
+from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
+from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/bsrgan.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/bsrgan.py
new file mode 100644
index 0000000000000000000000000000000000000000..32ef56169978e550090261cddbcf5eb611a6173b
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/bsrgan.py
@@ -0,0 +1,730 @@
+# -*- coding: utf-8 -*-
+"""
+# --------------------------------------------
+# Super-Resolution
+# --------------------------------------------
+#
+# Kai Zhang (cskaizhang@gmail.com)
+# https://github.com/cszn
+# From 2019/03--2021/08
+# --------------------------------------------
+"""
+
+import numpy as np
+import cv2
+import torch
+
+from functools import partial
+import random
+from scipy import ndimage
+import scipy
+import scipy.stats as ss
+from scipy.interpolate import interp2d
+from scipy.linalg import orth
+import albumentations
+
+import ldm.modules.image_degradation.utils_image as util
+
+
+def modcrop_np(img, sf):
+ '''
+ Args:
+ img: numpy image, WxH or WxHxC
+ sf: scale factor
+ Return:
+ cropped image
+ '''
+ w, h = img.shape[:2]
+ im = np.copy(img)
+ return im[:w - w % sf, :h - h % sf, ...]
+
+
+"""
+# --------------------------------------------
+# anisotropic Gaussian kernels
+# --------------------------------------------
+"""
+
+
+def analytic_kernel(k):
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
+ k_size = k.shape[0]
+ # Calculate the big kernels size
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
+ # Loop over the small kernel to fill the big one
+ for r in range(k_size):
+ for c in range(k_size):
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
+ crop = k_size // 2
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
+ # Normalize to 1
+ return cropped_big_k / cropped_big_k.sum()
+
+
+def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
+ """ generate an anisotropic Gaussian kernel
+ Args:
+ ksize : e.g., 15, kernel size
+ theta : [0, pi], rotation angle range
+ l1 : [0.1,50], scaling of eigenvalues
+ l2 : [0.1,l1], scaling of eigenvalues
+ If l1 = l2, will get an isotropic Gaussian kernel.
+ Returns:
+ k : kernel
+ """
+
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
+ D = np.array([[l1, 0], [0, l2]])
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
+
+ return k
+
+
+def gm_blur_kernel(mean, cov, size=15):
+ center = size / 2.0 + 0.5
+ k = np.zeros([size, size])
+ for y in range(size):
+ for x in range(size):
+ cy = y - center + 1
+ cx = x - center + 1
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
+
+ k = k / np.sum(k)
+ return k
+
+
+def shift_pixel(x, sf, upper_left=True):
+ """shift pixel for super-resolution with different scale factors
+ Args:
+ x: WxHxC or WxH
+ sf: scale factor
+ upper_left: shift direction
+ """
+ h, w = x.shape[:2]
+ shift = (sf - 1) * 0.5
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
+ if upper_left:
+ x1 = xv + shift
+ y1 = yv + shift
+ else:
+ x1 = xv - shift
+ y1 = yv - shift
+
+ x1 = np.clip(x1, 0, w - 1)
+ y1 = np.clip(y1, 0, h - 1)
+
+ if x.ndim == 2:
+ x = interp2d(xv, yv, x)(x1, y1)
+ if x.ndim == 3:
+ for i in range(x.shape[-1]):
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
+
+ return x
+
+
+def blur(x, k):
+ '''
+ x: image, NxcxHxW
+ k: kernel, Nx1xhxw
+ '''
+ n, c = x.shape[:2]
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
+ k = k.repeat(1, c, 1, 1)
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
+ x = x.view(1, -1, x.shape[2], x.shape[3])
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
+ x = x.view(n, c, x.shape[2], x.shape[3])
+
+ return x
+
+
+def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
+ """"
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
+ # Kai Zhang
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
+ # max_var = 2.5 * sf
+ """
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
+ theta = np.random.rand() * np.pi # random theta
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
+
+ # Set COV matrix using Lambdas and Theta
+ LAMBDA = np.diag([lambda_1, lambda_2])
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
+ [np.sin(theta), np.cos(theta)]])
+ SIGMA = Q @ LAMBDA @ Q.T
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
+
+ # Set expectation position (shifting kernel for aligned image)
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
+ MU = MU[None, None, :, None]
+
+ # Create meshgrid for Gaussian
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
+ Z = np.stack([X, Y], 2)[:, :, :, None]
+
+ # Calcualte Gaussian for every pixel of the kernel
+ ZZ = Z - MU
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
+
+ # shift the kernel so it will be centered
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
+
+ # Normalize the kernel and return
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
+ kernel = raw_kernel / np.sum(raw_kernel)
+ return kernel
+
+
+def fspecial_gaussian(hsize, sigma):
+ hsize = [hsize, hsize]
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
+ std = sigma
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
+ arg = -(x * x + y * y) / (2 * std * std)
+ h = np.exp(arg)
+ h[h < scipy.finfo(float).eps * h.max()] = 0
+ sumh = h.sum()
+ if sumh != 0:
+ h = h / sumh
+ return h
+
+
+def fspecial_laplacian(alpha):
+ alpha = max([0, min([alpha, 1])])
+ h1 = alpha / (alpha + 1)
+ h2 = (1 - alpha) / (alpha + 1)
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
+ h = np.array(h)
+ return h
+
+
+def fspecial(filter_type, *args, **kwargs):
+ '''
+ python code from:
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
+ '''
+ if filter_type == 'gaussian':
+ return fspecial_gaussian(*args, **kwargs)
+ if filter_type == 'laplacian':
+ return fspecial_laplacian(*args, **kwargs)
+
+
+"""
+# --------------------------------------------
+# degradation models
+# --------------------------------------------
+"""
+
+
+def bicubic_degradation(x, sf=3):
+ '''
+ Args:
+ x: HxWxC image, [0, 1]
+ sf: down-scale factor
+ Return:
+ bicubicly downsampled LR image
+ '''
+ x = util.imresize_np(x, scale=1 / sf)
+ return x
+
+
+def srmd_degradation(x, k, sf=3):
+ ''' blur + bicubic downsampling
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2018learning,
+ title={Learning a single convolutional super-resolution network for multiple degradations},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={3262--3271},
+ year={2018}
+ }
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
+ x = bicubic_degradation(x, sf=sf)
+ return x
+
+
+def dpsr_degradation(x, k, sf=3):
+ ''' bicubic downsampling + blur
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2019deep,
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={1671--1681},
+ year={2019}
+ }
+ '''
+ x = bicubic_degradation(x, sf=sf)
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ return x
+
+
+def classical_degradation(x, k, sf=3):
+ ''' blur + downsampling
+ Args:
+ x: HxWxC image, [0, 1]/[0, 255]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
+ st = 0
+ return x[st::sf, st::sf, ...]
+
+
+def add_sharpening(img, weight=0.5, radius=50, threshold=10):
+ """USM sharpening. borrowed from real-ESRGAN
+ Input image: I; Blurry image: B.
+ 1. K = I + weight * (I - B)
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
+ 3. Blur mask:
+ 4. Out = Mask * K + (1 - Mask) * I
+ Args:
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
+ weight (float): Sharp weight. Default: 1.
+ radius (float): Kernel size of Gaussian blur. Default: 50.
+ threshold (int):
+ """
+ if radius % 2 == 0:
+ radius += 1
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
+ residual = img - blur
+ mask = np.abs(residual) * 255 > threshold
+ mask = mask.astype('float32')
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
+
+ K = img + weight * residual
+ K = np.clip(K, 0, 1)
+ return soft_mask * K + (1 - soft_mask) * img
+
+
+def add_blur(img, sf=4):
+ wd2 = 4.0 + sf
+ wd = 2.0 + 0.2 * sf
+ if random.random() < 0.5:
+ l1 = wd2 * random.random()
+ l2 = wd2 * random.random()
+ k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
+ else:
+ k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
+ img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
+
+ return img
+
+
+def add_resize(img, sf=4):
+ rnum = np.random.rand()
+ if rnum > 0.8: # up
+ sf1 = random.uniform(1, 2)
+ elif rnum < 0.7: # down
+ sf1 = random.uniform(0.5 / sf, 1)
+ else:
+ sf1 = 1.0
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ return img
+
+
+# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+# noise_level = random.randint(noise_level1, noise_level2)
+# rnum = np.random.rand()
+# if rnum > 0.6: # add color Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+# elif rnum < 0.4: # add grayscale Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+# else: # add noise
+# L = noise_level2 / 255.
+# D = np.diag(np.random.rand(3))
+# U = orth(np.random.rand(3, 3))
+# conv = np.dot(np.dot(np.transpose(U), D), U)
+# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+# img = np.clip(img, 0.0, 1.0)
+# return img
+
+def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ rnum = np.random.rand()
+ if rnum > 0.6: # add color Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4: # add grayscale Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else: # add noise
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_speckle_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ img = np.clip(img, 0.0, 1.0)
+ rnum = random.random()
+ if rnum > 0.6:
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4:
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else:
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_Poisson_noise(img):
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
+ if random.random() < 0.5:
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
+ else:
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
+ img += noise_gray[:, :, np.newaxis]
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_JPEG_noise(img):
+ quality_factor = random.randint(30, 95)
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
+ img = cv2.imdecode(encimg, 1)
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
+ return img
+
+
+def random_crop(lq, hq, sf=4, lq_patchsize=64):
+ h, w = lq.shape[:2]
+ rnd_h = random.randint(0, h - lq_patchsize)
+ rnd_w = random.randint(0, w - lq_patchsize)
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
+
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
+ return lq, hq
+
+
+def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ hq = img.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ img = util.imresize_np(img, 1 / 2, True)
+ img = np.clip(img, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ img = add_blur(img, sf=sf)
+
+ elif i == 1:
+ img = add_blur(img, sf=sf)
+
+ elif i == 2:
+ a, b = img.shape[1], img.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ img = add_JPEG_noise(img)
+
+ elif i == 6:
+ # add processed camera sensor noise
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
+
+ return img, hq
+
+
+# todo no isp_model?
