Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/HLS-Gaudi2-TF/defaults.cfg +40 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/HLS-Gaudi2-TF/launch_bert_hvd.sh +611 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/HLS-Gaudi2-TF/run.sh +164 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/bf16_config/bert.json +57 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/common.py +37 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/debug.py +132 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/horovod_helpers_gpu.py +23 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/modeling/performance.py +56 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/modeling/tf_utils.py +175 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/tb_utils.py +259 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/utils.py +105 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/README.md +97 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/__init__.py +0 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_base.py +163 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_conventions.py +54 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_device.py +85 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/core.py +133 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/guidelines.md +65 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/callstack_sampler.py +62 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/__init__.py +0 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/benchmark_wrappers.py +83 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/LICENSE +30 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/mlperf_variable_map.json +163 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/model/__init__.py +1 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/model/optimizer.py +59 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/ops_fp32_Resnet.txt +5 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/requirements.txt +4 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/debug.py +107 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/modeling/__init__.py +0 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/modeling/performance.py +56 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/tb_utils.py +357 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/__init__.py +14 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/controller.py +395 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/grad_utils.py +143 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/runnable.py +79 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/standard_runnable.py +183 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/utils.py +344 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/__init__.py +0 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/common.py +523 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/mlp_log.py +57 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/mlperf_variable_map.json +163 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/requirements.txt +7 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/resnet_ctl_imagenet_main.py +406 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/resnet_model.py +323 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/resnet_runnable.py +545 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/utils/__init__.py +0 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/utils/optimizers/keras/backward_compatibility.py +9 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/utils/optimizers/keras/lars_optimizer.py +225 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/utils/optimizers/keras/lars_util.py +183 -0
- docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/__init__.py +0 -0
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/HLS-Gaudi2-TF/defaults.cfg
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
DATESTAMP=`date +'%y%m%d%H%M%S'`
|
3 |
+
export INPUT_FILES_DIR_UNPACKED=/root/datasets/tensorflow_bert/unpacked_data
|
4 |
+
export INPUT_FILES_DIR_PACKED=/root/datasets/tensorflow_bert/packed_data_500