+def degradation_bsrgan_variant(image, sf=4, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ image = util.uint2single(image)
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = image.shape[:2]
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = image.shape[:2]
+
+ hq = image.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ image = util.imresize_np(image, 1 / 2, True)
+ image = np.clip(image, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ image = add_blur(image, sf=sf)
+
+ elif i == 1:
+ image = add_blur(image, sf=sf)
+
+ elif i == 2:
+ a, b = image.shape[1], image.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ image = add_JPEG_noise(image)
+
+ # elif i == 6:
+ # # add processed camera sensor noise
+ # if random.random() < isp_prob and isp_model is not None:
+ # with torch.no_grad():
+ # img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ image = add_JPEG_noise(image)
+ image = util.single2uint(image)
+ example = {"image":image}
+ return example
+
+
+# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
+def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
+ """
+ This is an extended degradation model by combining
+ the degradation models of BSRGAN and Real-ESRGAN
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ use_shuffle: the degradation shuffle
+ use_sharp: sharpening the img
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ if use_sharp:
+ img = add_sharpening(img)
+ hq = img.copy()
+
+ if random.random() < shuffle_prob:
+ shuffle_order = random.sample(range(13), 13)
+ else:
+ shuffle_order = list(range(13))
+ # local shuffle for noise, JPEG is always the last one
+ shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
+ shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
+
+ poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
+
+ for i in shuffle_order:
+ if i == 0:
+ img = add_blur(img, sf=sf)
+ elif i == 1:
+ img = add_resize(img, sf=sf)
+ elif i == 2:
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+ elif i == 3:
+ if random.random() < poisson_prob:
+ img = add_Poisson_noise(img)
+ elif i == 4:
+ if random.random() < speckle_prob:
+ img = add_speckle_noise(img)
+ elif i == 5:
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+ elif i == 6:
+ img = add_JPEG_noise(img)
+ elif i == 7:
+ img = add_blur(img, sf=sf)
+ elif i == 8:
+ img = add_resize(img, sf=sf)
+ elif i == 9:
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+ elif i == 10:
+ if random.random() < poisson_prob:
+ img = add_Poisson_noise(img)
+ elif i == 11:
+ if random.random() < speckle_prob:
+ img = add_speckle_noise(img)
+ elif i == 12:
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+ else:
+ print('check the shuffle!')
+
+ # resize to desired size
+ img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf, lq_patchsize)
+
+ return img, hq
+
+
+if __name__ == '__main__':
+ print("hey")
+ img = util.imread_uint('utils/test.png', 3)
+ print(img)
+ img = util.uint2single(img)
+ print(img)
+ img = img[:448, :448]
+ h = img.shape[0] // 4
+ print("resizing to", h)
+ sf = 4
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
+ for i in range(20):
+ print(i)
+ img_lq = deg_fn(img)
+ print(img_lq)
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
+ print(img_lq.shape)
+ print("bicubic", img_lq_bicubic.shape)
+ print(img_hq.shape)
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
+ util.imsave(img_concat, str(i) + '.png')
+
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/bsrgan_light.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/bsrgan_light.py
new file mode 100644
index 0000000000000000000000000000000000000000..9e1f823996bf559e9b015ea9aa2b3cd38dd13af1
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/bsrgan_light.py
@@ -0,0 +1,650 @@
+# -*- coding: utf-8 -*-
+import numpy as np
+import cv2
+import torch
+
+from functools import partial
+import random
+from scipy import ndimage
+import scipy
+import scipy.stats as ss
+from scipy.interpolate import interp2d
+from scipy.linalg import orth
+import albumentations
+
+import ldm.modules.image_degradation.utils_image as util
+
+"""
+# --------------------------------------------
+# Super-Resolution
+# --------------------------------------------
+#
+# Kai Zhang (cskaizhang@gmail.com)
+# https://github.com/cszn
+# From 2019/03--2021/08
+# --------------------------------------------
+"""
+
+
+def modcrop_np(img, sf):
+ '''
+ Args:
+ img: numpy image, WxH or WxHxC
+ sf: scale factor
+ Return:
+ cropped image
+ '''
+ w, h = img.shape[:2]
+ im = np.copy(img)
+ return im[:w - w % sf, :h - h % sf, ...]
+
+
+"""
+# --------------------------------------------
+# anisotropic Gaussian kernels
+# --------------------------------------------
+"""
+
+
+def analytic_kernel(k):
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
+ k_size = k.shape[0]
+ # Calculate the big kernels size
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
+ # Loop over the small kernel to fill the big one
+ for r in range(k_size):
+ for c in range(k_size):
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
+ crop = k_size // 2
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
+ # Normalize to 1
+ return cropped_big_k / cropped_big_k.sum()
+
+
+def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
+ """ generate an anisotropic Gaussian kernel
+ Args:
+ ksize : e.g., 15, kernel size
+ theta : [0, pi], rotation angle range
+ l1 : [0.1,50], scaling of eigenvalues
+ l2 : [0.1,l1], scaling of eigenvalues
+ If l1 = l2, will get an isotropic Gaussian kernel.
+ Returns:
+ k : kernel
+ """
+
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
+ D = np.array([[l1, 0], [0, l2]])
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
+
+ return k
+
+
+def gm_blur_kernel(mean, cov, size=15):
+ center = size / 2.0 + 0.5
+ k = np.zeros([size, size])
+ for y in range(size):
+ for x in range(size):
+ cy = y - center + 1
+ cx = x - center + 1
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
+
+ k = k / np.sum(k)
+ return k
+
+
+def shift_pixel(x, sf, upper_left=True):
+ """shift pixel for super-resolution with different scale factors
+ Args:
+ x: WxHxC or WxH
+ sf: scale factor
+ upper_left: shift direction
+ """
+ h, w = x.shape[:2]
+ shift = (sf - 1) * 0.5
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
+ if upper_left:
+ x1 = xv + shift
+ y1 = yv + shift
+ else:
+ x1 = xv - shift
+ y1 = yv - shift
+
+ x1 = np.clip(x1, 0, w - 1)
+ y1 = np.clip(y1, 0, h - 1)
+
+ if x.ndim == 2:
+ x = interp2d(xv, yv, x)(x1, y1)
+ if x.ndim == 3:
+ for i in range(x.shape[-1]):
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
+
+ return x
+
+
+def blur(x, k):
+ '''
+ x: image, NxcxHxW
+ k: kernel, Nx1xhxw
+ '''
+ n, c = x.shape[:2]
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
+ k = k.repeat(1, c, 1, 1)
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
+ x = x.view(1, -1, x.shape[2], x.shape[3])
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
+ x = x.view(n, c, x.shape[2], x.shape[3])
+
+ return x
+
+
+def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
+ """"
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
+ # Kai Zhang
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
+ # max_var = 2.5 * sf
+ """
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
+ theta = np.random.rand() * np.pi # random theta
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
+
+ # Set COV matrix using Lambdas and Theta
+ LAMBDA = np.diag([lambda_1, lambda_2])
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
+ [np.sin(theta), np.cos(theta)]])
+ SIGMA = Q @ LAMBDA @ Q.T
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
+
+ # Set expectation position (shifting kernel for aligned image)
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
+ MU = MU[None, None, :, None]
+
+ # Create meshgrid for Gaussian
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
+ Z = np.stack([X, Y], 2)[:, :, :, None]
+
+ # Calcualte Gaussian for every pixel of the kernel
+ ZZ = Z - MU
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
+
+ # shift the kernel so it will be centered
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
+
+ # Normalize the kernel and return
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
+ kernel = raw_kernel / np.sum(raw_kernel)
+ return kernel
+
+
+def fspecial_gaussian(hsize, sigma):
+ hsize = [hsize, hsize]
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
+ std = sigma
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
+ arg = -(x * x + y * y) / (2 * std * std)
+ h = np.exp(arg)
+ h[h < scipy.finfo(float).eps * h.max()] = 0
+ sumh = h.sum()
+ if sumh != 0:
+ h = h / sumh
+ return h
+
+
+def fspecial_laplacian(alpha):
+ alpha = max([0, min([alpha, 1])])
+ h1 = alpha / (alpha + 1)
+ h2 = (1 - alpha) / (alpha + 1)
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
+ h = np.array(h)
+ return h
+
+
+def fspecial(filter_type, *args, **kwargs):
+ '''
+ python code from:
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
+ '''
+ if filter_type == 'gaussian':
+ return fspecial_gaussian(*args, **kwargs)
+ if filter_type == 'laplacian':
+ return fspecial_laplacian(*args, **kwargs)
+
+
+"""
+# --------------------------------------------
+# degradation models
+# --------------------------------------------
+"""
+
+
+def bicubic_degradation(x, sf=3):
+ '''
+ Args:
+ x: HxWxC image, [0, 1]
+ sf: down-scale factor
+ Return:
+ bicubicly downsampled LR image
+ '''
+ x = util.imresize_np(x, scale=1 / sf)
+ return x
+
+
+def srmd_degradation(x, k, sf=3):
+ ''' blur + bicubic downsampling
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2018learning,
+ title={Learning a single convolutional super-resolution network for multiple degradations},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={3262--3271},
+ year={2018}
+ }
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
+ x = bicubic_degradation(x, sf=sf)
+ return x
+
+
+def dpsr_degradation(x, k, sf=3):
+ ''' bicubic downsampling + blur
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2019deep,
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={1671--1681},
+ year={2019}
+ }
+ '''
+ x = bicubic_degradation(x, sf=sf)
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ return x
+
+
+def classical_degradation(x, k, sf=3):
+ ''' blur + downsampling
+ Args:
+ x: HxWxC image, [0, 1]/[0, 255]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
+ st = 0
+ return x[st::sf, st::sf, ...]
+
+
+def add_sharpening(img, weight=0.5, radius=50, threshold=10):
+ """USM sharpening. borrowed from real-ESRGAN
+ Input image: I; Blurry image: B.
+ 1. K = I + weight * (I - B)
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
+ 3. Blur mask:
+ 4. Out = Mask * K + (1 - Mask) * I
+ Args:
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
+ weight (float): Sharp weight. Default: 1.
+ radius (float): Kernel size of Gaussian blur. Default: 50.
+ threshold (int):
+ """
+ if radius % 2 == 0:
+ radius += 1
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
+ residual = img - blur
+ mask = np.abs(residual) * 255 > threshold
+ mask = mask.astype('float32')
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
+
+ K = img + weight * residual
+ K = np.clip(K, 0, 1)
+ return soft_mask * K + (1 - soft_mask) * img
+
+
+def add_blur(img, sf=4):
+ wd2 = 4.0 + sf
+ wd = 2.0 + 0.2 * sf
+
+ wd2 = wd2/4
+ wd = wd/4
+
+ if random.random() < 0.5:
+ l1 = wd2 * random.random()
+ l2 = wd2 * random.random()
+ k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
+ else:
+ k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
+ img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
+
+ return img
+
+
+def add_resize(img, sf=4):
+ rnum = np.random.rand()
+ if rnum > 0.8: # up
+ sf1 = random.uniform(1, 2)
+ elif rnum < 0.7: # down
+ sf1 = random.uniform(0.5 / sf, 1)
+ else:
+ sf1 = 1.0
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ return img
+
+
+# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+# noise_level = random.randint(noise_level1, noise_level2)
+# rnum = np.random.rand()
+# if rnum > 0.6: # add color Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+# elif rnum < 0.4: # add grayscale Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+# else: # add noise
+# L = noise_level2 / 255.
+# D = np.diag(np.random.rand(3))
+# U = orth(np.random.rand(3, 3))
+# conv = np.dot(np.dot(np.transpose(U), D), U)
+# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+# img = np.clip(img, 0.0, 1.0)
+# return img
+
+def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ rnum = np.random.rand()
+ if rnum > 0.6: # add color Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4: # add grayscale Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else: # add noise
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_speckle_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ img = np.clip(img, 0.0, 1.0)
+ rnum = random.random()
+ if rnum > 0.6:
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4:
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else:
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_Poisson_noise(img):
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
+ if random.random() < 0.5:
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
+ else:
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
+ img += noise_gray[:, :, np.newaxis]
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_JPEG_noise(img):
+ quality_factor = random.randint(80, 95)
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
+ img = cv2.imdecode(encimg, 1)
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
+ return img
+
+
+def random_crop(lq, hq, sf=4, lq_patchsize=64):
+ h, w = lq.shape[:2]
+ rnd_h = random.randint(0, h - lq_patchsize)
+ rnd_w = random.randint(0, w - lq_patchsize)
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
+
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
+ return lq, hq
+
+
+def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ hq = img.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ img = util.imresize_np(img, 1 / 2, True)
+ img = np.clip(img, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ img = add_blur(img, sf=sf)
+
+ elif i == 1:
+ img = add_blur(img, sf=sf)
+
+ elif i == 2:
+ a, b = img.shape[1], img.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ img = add_JPEG_noise(img)
+
+ elif i == 6:
+ # add processed camera sensor noise
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
+
+ return img, hq
+
+
+# todo no isp_model?
+def degradation_bsrgan_variant(image, sf=4, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ image = util.uint2single(image)
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = image.shape[:2]
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = image.shape[:2]
+
+ hq = image.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ image = util.imresize_np(image, 1 / 2, True)
+ image = np.clip(image, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ image = add_blur(image, sf=sf)
+
+ # elif i == 1:
+ # image = add_blur(image, sf=sf)
+
+ if i == 0:
+ pass
+
+ elif i == 2:
+ a, b = image.shape[1], image.shape[0]
+ # downsample2
+ if random.random() < 0.8:
+ sf1 = random.uniform(1, 2 * sf)
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
+
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ image = add_JPEG_noise(image)
+ #
+ # elif i == 6:
+ # # add processed camera sensor noise
+ # if random.random() < isp_prob and isp_model is not None:
+ # with torch.no_grad():
+ # img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ image = add_JPEG_noise(image)
+ image = util.single2uint(image)
+ example = {"image": image}
+ return example
+
+
+
+
+if __name__ == '__main__':
+ print("hey")
+ img = util.imread_uint('utils/test.png', 3)
+ img = img[:448, :448]
+ h = img.shape[0] // 4
+ print("resizing to", h)
+ sf = 4
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
+ for i in range(20):
+ print(i)
+ img_hq = img
+ img_lq = deg_fn(img)["image"]
+ img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
+ print(img_lq)
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
+ print(img_lq.shape)
+ print("bicubic", img_lq_bicubic.shape)
+ print(img_hq.shape)
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
+ (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
+ util.imsave(img_concat, str(i) + '.png')
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/utils_image.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/utils_image.py
new file mode 100644
index 0000000000000000000000000000000000000000..0175f155ad900ae33c3c46ed87f49b352e3faf98
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/image_degradation/utils_image.py
@@ -0,0 +1,916 @@
+import os
+import math
+import random
+import numpy as np
+import torch
+import cv2
+from torchvision.utils import make_grid
+from datetime import datetime
+#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
+
+
+os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
+
+
+'''
+# --------------------------------------------
+# Kai Zhang (github: https://github.com/cszn)
+# 03/Mar/2019
+# --------------------------------------------
+# https://github.com/twhui/SRGAN-pyTorch
+# https://github.com/xinntao/BasicSR
+# --------------------------------------------
+'''
+
+
+IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
+
+
+def is_image_file(filename):
+ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
+
+
+def get_timestamp():
+ return datetime.now().strftime('%y%m%d-%H%M%S')
+
+
+def imshow(x, title=None, cbar=False, figsize=None):
+ plt.figure(figsize=figsize)
+ plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
+ if title:
+ plt.title(title)
+ if cbar:
+ plt.colorbar()
+ plt.show()
+
+
+def surf(Z, cmap='rainbow', figsize=None):
+ plt.figure(figsize=figsize)
+ ax3 = plt.axes(projection='3d')
+
+ w, h = Z.shape[:2]
+ xx = np.arange(0,w,1)
+ yy = np.arange(0,h,1)
+ X, Y = np.meshgrid(xx, yy)
+ ax3.plot_surface(X,Y,Z,cmap=cmap)
+ #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
+ plt.show()
+
+
+'''
+# --------------------------------------------
+# get image pathes
+# --------------------------------------------
+'''
+
+
+def get_image_paths(dataroot):
+ paths = None # return None if dataroot is None
+ if dataroot is not None:
+ paths = sorted(_get_paths_from_images(dataroot))
+ return paths
+
+
+def _get_paths_from_images(path):
+ assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
+ images = []
+ for dirpath, _, fnames in sorted(os.walk(path)):
+ for fname in sorted(fnames):
+ if is_image_file(fname):
+ img_path = os.path.join(dirpath, fname)
+ images.append(img_path)
+ assert images, '{:s} has no valid image file'.format(path)
+ return images
+
+
+'''
+# --------------------------------------------
+# split large images into small images
+# --------------------------------------------
+'''
+
+
+def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
+ w, h = img.shape[:2]
+ patches = []
+ if w > p_max and h > p_max:
+ w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
+ h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
+ w1.append(w-p_size)
+ h1.append(h-p_size)
+# print(w1)
+# print(h1)
+ for i in w1:
+ for j in h1:
+ patches.append(img[i:i+p_size, j:j+p_size,:])
+ else:
+ patches.append(img)
+
+ return patches
+
+
+def imssave(imgs, img_path):
+ """
+ imgs: list, N images of size WxHxC
+ """
+ img_name, ext = os.path.splitext(os.path.basename(img_path))
+
+ for i, img in enumerate(imgs):
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
+ cv2.imwrite(new_path, img)
+
+
+def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
+ """
+ split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
+ and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
+ will be splitted.