|
5 |
+
export EVAL_FILES_DIR=/root/datasets/tensorflow_bert/eval_dataset
|
6 |
+
export INITIAL_CHECKPOINT=/root/datasets/tensorflow_bert/checkpoint/model.ckpt-28252
|
7 |
+
export BERT_CONFIG_DIR=/root/datasets/tensorflow_bert/checkpoint
|
8 |
+
export OUTPUT_DIR=/tmp/bert_pretrain/phase_2
|
9 |
+
export LOG_DIR=/tmp/bert_pretrain/phase_2
|
10 |
+
export TRAIN_BATCH_SIZE=28
|
11 |
+
export EVAL_BATCH_SIZE=125
|
12 |
+
export MAX_EVAL_STEPS=10
|
13 |
+
export NUM_DIST_EVAL_WORKERS=8
|
14 |
+
export TRAIN_STEPS=6700
|
15 |
+
export WARMUP_STEPS=0
|
16 |
+
export LEARNING_RATE=0.000425
|
17 |
+
export LAMB_BETA_1=0.9
|
18 |
+
export LAMB_BETA_2=0.999
|
19 |
+
export EPSILON=1e-06
|
20 |
+
export LAMB_WEIGHT_DECAY_RATE=0.01
|
21 |
+
export LAMB_LEARNING_RATE_DECAY_POLY_POWER=1.0
|
22 |
+
export NUM_ACCUMULATION_STEPS=2
|
23 |
+
export SAMPLES_START_EVAL=0
|
24 |
+
export SAVE_CHECKPOINTS_STEPS=335
|
25 |
+
export PACKED_DATA=True
|
26 |
+
export USE_HOROVOD=True
|
27 |
+
export HLS_TYPE="HLS2"
|
28 |
+
export NUM_WORKERS_TOTAL=8
|
29 |
+
export TF_CPU_RUNTIME_FALLBACK=forbid
|
30 |
+
export TF_HCCL_MEMORY_ALLOWANCE_MB=1536
|
31 |
+
export HABANA_INITIAL_WORKSPACE_SIZE_MB=4600
|
32 |
+
export CPU_BIND_TYPE=cpu
|
33 |
+
export USE_LIGHTWEIGHT_CHECKPOINT=True
|
34 |
+
export DO_TRAIN=True
|
35 |
+
export DO_EVAL=True
|
36 |
+
export USE_ASYNC_CHECKPOINTING=True
|
37 |
+
export EXPERIMENTAL_SLACK=True
|
38 |
+
export SIGNALING_FROM_GRAPH=0
|
39 |
+
|
40 |
+
unset MPI_TCP_INCLUDE
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/HLS-Gaudi2-TF/launch_bert_hvd.sh
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
DEBUG=${DEBUG:-0}
|
4 |
+
if [[ $DEBUG -eq 1 ]]; then
|
5 |
+
set -x
|
6 |
+
env
|
7 |
+
fi
|
8 |
+
|
9 |
+
# Basic paths
|
10 |
+
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
|
11 |
+
export BASE_PATH="$( cd "$(dirname "$(readlink -f ${SCRIPT_DIR}/defaults.cfg)" )" && pwd)"
|
12 |
+
exit_code=0
|
13 |
+
|
14 |
+
OMPI_PREFIX=$(which mpirun)
|
15 |
+
export OMPI_PREFIX=$(dirname $(dirname ${OMPI_PREFIX}) )
|
16 |
+
|
17 |
+
function help()
|
18 |
+
{
|
19 |
+
echo "Usage:"
|
20 |
+
echo "$0 [ -key1 value1 -key2 value2 .... -keyn valuen ]"
|
21 |
+
echo "-c | --config Configuration file path (defaults to ./defaults.cfg)"
|
22 |
+
echo "-hf | --hostfile Host file path, 'localhost' is used if no file is provided"
|
23 |
+
echo "-u | --use_horovod Enable (0) or disable (1) horovod use"
|
24 |
+
echo "-ws | --warmup_steps"
|
25 |
+
echo "-lr | --learning_rate"
|
26 |
+
echo "-st | --stop_threshold"
|
27 |
+
echo "-acs | --num_accumul_steps"
|
28 |
+
echo "-tbs | --train_batchsize"
|
29 |
+
echo "-ebs | --eval_batchsize"
|
30 |
+
echo "-ts | --train_steps"
|
31 |
+
echo "-lb1 | --lamb_beta_1"
|
32 |
+
echo "-lb2 | --lamb_beta_2"
|
33 |
+
echo "-ep | --epsilon"
|
34 |
+
echo "-lwd | --lamb_weight_decay_rate"
|
35 |
+
echo "-ldp | --lamb_lr_decay_poly_power"
|
36 |
+
echo "-sbe | --samples_btw_eval"
|
37 |
+
echo "-sse | --samples_start_eval"
|
38 |
+
echo "-mes | --max_eval_steps"
|
39 |
+
echo "-w | --num_workers_total"
|
40 |
+
echo "-p | --packed_data Packed (0) or unpacked (1)"
|
41 |
+
echo "-sch | --save_checkpoints_steps"
|
42 |
+
echo "-cpu | --cpu_bind_type [ none | cpu | numa ]"
|
43 |
+
echo "-inputf | --input_files_dir"
|
44 |
+
echo "-evalf | --eval_files_dir"
|
45 |
+
echo "-od | --output_dir"
|
46 |
+
echo "-ckpt | --initial_checkpoint"
|
47 |
+
echo "-config | --config_dir"
|
48 |
+
echo "-hls | --hls_type"
|
49 |
+
echo "-tcp | --mpi_tcp_include"
|
50 |
+
echo "-dram | --use_dram_output"
|
51 |
+
echo "-lw | --light_weight"
|
52 |
+
echo "-lwi | --light_weight_impl [ basic (default) | sharded ]"
|
53 |
+
echo "-ac | --async_checkpointing"
|
54 |
+
echo "-ld | --log_dir"
|
55 |
+
echo "--do_train"
|
56 |
+
echo "--do_eval"
|
57 |
+
echo "--experimental_slack"
|
58 |
+
echo "-ndew | --num_dist_eval_workers Number of workers participating in distributed evaluation"
|
59 |
+
echo "-opt | --optimizer Type of optimizer, available options: 'lamb', 'sharded_lamb', 'adam'"
|
60 |
+
echo "-sfg | --signaling_from_graph Enable (1) or disable (0) SFG optimization."