+ Args:
+ original_dataroot:
+ taget_dataroot:
+ p_size: size of small images
+ p_overlap: patch size in training is a good choice
+ p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
+ """
+ paths = get_image_paths(original_dataroot)
+ for img_path in paths:
+ # img_name, ext = os.path.splitext(os.path.basename(img_path))
+ img = imread_uint(img_path, n_channels=n_channels)
+ patches = patches_from_image(img, p_size, p_overlap, p_max)
+ imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
+ #if original_dataroot == taget_dataroot:
+ #del img_path
+
+'''
+# --------------------------------------------
+# makedir
+# --------------------------------------------
+'''
+
+
+def mkdir(path):
+ if not os.path.exists(path):
+ os.makedirs(path)
+
+
+def mkdirs(paths):
+ if isinstance(paths, str):
+ mkdir(paths)
+ else:
+ for path in paths:
+ mkdir(path)
+
+
+def mkdir_and_rename(path):
+ if os.path.exists(path):
+ new_name = path + '_archived_' + get_timestamp()
+ print('Path already exists. Rename it to [{:s}]'.format(new_name))
+ os.rename(path, new_name)
+ os.makedirs(path)
+
+
+'''
+# --------------------------------------------
+# read image from path
+# opencv is fast, but read BGR numpy image
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# get uint8 image of size HxWxn_channles (RGB)
+# --------------------------------------------
+def imread_uint(path, n_channels=3):
+ # input: path
+ # output: HxWx3(RGB or GGG), or HxWx1 (G)
+ if n_channels == 1:
+ img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
+ img = np.expand_dims(img, axis=2) # HxWx1
+ elif n_channels == 3:
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
+ if img.ndim == 2:
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
+ else:
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
+ return img
+
+
+# --------------------------------------------
+# matlab's imwrite
+# --------------------------------------------
+def imsave(img, img_path):
+ img = np.squeeze(img)
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ cv2.imwrite(img_path, img)
+
+def imwrite(img, img_path):
+ img = np.squeeze(img)
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ cv2.imwrite(img_path, img)
+
+
+
+# --------------------------------------------
+# get single image of size HxWxn_channles (BGR)
+# --------------------------------------------
+def read_img(path):
+ # read image by cv2
+ # return: Numpy float32, HWC, BGR, [0,1]
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
+ img = img.astype(np.float32) / 255.
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ # some images have 4 channels
+ if img.shape[2] > 3:
+ img = img[:, :, :3]
+ return img
+
+
+'''
+# --------------------------------------------
+# image format conversion
+# --------------------------------------------
+# numpy(single) <---> numpy(unit)
+# numpy(single) <---> tensor
+# numpy(unit) <---> tensor
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# numpy(single) [0, 1] <---> numpy(unit)
+# --------------------------------------------
+
+
+def uint2single(img):
+
+ return np.float32(img/255.)
+
+
+def single2uint(img):
+
+ return np.uint8((img.clip(0, 1)*255.).round())
+
+
+def uint162single(img):
+
+ return np.float32(img/65535.)
+
+
+def single2uint16(img):
+
+ return np.uint16((img.clip(0, 1)*65535.).round())
+
+
+# --------------------------------------------
+# numpy(unit) (HxWxC or HxW) <---> tensor
+# --------------------------------------------
+
+
+# convert uint to 4-dimensional torch tensor
+def uint2tensor4(img):
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
+
+
+# convert uint to 3-dimensional torch tensor
+def uint2tensor3(img):
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
+
+
+# convert 2/3/4-dimensional torch tensor to uint
+def tensor2uint(img):
+ img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+ return np.uint8((img*255.0).round())
+
+
+# --------------------------------------------
+# numpy(single) (HxWxC) <---> tensor
+# --------------------------------------------
+
+
+# convert single (HxWxC) to 3-dimensional torch tensor
+def single2tensor3(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
+
+
+# convert single (HxWxC) to 4-dimensional torch tensor
+def single2tensor4(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
+
+
+# convert torch tensor to single
+def tensor2single(img):
+ img = img.data.squeeze().float().cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+
+ return img
+
+# convert torch tensor to single
+def tensor2single3(img):
+ img = img.data.squeeze().float().cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+ elif img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return img
+
+
+def single2tensor5(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
+
+
+def single32tensor5(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
+
+
+def single42tensor4(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
+
+
+# from skimage.io import imread, imsave
+def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
+ '''
+ Converts a torch Tensor into an image Numpy array of BGR channel order
+ Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
+ Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
+ '''
+ tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
+ tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
+ n_dim = tensor.dim()
+ if n_dim == 4:
+ n_img = len(tensor)
+ img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
+ elif n_dim == 3:
+ img_np = tensor.numpy()
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
+ elif n_dim == 2:
+ img_np = tensor.numpy()
+ else:
+ raise TypeError(
+ 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
+ if out_type == np.uint8:
+ img_np = (img_np * 255.0).round()
+ # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
+ return img_np.astype(out_type)
+
+
+'''
+# --------------------------------------------
+# Augmentation, flipe and/or rotate
+# --------------------------------------------
+# The following two are enough.
+# (1) augmet_img: numpy image of WxHxC or WxH
+# (2) augment_img_tensor4: tensor image 1xCxWxH
+# --------------------------------------------
+'''
+
+
+def augment_img(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return np.flipud(np.rot90(img))
+ elif mode == 2:
+ return np.flipud(img)
+ elif mode == 3:
+ return np.rot90(img, k=3)
+ elif mode == 4:
+ return np.flipud(np.rot90(img, k=2))
+ elif mode == 5:
+ return np.rot90(img)
+ elif mode == 6:
+ return np.rot90(img, k=2)
+ elif mode == 7:
+ return np.flipud(np.rot90(img, k=3))
+
+
+def augment_img_tensor4(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return img.rot90(1, [2, 3]).flip([2])
+ elif mode == 2:
+ return img.flip([2])
+ elif mode == 3:
+ return img.rot90(3, [2, 3])
+ elif mode == 4:
+ return img.rot90(2, [2, 3]).flip([2])
+ elif mode == 5:
+ return img.rot90(1, [2, 3])
+ elif mode == 6:
+ return img.rot90(2, [2, 3])
+ elif mode == 7:
+ return img.rot90(3, [2, 3]).flip([2])
+
+
+def augment_img_tensor(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ img_size = img.size()
+ img_np = img.data.cpu().numpy()
+ if len(img_size) == 3:
+ img_np = np.transpose(img_np, (1, 2, 0))
+ elif len(img_size) == 4:
+ img_np = np.transpose(img_np, (2, 3, 1, 0))
+ img_np = augment_img(img_np, mode=mode)
+ img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
+ if len(img_size) == 3:
+ img_tensor = img_tensor.permute(2, 0, 1)
+ elif len(img_size) == 4:
+ img_tensor = img_tensor.permute(3, 2, 0, 1)
+
+ return img_tensor.type_as(img)
+
+
+def augment_img_np3(img, mode=0):
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return img.transpose(1, 0, 2)
+ elif mode == 2:
+ return img[::-1, :, :]
+ elif mode == 3:
+ img = img[::-1, :, :]
+ img = img.transpose(1, 0, 2)
+ return img
+ elif mode == 4:
+ return img[:, ::-1, :]
+ elif mode == 5:
+ img = img[:, ::-1, :]
+ img = img.transpose(1, 0, 2)
+ return img
+ elif mode == 6:
+ img = img[:, ::-1, :]
+ img = img[::-1, :, :]
+ return img
+ elif mode == 7:
+ img = img[:, ::-1, :]
+ img = img[::-1, :, :]
+ img = img.transpose(1, 0, 2)
+ return img
+
+
+def augment_imgs(img_list, hflip=True, rot=True):
+ # horizontal flip OR rotate
+ hflip = hflip and random.random() < 0.5
+ vflip = rot and random.random() < 0.5
+ rot90 = rot and random.random() < 0.5
+
+ def _augment(img):
+ if hflip:
+ img = img[:, ::-1, :]
+ if vflip:
+ img = img[::-1, :, :]
+ if rot90:
+ img = img.transpose(1, 0, 2)
+ return img
+
+ return [_augment(img) for img in img_list]
+
+
+'''
+# --------------------------------------------
+# modcrop and shave
+# --------------------------------------------
+'''
+
+
+def modcrop(img_in, scale):
+ # img_in: Numpy, HWC or HW
+ img = np.copy(img_in)
+ if img.ndim == 2:
+ H, W = img.shape
+ H_r, W_r = H % scale, W % scale
+ img = img[:H - H_r, :W - W_r]
+ elif img.ndim == 3:
+ H, W, C = img.shape
+ H_r, W_r = H % scale, W % scale
+ img = img[:H - H_r, :W - W_r, :]
+ else:
+ raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
+ return img
+
+
+def shave(img_in, border=0):
+ # img_in: Numpy, HWC or HW
+ img = np.copy(img_in)
+ h, w = img.shape[:2]
+ img = img[border:h-border, border:w-border]
+ return img
+
+
+'''
+# --------------------------------------------
+# image processing process on numpy image
+# channel_convert(in_c, tar_type, img_list):
+# rgb2ycbcr(img, only_y=True):
+# bgr2ycbcr(img, only_y=True):
+# ycbcr2rgb(img):
+# --------------------------------------------
+'''
+
+
+def rgb2ycbcr(img, only_y=True):
+ '''same as matlab rgb2ycbcr
+ only_y: only return Y channel
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ if only_y:
+ rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
+ else:
+ rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
+ [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def ycbcr2rgb(img):
+ '''same as matlab ycbcr2rgb
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
+ [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def bgr2ycbcr(img, only_y=True):
+ '''bgr version of rgb2ycbcr
+ only_y: only return Y channel
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ if only_y:
+ rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
+ else:
+ rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
+ [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def channel_convert(in_c, tar_type, img_list):
+ # conversion among BGR, gray and y
+ if in_c == 3 and tar_type == 'gray': # BGR to gray
+ gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
+ return [np.expand_dims(img, axis=2) for img in gray_list]
+ elif in_c == 3 and tar_type == 'y': # BGR to y
+ y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
+ return [np.expand_dims(img, axis=2) for img in y_list]
+ elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
+ return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
+ else:
+ return img_list
+
+
+'''
+# --------------------------------------------
+# metric, PSNR and SSIM
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# PSNR
+# --------------------------------------------
+def calculate_psnr(img1, img2, border=0):
+ # img1 and img2 have range [0, 255]
+ #img1 = img1.squeeze()
+ #img2 = img2.squeeze()
+ if not img1.shape == img2.shape:
+ raise ValueError('Input images must have the same dimensions.')
+ h, w = img1.shape[:2]
+ img1 = img1[border:h-border, border:w-border]
+ img2 = img2[border:h-border, border:w-border]
+
+ img1 = img1.astype(np.float64)
+ img2 = img2.astype(np.float64)
+ mse = np.mean((img1 - img2)**2)
+ if mse == 0:
+ return float('inf')
+ return 20 * math.log10(255.0 / math.sqrt(mse))
+
+
+# --------------------------------------------
+# SSIM
+# --------------------------------------------
+def calculate_ssim(img1, img2, border=0):
+ '''calculate SSIM
+ the same outputs as MATLAB's
+ img1, img2: [0, 255]
+ '''
+ #img1 = img1.squeeze()
+ #img2 = img2.squeeze()
+ if not img1.shape == img2.shape:
+ raise ValueError('Input images must have the same dimensions.')
+ h, w = img1.shape[:2]
+ img1 = img1[border:h-border, border:w-border]
+ img2 = img2[border:h-border, border:w-border]
+
+ if img1.ndim == 2:
+ return ssim(img1, img2)
+ elif img1.ndim == 3:
+ if img1.shape[2] == 3:
+ ssims = []
+ for i in range(3):
+ ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
+ return np.array(ssims).mean()
+ elif img1.shape[2] == 1:
+ return ssim(np.squeeze(img1), np.squeeze(img2))
+ else:
+ raise ValueError('Wrong input image dimensions.')
+
+
+def ssim(img1, img2):
+ C1 = (0.01 * 255)**2
+ C2 = (0.03 * 255)**2
+
+ img1 = img1.astype(np.float64)
+ img2 = img2.astype(np.float64)
+ kernel = cv2.getGaussianKernel(11, 1.5)
+ window = np.outer(kernel, kernel.transpose())
+
+ mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
+ mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
+ mu1_sq = mu1**2
+ mu2_sq = mu2**2
+ mu1_mu2 = mu1 * mu2
+ sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
+ sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
+ sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
+
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
+ (sigma1_sq + sigma2_sq + C2))
+ return ssim_map.mean()
+
+
+'''
+# --------------------------------------------
+# matlab's bicubic imresize (numpy and torch) [0, 1]
+# --------------------------------------------
+'''
+
+
+# matlab 'imresize' function, now only support 'bicubic'
+def cubic(x):
+ absx = torch.abs(x)
+ absx2 = absx**2
+ absx3 = absx**3
+ return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
+ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
+
+
+def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
+ if (scale < 1) and (antialiasing):
+ # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
+ kernel_width = kernel_width / scale
+
+ # Output-space coordinates
+ x = torch.linspace(1, out_length, out_length)
+
+ # Input-space coordinates. Calculate the inverse mapping such that 0.5
+ # in output space maps to 0.5 in input space, and 0.5+scale in output
+ # space maps to 1.5 in input space.
+ u = x / scale + 0.5 * (1 - 1 / scale)
+
+ # What is the left-most pixel that can be involved in the computation?
+ left = torch.floor(u - kernel_width / 2)
+
+ # What is the maximum number of pixels that can be involved in the
+ # computation? Note: it's OK to use an extra pixel here; if the
+ # corresponding weights are all zero, it will be eliminated at the end
+ # of this function.
+ P = math.ceil(kernel_width) + 2
+
+ # The indices of the input pixels involved in computing the k-th output
+ # pixel are in row k of the indices matrix.
+ indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
+ 1, P).expand(out_length, P)
+
+ # The weights used to compute the k-th output pixel are in row k of the
+ # weights matrix.
+ distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
+ # apply cubic kernel
+ if (scale < 1) and (antialiasing):
+ weights = scale * cubic(distance_to_center * scale)
+ else:
+ weights = cubic(distance_to_center)
+ # Normalize the weights matrix so that each row sums to 1.
+ weights_sum = torch.sum(weights, 1).view(out_length, 1)
+ weights = weights / weights_sum.expand(out_length, P)
+
+ # If a column in weights is all zero, get rid of it. only consider the first and last column.
+ weights_zero_tmp = torch.sum((weights == 0), 0)
+ if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
+ indices = indices.narrow(1, 1, P - 2)
+ weights = weights.narrow(1, 1, P - 2)
+ if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
+ indices = indices.narrow(1, 0, P - 2)
+ weights = weights.narrow(1, 0, P - 2)
+ weights = weights.contiguous()
+ indices = indices.contiguous()
+ sym_len_s = -indices.min() + 1
+ sym_len_e = indices.max() - in_length
+ indices = indices + sym_len_s - 1
+ return weights, indices, int(sym_len_s), int(sym_len_e)
+
+
+# --------------------------------------------
+# imresize for tensor image [0, 1]
+# --------------------------------------------
+def imresize(img, scale, antialiasing=True):
+ # Now the scale should be the same for H and W
+ # input: img: pytorch tensor, CHW or HW [0,1]
+ # output: CHW or HW [0,1] w/o round
+ need_squeeze = True if img.dim() == 2 else False
+ if need_squeeze:
+ img.unsqueeze_(0)
+ in_C, in_H, in_W = img.size()
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
+ kernel_width = 4
+ kernel = 'cubic'
+
+ # Return the desired dimension order for performing the resize. The
+ # strategy is to perform the resize first along the dimension with the
+ # smallest scale factor.
+ # Now we do not support this.
+
+ # get weights and indices
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
+ # process H dimension
+ # symmetric copying
+ img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
+ img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
+
+ sym_patch = img[:, :sym_len_Hs, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
+
+ sym_patch = img[:, -sym_len_He:, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
+
+ out_1 = torch.FloatTensor(in_C, out_H, in_W)
+ kernel_width = weights_H.size(1)
+ for i in range(out_H):
+ idx = int(indices_H[i][0])
+ for j in range(out_C):
+ out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
+
+ # process W dimension
+ # symmetric copying
+ out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
+ out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
+
+ sym_patch = out_1[:, :, :sym_len_Ws]
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
+ out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
+
+ sym_patch = out_1[:, :, -sym_len_We:]
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
+ out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
+
+ out_2 = torch.FloatTensor(in_C, out_H, out_W)
+ kernel_width = weights_W.size(1)
+ for i in range(out_W):
+ idx = int(indices_W[i][0])
+ for j in range(out_C):
+ out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
+ if need_squeeze:
+ out_2.squeeze_()
+ return out_2
+
+
+# --------------------------------------------
+# imresize for numpy image [0, 1]
+# --------------------------------------------
+def imresize_np(img, scale, antialiasing=True):
+ # Now the scale should be the same for H and W
+ # input: img: Numpy, HWC or HW [0,1]
+ # output: HWC or HW [0,1] w/o round
+ img = torch.from_numpy(img)
+ need_squeeze = True if img.dim() == 2 else False
+ if need_squeeze:
+ img.unsqueeze_(2)
+
+ in_H, in_W, in_C = img.size()
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
+ kernel_width = 4
+ kernel = 'cubic'
+
+ # Return the desired dimension order for performing the resize. The
+ # strategy is to perform the resize first along the dimension with the
+ # smallest scale factor.
+ # Now we do not support this.