|
61 |
+
}
|
62 |
+
#echo "-sws | --start_warmup_steps"
|
63 |
+
|
64 |
+
# Parse command line options
|
65 |
+
unset __config
|
66 |
+
unset __hostfile
|
67 |
+
unset __use_horovod
|
68 |
+
unset __warmup_steps
|
69 |
+
unset __learning_rate
|
70 |
+
unset __stop_threshold
|
71 |
+
unset __num_accumul_steps
|
72 |
+
unset __train_batchsize
|
73 |
+
unset __eval_batchsize
|
74 |
+
unset __train_steps
|
75 |
+
#unset __start_warmup_steps
|
76 |
+
unset __lamb_beta_1
|
77 |
+
unset __lamb_beta_2
|
78 |
+
unset __epsilon
|
79 |
+
unset __lamb_weight_decay_rate
|
80 |
+
unset __lamb_lr_decay_poly_power
|
81 |
+
unset __samples_btw_eval
|
82 |
+
unset __samples_start_eval
|
83 |
+
unset __max_eval_steps
|
84 |
+
unset __num_workers_total
|
85 |
+
unset __packed_data
|
86 |
+
unset __save_checkpoints_steps
|
87 |
+
unset __cpu_bind_type
|
88 |
+
unset __input_files_dir
|
89 |
+
unset __eval_files_dir
|
90 |
+
unset __output_dir
|
91 |
+
unset __initial_checkpoint
|
92 |
+
unset __config_dir
|
93 |
+
unset __hls_type
|
94 |
+
unset __mpi_tcp_include
|
95 |
+
unset __use_dram_output
|
96 |
+
unset __light_weight
|
97 |
+
unset __light_weight_impl
|
98 |
+
unset __async_checkpointing
|
99 |
+
unset __log_dir
|
100 |
+
unset __do_train
|
101 |
+
unset __do_eval
|
102 |
+
unset __experimental_slack
|
103 |
+
unset __num_dist_eval_workers
|
104 |
+
unset __optimizer
|
105 |
+
unset __aux_scirpt_params
|
106 |
+
unset __ssh_port
|
107 |
+
unset __signaling_from_graph
|
108 |
+
|
109 |
+
while [ -n "$1" ]; do
|
110 |
+
case $1 in
|
111 |
+
-c | --config )
|
112 |
+
shift
|
113 |
+
__config=$1
|
114 |
+
;;
|
115 |
+
-hf | --hostfile)
|
116 |
+
shift
|
117 |
+
__hostfile=$1
|
118 |
+
;;
|
119 |
+
-u | --use_horovod )
|
120 |
+
shift
|
121 |
+
__use_horovod=$1
|
122 |
+
;;
|
123 |
+
-ws | --warmup_steps )
|
124 |
+
shift
|
125 |
+
__warmup_steps=$1
|
126 |
+
;;
|
127 |
+
-lr | --learning_rate )
|
128 |
+
shift
|
129 |
+
__learning_rate=$1
|
130 |
+
;;
|
131 |
+
-st | --stop_threshold )
|
132 |
+
shift
|
133 |
+
__stop_threshold=$1
|
134 |
+
;;
|
135 |
+
-acs | --num_accumul_steps )
|
136 |
+
shift
|
137 |
+
__num_accumul_steps=$1
|
138 |
+
;;
|
139 |
+
-tbs | --train_batchsize )
|
140 |
+
shift
|
141 |
+
__train_batchsize=$1
|
142 |
+
;;
|
143 |
+
-ebs | --eval_batchsize)
|
144 |
+
shift
|
145 |
+
__eval_batchsize=$1
|
146 |
+
;;
|
147 |
+
-ts | --train_steps)
|
148 |
+
shift
|
149 |
+
__train_steps=$1
|
150 |
+
;;
|
151 |
+
-lb1 | --lamb_beta_1)
|
152 |
+
shift
|
153 |
+
__lamb_beta_1=$1
|
154 |
+