+
+ # get weights and indices
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
+ # process H dimension
+ # symmetric copying
+ img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
+ img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
+
+ sym_patch = img[:sym_len_Hs, :, :]
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
+ img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
+
+ sym_patch = img[-sym_len_He:, :, :]
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
+ img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
+
+ out_1 = torch.FloatTensor(out_H, in_W, in_C)
+ kernel_width = weights_H.size(1)
+ for i in range(out_H):
+ idx = int(indices_H[i][0])
+ for j in range(out_C):
+ out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
+
+ # process W dimension
+ # symmetric copying
+ out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
+ out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
+
+ sym_patch = out_1[:, :sym_len_Ws, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
+
+ sym_patch = out_1[:, -sym_len_We:, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
+
+ out_2 = torch.FloatTensor(out_H, out_W, in_C)
+ kernel_width = weights_W.size(1)
+ for i in range(out_W):
+ idx = int(indices_W[i][0])
+ for j in range(out_C):
+ out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
+ if need_squeeze:
+ out_2.squeeze_()
+
+ return out_2.numpy()
+
+
+if __name__ == '__main__':
+ print('---')
+# img = imread_uint('test.bmp', 3)
+# img = uint2single(img)
+# img_bicubic = imresize_np(img, 1/4)
\ No newline at end of file
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/losses/__init__.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/losses/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..876d7c5bd6e3245ee77feb4c482b7a8143604ad5
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/losses/__init__.py
@@ -0,0 +1 @@
+from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
\ No newline at end of file
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/losses/contperceptual.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/losses/contperceptual.py
new file mode 100644
index 0000000000000000000000000000000000000000..672c1e32a1389def02461c0781339681060c540e
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/losses/contperceptual.py
@@ -0,0 +1,111 @@
+import torch
+import torch.nn as nn
+
+from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
+
+
+class LPIPSWithDiscriminator(nn.Module):
+ def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
+ disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
+ perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
+ disc_loss="hinge"):
+
+ super().__init__()
+ assert disc_loss in ["hinge", "vanilla"]
+ self.kl_weight = kl_weight
+ self.pixel_weight = pixelloss_weight
+ self.perceptual_loss = LPIPS().eval()
+ self.perceptual_weight = perceptual_weight
+ # output log variance
+ self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
+
+ self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
+ n_layers=disc_num_layers,
+ use_actnorm=use_actnorm
+ ).apply(weights_init)
+ self.discriminator_iter_start = disc_start
+ self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
+ self.disc_factor = disc_factor
+ self.discriminator_weight = disc_weight
+ self.disc_conditional = disc_conditional
+
+ def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
+ if last_layer is not None:
+ nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
+ else:
+ nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
+
+ d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
+ d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
+ d_weight = d_weight * self.discriminator_weight
+ return d_weight
+
+ def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
+ global_step, last_layer=None, cond=None, split="train",
+ weights=None):
+ rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
+ if self.perceptual_weight > 0:
+ p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
+ rec_loss = rec_loss + self.perceptual_weight * p_loss
+
+ nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
+ weighted_nll_loss = nll_loss
+ if weights is not None:
+ weighted_nll_loss = weights*nll_loss
+ weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
+ nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
+ kl_loss = posteriors.kl()
+ kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
+
+ # now the GAN part
+ if optimizer_idx == 0:
+ # generator update
+ if cond is None:
+ assert not self.disc_conditional
+ logits_fake = self.discriminator(reconstructions.contiguous())
+ else:
+ assert self.disc_conditional
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
+ g_loss = -torch.mean(logits_fake)
+
+ if self.disc_factor > 0.0:
+ try:
+ d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
+ except RuntimeError:
+ assert not self.training
+ d_weight = torch.tensor(0.0)
+ else:
+ d_weight = torch.tensor(0.0)
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
+
+ log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
+ "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
+ "{}/rec_loss".format(split): rec_loss.detach().mean(),
+ "{}/d_weight".format(split): d_weight.detach(),
+ "{}/disc_factor".format(split): torch.tensor(disc_factor),
+ "{}/g_loss".format(split): g_loss.detach().mean(),
+ }
+ return loss, log
+
+ if optimizer_idx == 1:
+ # second pass for discriminator update
+ if cond is None:
+ logits_real = self.discriminator(inputs.contiguous().detach())
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
+ else:
+ logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
+
+ log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
+ "{}/logits_real".format(split): logits_real.detach().mean(),
+ "{}/logits_fake".format(split): logits_fake.detach().mean()
+ }
+ return d_loss, log
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/losses/vqperceptual.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/losses/vqperceptual.py
new file mode 100644
index 0000000000000000000000000000000000000000..f69981769e4bd5462600458c4fcf26620f7e4306
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/losses/vqperceptual.py
@@ -0,0 +1,167 @@
+import torch
+from torch import nn
+import torch.nn.functional as F
+from einops import repeat
+
+from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
+from taming.modules.losses.lpips import LPIPS
+from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
+
+
+def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
+ assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
+ loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
+ loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
+ loss_real = (weights * loss_real).sum() / weights.sum()
+ loss_fake = (weights * loss_fake).sum() / weights.sum()
+ d_loss = 0.5 * (loss_real + loss_fake)
+ return d_loss
+
+def adopt_weight(weight, global_step, threshold=0, value=0.):
+ if global_step < threshold:
+ weight = value
+ return weight
+
+
+def measure_perplexity(predicted_indices, n_embed):
+ # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
+ # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
+ encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
+ avg_probs = encodings.mean(0)
+ perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
+ cluster_use = torch.sum(avg_probs > 0)
+ return perplexity, cluster_use
+
+def l1(x, y):
+ return torch.abs(x-y)
+
+
+def l2(x, y):
+ return torch.pow((x-y), 2)
+
+
+class VQLPIPSWithDiscriminator(nn.Module):
+ def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
+ disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
+ perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
+ disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
+ pixel_loss="l1"):
+ super().__init__()
+ assert disc_loss in ["hinge", "vanilla"]
+ assert perceptual_loss in ["lpips", "clips", "dists"]
+ assert pixel_loss in ["l1", "l2"]
+ self.codebook_weight = codebook_weight
+ self.pixel_weight = pixelloss_weight
+ if perceptual_loss == "lpips":
+ print(f"{self.__class__.__name__}: Running with LPIPS.")
+ self.perceptual_loss = LPIPS().eval()
+ else:
+ raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
+ self.perceptual_weight = perceptual_weight
+
+ if pixel_loss == "l1":
+ self.pixel_loss = l1
+ else:
+ self.pixel_loss = l2
+
+ self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
+ n_layers=disc_num_layers,
+ use_actnorm=use_actnorm,
+ ndf=disc_ndf
+ ).apply(weights_init)
+ self.discriminator_iter_start = disc_start
+ if disc_loss == "hinge":
+ self.disc_loss = hinge_d_loss
+ elif disc_loss == "vanilla":
+ self.disc_loss = vanilla_d_loss
+ else:
+ raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
+ print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
+ self.disc_factor = disc_factor
+ self.discriminator_weight = disc_weight
+ self.disc_conditional = disc_conditional
+ self.n_classes = n_classes
+
+ def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
+ if last_layer is not None:
+ nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
+ else:
+ nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
+
+ d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
+ d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
+ d_weight = d_weight * self.discriminator_weight
+ return d_weight
+
+ def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
+ global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
+ if not exists(codebook_loss):
+ codebook_loss = torch.tensor([0.]).to(inputs.device)
+ #rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
+ rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
+ if self.perceptual_weight > 0:
+ p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
+ rec_loss = rec_loss + self.perceptual_weight * p_loss
+ else:
+ p_loss = torch.tensor([0.0])
+
+ nll_loss = rec_loss
+ #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
+ nll_loss = torch.mean(nll_loss)
+
+ # now the GAN part
+ if optimizer_idx == 0:
+ # generator update
+ if cond is None:
+ assert not self.disc_conditional
+ logits_fake = self.discriminator(reconstructions.contiguous())
+ else:
+ assert self.disc_conditional
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
+ g_loss = -torch.mean(logits_fake)
+
+ try:
+ d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
+ except RuntimeError:
+ assert not self.training
+ d_weight = torch.tensor(0.0)
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
+
+ log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
+ "{}/quant_loss".format(split): codebook_loss.detach().mean(),
+ "{}/nll_loss".format(split): nll_loss.detach().mean(),
+ "{}/rec_loss".format(split): rec_loss.detach().mean(),
+ "{}/p_loss".format(split): p_loss.detach().mean(),
+ "{}/d_weight".format(split): d_weight.detach(),
+ "{}/disc_factor".format(split): torch.tensor(disc_factor),
+ "{}/g_loss".format(split): g_loss.detach().mean(),
+ }
+ if predicted_indices is not None:
+ assert self.n_classes is not None
+ with torch.no_grad():
+ perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
+ log[f"{split}/perplexity"] = perplexity
+ log[f"{split}/cluster_usage"] = cluster_usage
+ return loss, log
+
+ if optimizer_idx == 1:
+ # second pass for discriminator update
+ if cond is None:
+ logits_real = self.discriminator(inputs.contiguous().detach())
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
+ else:
+ logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
+
+ log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
+ "{}/logits_real".format(split): logits_real.detach().mean(),
+ "{}/logits_fake".format(split): logits_fake.detach().mean()
+ }
+ return d_loss, log
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/x_transformer.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/x_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..5fc15bf9cfe0111a910e7de33d04ffdec3877576
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/modules/x_transformer.py
@@ -0,0 +1,641 @@
+"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
+import torch
+from torch import nn, einsum
+import torch.nn.functional as F
+from functools import partial
+from inspect import isfunction
+from collections import namedtuple
+from einops import rearrange, repeat, reduce
+
+# constants
+
+DEFAULT_DIM_HEAD = 64
+
+Intermediates = namedtuple('Intermediates', [
+ 'pre_softmax_attn',
+ 'post_softmax_attn'
+])
+
+LayerIntermediates = namedtuple('Intermediates', [
+ 'hiddens',
+ 'attn_intermediates'
+])
+
+
+class AbsolutePositionalEmbedding(nn.Module):
+ def __init__(self, dim, max_seq_len):
+ super().__init__()
+ self.emb = nn.Embedding(max_seq_len, dim)
+ self.init_()
+
+ def init_(self):
+ nn.init.normal_(self.emb.weight, std=0.02)
+
+ def forward(self, x):
+ n = torch.arange(x.shape[1], device=x.device)
+ return self.emb(n)[None, :, :]
+
+
+class FixedPositionalEmbedding(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
+ self.register_buffer('inv_freq', inv_freq)
+
+ def forward(self, x, seq_dim=1, offset=0):
+ t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
+ sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
+ emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
+ return emb[None, :, :]
+
+
+# helpers
+
+def exists(val):
+ return val is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def always(val):
+ def inner(*args, **kwargs):
+ return val
+ return inner
+
+
+def not_equals(val):
+ def inner(x):
+ return x != val
+ return inner
+
+
+def equals(val):
+ def inner(x):
+ return x == val
+ return inner
+
+
+def max_neg_value(tensor):
+ return -torch.finfo(tensor.dtype).max
+
+
+# keyword argument helpers
+
+def pick_and_pop(keys, d):
+ values = list(map(lambda key: d.pop(key), keys))
+ return dict(zip(keys, values))
+
+
+def group_dict_by_key(cond, d):
+ return_val = [dict(), dict()]
+ for key in d.keys():
+ match = bool(cond(key))
+ ind = int(not match)
+ return_val[ind][key] = d[key]
+ return (*return_val,)
+
+
+def string_begins_with(prefix, str):
+ return str.startswith(prefix)
+
+
+def group_by_key_prefix(prefix, d):
+ return group_dict_by_key(partial(string_begins_with, prefix), d)
+
+
+def groupby_prefix_and_trim(prefix, d):
+ kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
+ kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
+ return kwargs_without_prefix, kwargs
+
+
+# classes
+class Scale(nn.Module):
+ def __init__(self, value, fn):
+ super().__init__()
+ self.value = value
+ self.fn = fn
+
+ def forward(self, x, **kwargs):
+ x, *rest = self.fn(x, **kwargs)
+ return (x * self.value, *rest)
+
+
+class Rezero(nn.Module):
+ def __init__(self, fn):
+ super().__init__()
+ self.fn = fn
+ self.g = nn.Parameter(torch.zeros(1))
+
+ def forward(self, x, **kwargs):
+ x, *rest = self.fn(x, **kwargs)
+ return (x * self.g, *rest)
+
+
+class ScaleNorm(nn.Module):
+ def __init__(self, dim, eps=1e-5):
+ super().__init__()
+ self.scale = dim ** -0.5
+ self.eps = eps
+ self.g = nn.Parameter(torch.ones(1))
+
+ def forward(self, x):
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
+ return x / norm.clamp(min=self.eps) * self.g
+
+
+class RMSNorm(nn.Module):
+ def __init__(self, dim, eps=1e-8):
+ super().__init__()
+ self.scale = dim ** -0.5
+ self.eps = eps
+ self.g = nn.Parameter(torch.ones(dim))
+
+ def forward(self, x):
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
+ return x / norm.clamp(min=self.eps) * self.g
+
+
+class Residual(nn.Module):
+ def forward(self, x, residual):
+ return x + residual
+
+
+class GRUGating(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.gru = nn.GRUCell(dim, dim)
+
+ def forward(self, x, residual):
+ gated_output = self.gru(
+ rearrange(x, 'b n d -> (b n) d'),
+ rearrange(residual, 'b n d -> (b n) d')
+ )
+
+ return gated_output.reshape_as(x)
+
+
+# feedforward
+
+class GEGLU(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x):
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = default(dim_out, dim)
+ project_in = nn.Sequential(
+ nn.Linear(dim, inner_dim),
+ nn.GELU()
+ ) if not glu else GEGLU(dim, inner_dim)
+
+ self.net = nn.Sequential(
+ project_in,
+ nn.Dropout(dropout),
+ nn.Linear(inner_dim, dim_out)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+
+# attention.
+class Attention(nn.Module):
+ def __init__(
+ self,
+ dim,
+ dim_head=DEFAULT_DIM_HEAD,
+ heads=8,
+ causal=False,
+ mask=None,
+ talking_heads=False,
+ sparse_topk=None,
+ use_entmax15=False,
+ num_mem_kv=0,
+ dropout=0.,
+ on_attn=False
+ ):
+ super().__init__()
+ if use_entmax15:
+ raise NotImplementedError("Check out entmax activation instead of softmax activation!")
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+ self.causal = causal
+ self.mask = mask
+
+ inner_dim = dim_head * heads
+
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(dim, inner_dim, bias=False)
+ self.dropout = nn.Dropout(dropout)
+
+ # talking heads
+ self.talking_heads = talking_heads
+ if talking_heads:
+ self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
+ self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
+
+ # explicit topk sparse attention
+ self.sparse_topk = sparse_topk
+
+ # entmax
+ #self.attn_fn = entmax15 if use_entmax15 else F.softmax
+ self.attn_fn = F.softmax
+
+ # add memory key / values
+ self.num_mem_kv = num_mem_kv
+ if num_mem_kv > 0:
+ self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
+ self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
+
+ # attention on attention
+ self.attn_on_attn = on_attn
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
+
+ def forward(
+ self,
+ x,
+ context=None,
+ mask=None,
+ context_mask=None,
+ rel_pos=None,
+ sinusoidal_emb=None,
+ prev_attn=None,
+ mem=None
+ ):
+ b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
+ kv_input = default(context, x)
+
+ q_input = x
+ k_input = kv_input
+ v_input = kv_input
+
+ if exists(mem):
+ k_input = torch.cat((mem, k_input), dim=-2)
+ v_input = torch.cat((mem, v_input), dim=-2)
+
+ if exists(sinusoidal_emb):
+ # in shortformer, the query would start at a position offset depending on the past cached memory
+ offset = k_input.shape[-2] - q_input.shape[-2]
+ q_input = q_input + sinusoidal_emb(q_input, offset=offset)
+ k_input = k_input + sinusoidal_emb(k_input)
+
+ q = self.to_q(q_input)
+ k = self.to_k(k_input)
+ v = self.to_v(v_input)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
+
+ input_mask = None
+ if any(map(exists, (mask, context_mask))):
+ q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
+ k_mask = q_mask if not exists(context) else context_mask
+ k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
+ q_mask = rearrange(q_mask, 'b i -> b () i ()')
+ k_mask = rearrange(k_mask, 'b j -> b () () j')
+ input_mask = q_mask * k_mask
+
+ if self.num_mem_kv > 0:
+ mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
+ k = torch.cat((mem_k, k), dim=-2)
+ v = torch.cat((mem_v, v), dim=-2)
+ if exists(input_mask):
+ input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
+
+ dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
+ mask_value = max_neg_value(dots)
+
+ if exists(prev_attn):
+ dots = dots + prev_attn
+
+ pre_softmax_attn = dots
+
+ if talking_heads:
+ dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
+
+ if exists(rel_pos):
+ dots = rel_pos(dots)
+
+ if exists(input_mask):
+ dots.masked_fill_(~input_mask, mask_value)
+ del input_mask
+
+ if self.causal:
+ i, j = dots.shape[-2:]
+ r = torch.arange(i, device=device)
+ mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
+ mask = F.pad(mask, (j - i, 0), value=False)
+ dots.masked_fill_(mask, mask_value)
+ del mask
+
+ if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
+ top, _ = dots.topk(self.sparse_topk, dim=-1)
+ vk = top[..., -1].unsqueeze(-1).expand_as(dots)
+ mask = dots < vk
+ dots.masked_fill_(mask, mask_value)
+ del mask
+
+ attn = self.attn_fn(dots, dim=-1)
+ post_softmax_attn = attn
+
+ attn = self.dropout(attn)
+
+ if talking_heads:
+ attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
+
+ out = einsum('b h i j, b h j d -> b h i d', attn, v)
+ out = rearrange(out, 'b h n d -> b n (h d)')
+
+ intermediates = Intermediates(
+ pre_softmax_attn=pre_softmax_attn,
+ post_softmax_attn=post_softmax_attn
+ )
+
+ return self.to_out(out), intermediates
+
+
+class AttentionLayers(nn.Module):
+ def __init__(
+ self,
+ dim,
+ depth,
+ heads=8,
+ causal=False,
+ cross_attend=False,
+ only_cross=False,
+ use_scalenorm=False,
+ use_rmsnorm=False,
+ use_rezero=False,
+ rel_pos_num_buckets=32,
+ rel_pos_max_distance=128,
+ position_infused_attn=False,
+ custom_layers=None,
+ sandwich_coef=None,
+ par_ratio=None,
+ residual_attn=False,
+ cross_residual_attn=False,
+ macaron=False,
+ pre_norm=True,
+ gate_residual=False,
+ **kwargs
+ ):
+ super().__init__()
+ ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
+ attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
+
+ dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
+
+ self.dim = dim
+ self.depth = depth
+ self.layers = nn.ModuleList([])
+
+ self.has_pos_emb = position_infused_attn
+ self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
+ self.rotary_pos_emb = always(None)
+
+ assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
+ self.rel_pos = None
+
+ self.pre_norm = pre_norm
+
+ self.residual_attn = residual_attn
+ self.cross_residual_attn = cross_residual_attn
+
+ norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
+ norm_class = RMSNorm if use_rmsnorm else norm_class
+ norm_fn = partial(norm_class, dim)
+
+ norm_fn = nn.Identity if use_rezero else norm_fn
+ branch_fn = Rezero if use_rezero else None
+
+ if cross_attend and not only_cross:
+ default_block = ('a', 'c', 'f')
+ elif cross_attend and only_cross:
+ default_block = ('c', 'f')
+ else:
+ default_block = ('a', 'f')
+
+ if macaron:
+ default_block = ('f',) + default_block
+
+ if exists(custom_layers):
+ layer_types = custom_layers
+ elif exists(par_ratio):
+ par_depth = depth * len(default_block)
+ assert 1 < par_ratio <= par_depth, 'par ratio out of range'
+ default_block = tuple(filter(not_equals('f'), default_block))
+ par_attn = par_depth // par_ratio
+ depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
+ par_width = (depth_cut + depth_cut // par_attn) // par_attn
+ assert len(default_block) <= par_width, 'default block is too large for par_ratio'
+ par_block = default_block + ('f',) * (par_width - len(default_block))
+ par_head = par_block * par_attn
+ layer_types = par_head + ('f',) * (par_depth - len(par_head))
+ elif exists(sandwich_coef):
+ assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
+ layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
+ else:
+ layer_types = default_block * depth
+
+ self.layer_types = layer_types
+ self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
+
+ for layer_type in self.layer_types:
+ if layer_type == 'a':
+ layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
+ elif layer_type == 'c':
+ layer = Attention(dim, heads=heads, **attn_kwargs)
+ elif layer_type == 'f':
+ layer = FeedForward(dim, **ff_kwargs)
+ layer = layer if not macaron else Scale(0.5, layer)
+ else:
+ raise Exception(f'invalid layer type {layer_type}')
+
+ if isinstance(layer, Attention) and exists(branch_fn):
+ layer = branch_fn(layer)
+
+ if gate_residual:
+ residual_fn = GRUGating(dim)
+ else:
+ residual_fn = Residual()
+
+ self.layers.append(nn.ModuleList([
+ norm_fn(),
+ layer,
+ residual_fn
+ ]))
+
+ def forward(
+ self,
+ x,
+ context=None,
+ mask=None,
+ context_mask=None,
+ mems=None,
+ return_hiddens=False
+ ):
+ hiddens = []
+ intermediates = []
+ prev_attn = None
+ prev_cross_attn = None
+
+ mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
+
+ for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
+ is_last = ind == (len(self.layers) - 1)
+
+ if layer_type == 'a':
+ hiddens.append(x)
+ layer_mem = mems.pop(0)
+
+ residual = x
+
+ if self.pre_norm:
+ x = norm(x)
+
+ if layer_type == 'a':
+ out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
+ prev_attn=prev_attn, mem=layer_mem)
+ elif layer_type == 'c':
+ out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
+ elif layer_type == 'f':
+ out = block(x)
+
+ x = residual_fn(out, residual)
+
+ if layer_type in ('a', 'c'):
+ intermediates.append(inter)
+
+ if layer_type == 'a' and self.residual_attn:
+ prev_attn = inter.pre_softmax_attn
+ elif layer_type == 'c' and self.cross_residual_attn:
+ prev_cross_attn = inter.pre_softmax_attn
+
+ if not self.pre_norm and not is_last:
+ x = norm(x)
+
+ if return_hiddens:
+ intermediates = LayerIntermediates(
+ hiddens=hiddens,
+ attn_intermediates=intermediates
+ )
+
+ return x, intermediates
+
+ return x
+
+
+class Encoder(AttentionLayers):
+ def __init__(self, **kwargs):
+ assert 'causal' not in kwargs, 'cannot set causality on encoder'
+ super().__init__(causal=False, **kwargs)
+
+
+
+class TransformerWrapper(nn.Module):
+ def __init__(
+ self,
+ *,
+ num_tokens,
+ max_seq_len,
+ attn_layers,
+ emb_dim=None,
+ max_mem_len=0.,
+ emb_dropout=0.,
+ num_memory_tokens=None,
+ tie_embedding=False,
+ use_pos_emb=True
+ ):
+ super().__init__()
+ assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
+
+ dim = attn_layers.dim
+ emb_dim = default(emb_dim, dim)
+
+ self.max_seq_len = max_seq_len
+ self.max_mem_len = max_mem_len
+ self.num_tokens = num_tokens
+
+ self.token_emb = nn.Embedding(num_tokens, emb_dim)
+ self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
+ use_pos_emb and not attn_layers.has_pos_emb) else always(0)
+ self.emb_dropout = nn.Dropout(emb_dropout)
+
+ self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
+ self.attn_layers = attn_layers
+ self.norm = nn.LayerNorm(dim)
+
+ self.init_()
+
+ self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
+
+ # memory tokens (like [cls]) from Memory Transformers paper
+ num_memory_tokens = default(num_memory_tokens, 0)
+ self.num_memory_tokens = num_memory_tokens
+ if num_memory_tokens > 0:
+ self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
+
+ # let funnel encoder know number of memory tokens, if specified
+ if hasattr(attn_layers, 'num_memory_tokens'):
+ attn_layers.num_memory_tokens = num_memory_tokens
+
+ def init_(self):
+ nn.init.normal_(self.token_emb.weight, std=0.02)
+
+ def forward(
+ self,
+ x,
+ return_embeddings=False,
+ mask=None,
+ return_mems=False,
+ return_attn=False,
+ mems=None,
+ **kwargs
+ ):
+ b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
+ x = self.token_emb(x)
+ x += self.pos_emb(x)
+ x = self.emb_dropout(x)
+
+ x = self.project_emb(x)
+
+ if num_mem > 0:
+ mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
+ x = torch.cat((mem, x), dim=1)
+
+ # auto-handle masking after appending memory tokens
+ if exists(mask):
+ mask = F.pad(mask, (num_mem, 0), value=True)
+
+ x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
+ x = self.norm(x)
+
+ mem, x = x[:, :num_mem], x[:, num_mem:]
+
+ out = self.to_logits(x) if not return_embeddings else x
+
+ if return_mems:
+ hiddens = intermediates.hiddens
+ new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
+ new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
+ return out, new_mems
+
+ if return_attn:
+ attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
+ return out, attn_maps
+
+ return out
+
diff --git a/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/util.py b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..8c09ca1c72f7ceb3f9d7f9546aae5561baf62b13
--- /dev/null
+++ b/docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/util.py
@@ -0,0 +1,197 @@
+import importlib
+
+import torch
+from torch import optim
+import numpy as np
+
+from inspect import isfunction
+from PIL import Image, ImageDraw, ImageFont
+
+
+def log_txt_as_img(wh, xc, size=10):
+ # wh a tuple of (width, height)
+ # xc a list of captions to plot
+ b = len(xc)
+ txts = list()
+ for bi in range(b):
+ txt = Image.new("RGB", wh, color="white")
+ draw = ImageDraw.Draw(txt)
+ font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
+ nc = int(40 * (wh[0] / 256))
+ lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
+
+ try:
+ draw.text((0, 0), lines, fill="black", font=font)
+ except UnicodeEncodeError:
+ print("Cant encode string for logging. Skipping.")
+
+ txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
+ txts.append(txt)
+ txts = np.stack(txts)
+ txts = torch.tensor(txts)
+ return txts
+
+
+def ismap(x):
+ if not isinstance(x, torch.Tensor):
+ return False
+ return (len(x.shape) == 4) and (x.shape[1] > 3)
+
+
+def isimage(x):
+ if not isinstance(x,torch.Tensor):
+ return False
+ return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
+
+
+def exists(x):
+ return x is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def mean_flat(tensor):
+ """
+ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def count_params(model, verbose=False):
+ total_params = sum(p.numel() for p in model.parameters())
+ if verbose:
+ print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
+ return total_params
+
+
+def instantiate_from_config(config):
+ if not "target" in config:
+ if config == '__is_first_stage__':
+ return None
+ elif config == "__is_unconditional__":
+ return None
+ raise KeyError("Expected key `target` to instantiate.")
+ return get_obj_from_str(config["target"])(**config.get("params", dict()))
+
+
+def get_obj_from_str(string, reload=False):
+ module, cls = string.rsplit(".", 1)
+ if reload:
+ module_imp = importlib.import_module(module)
+ importlib.reload(module_imp)
+ return getattr(importlib.import_module(module, package=None), cls)
+
+
+class AdamWwithEMAandWings(optim.Optimizer):
+ # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
+ def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
+ weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
+ ema_power=1., param_names=()):
+ """AdamW that saves EMA versions of the parameters."""
+ if not 0.0 <= lr:
+ raise ValueError("Invalid learning rate: {}".format(lr))
+ if not 0.0 <= eps:
+ raise ValueError("Invalid epsilon value: {}".format(eps))
+ if not 0.0 <= betas[0] < 1.0:
+ raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
+ if not 0.0 <= betas[1] < 1.0:
+ raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
+ if not 0.0 <= weight_decay:
+ raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
+ if not 0.0 <= ema_decay <= 1.0:
+ raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
+ defaults = dict(lr=lr, betas=betas, eps=eps,
+ weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
+ ema_power=ema_power, param_names=param_names)
+ super().__init__(params, defaults)
+
+ def __setstate__(self, state):
+ super().__setstate__(state)
+ for group in self.param_groups:
+ group.setdefault('amsgrad', False)
+
+ @torch.no_grad()
+ def step(self, closure=None):
+ """Performs a single optimization step.
+ Args:
+ closure (callable, optional): A closure that reevaluates the model
+ and returns the loss.
+ """
+ loss = None
+ if closure is not None:
+ with torch.enable_grad():
+ loss = closure()
+
+ for group in self.param_groups:
+ params_with_grad = []
+ grads = []
+ exp_avgs = []
+ exp_avg_sqs = []
+ ema_params_with_grad = []
+ state_sums = []
+ max_exp_avg_sqs = []
+ state_steps = []
+ amsgrad = group['amsgrad']
+ beta1, beta2 = group['betas']
+ ema_decay = group['ema_decay']
+ ema_power = group['ema_power']
+
+ for p in group['params']:
+ if p.grad is None:
+ continue
+ params_with_grad.append(p)
+ if p.grad.is_sparse:
+ raise RuntimeError('AdamW does not support sparse gradients')
+ grads.append(p.grad)
+
+ state = self.state[p]
+
+ # State initialization
+ if len(state) == 0:
+ state['step'] = 0
+ # Exponential moving average of gradient values
+ state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
+ # Exponential moving average of squared gradient values
+ state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
+ if amsgrad:
+ # Maintains max of all exp. moving avg. of sq. grad. values
+ state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
+ # Exponential moving average of parameter values
+ state['param_exp_avg'] = p.detach().float().clone()
+
+ exp_avgs.append(state['exp_avg'])
+ exp_avg_sqs.append(state['exp_avg_sq'])
+ ema_params_with_grad.append(state['param_exp_avg'])
+
+ if amsgrad:
+ max_exp_avg_sqs.append(state['max_exp_avg_sq'])
+
+ # update the steps for each param group update
+ state['step'] += 1
+ # record the step after step update
+ state_steps.append(state['step'])
+
+ optim._functional.adamw(params_with_grad,
+ grads,
+ exp_avgs,
+ exp_avg_sqs,
+ max_exp_avg_sqs,
+ state_steps,
+ amsgrad=amsgrad,
+ beta1=beta1,
+ beta2=beta2,
+ lr=group['lr'],
+ weight_decay=group['weight_decay'],
+ eps=group['eps'],
+ maximize=False)
+
+ cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
+ for param, ema_param in zip(params_with_grad, ema_params_with_grad):
+ ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
+
+ return loss
\ No newline at end of file