;;
|
155 |
+
-lb2 | --lamb_beta_2)
|
156 |
+
shift
|
157 |
+
__lamb_beta_2=$1
|
158 |
+
;;
|
159 |
+
-ep | --epsilon)
|
160 |
+
shift
|
161 |
+
__epsilon=$1
|
162 |
+
;;
|
163 |
+
-lwd | --lamb_weight_decay_rate)
|
164 |
+
shift
|
165 |
+
__lamb_weight_decay_rate=$1
|
166 |
+
;;
|
167 |
+
-ldp | --lamb_lr_decay_poly_power)
|
168 |
+
shift
|
169 |
+
__lamb_lr_decay_poly_power=$1
|
170 |
+
;;
|
171 |
+
-sbe | --samples_btw_eval)
|
172 |
+
shift
|
173 |
+
__samples_btw_eval=$1
|
174 |
+
;;
|
175 |
+
-sse | --samples_start_eval)
|
176 |
+
shift
|
177 |
+
__samples_start_eval=$1
|
178 |
+
;;
|
179 |
+
-mes | --max_eval_steps)
|
180 |
+
shift
|
181 |
+
__max_eval_steps=$1
|
182 |
+
;;
|
183 |
+
-w | --num_workers_total)
|
184 |
+
shift
|
185 |
+
__num_workers_total=$1
|
186 |
+
;;
|
187 |
+
-p | --packed_data)
|
188 |
+
shift
|
189 |
+
__packed_data=$1
|
190 |
+
;;
|
191 |
+
-sch | --save_checkpoints_steps)
|
192 |
+
shift
|
193 |
+
__save_checkpoints_steps=$1
|
194 |
+
;;
|
195 |
+
-cpu | --cpu_bind_type)
|
196 |
+
shift
|
197 |
+
__cpu_bind_type=$1
|
198 |
+
case ${__cpu_bind_type} in
|
199 |
+
numa | cpu | none )
|
200 |
+
;;
|
201 |
+
*)
|
202 |
+
echo "--cpu-pin must be one of the following numa | cpu | none "
|
203 |
+
exit 1
|
204 |
+
esac
|
205 |
+
;;
|
206 |
+
-inputf | --input_files_dir)
|
207 |
+
shift
|
208 |
+
__input_files_dir=$1
|
209 |
+
;;
|
210 |
+
-sfg | --signaling_from_graph)
|
211 |
+
shift
|
212 |
+
__signaling_from_graph=$1
|
213 |
+
;;
|
214 |
+
-evalf | --eval_files_dir)
|
215 |
+
shift
|
216 |
+
__eval_files_dir=$1
|
217 |
+
;;
|
218 |
+
-od | --output_dir)
|
219 |
+
shift
|
220 |
+
__output_dir=$1
|
221 |
+
;;
|
222 |
+
-ckpt | --initial_checkpoint)
|
223 |
+
shift
|
224 |
+
__initial_checkpoint=$1
|
225 |
+
;;
|
226 |
+
-config | --config_dir)
|
227 |
+
shift
|
228 |
+
__config_dir=$1
|
229 |
+
;;
|
230 |
+
-hls | --hls_type)
|
231 |
+
shift
|
232 |
+
__hls_type=$1
|
233 |
+
;;
|
234 |
+
-tcp | --mpi_tcp_include)
|
235 |
+
shift
|
236 |
+
__mpi_tcp_include=$1
|
237 |
+
;;
|
238 |
+
-dram | --use_dram_output)
|
239 |
+
shift
|
240 |
+
__use_dram_output=$1
|
241 |
+
;;
|
242 |
+
-lw | --light_weight)
|
243 |
+
shift
|
244 |
+
__light_weight=$1
|
245 |
+
;;
|
246 |
+
-lwi | --light_weight_impl)
|
247 |
+
shift
|
248 |
+
__light_weight_impl=$1
|
249 |
+
;;
|
250 |
+
-ac | --async_checkpointing)
|
251 |
+
shift
|
252 |
+
__async_checkpointing=$1
|
253 |
+
;;
|
254 |
+
-ld | --log_dir)
|
255 |
+
shift
|
256 |
+
__log_dir=$1
|
257 |
+
;;
|
258 |
+
--do_train)
|
259 |
+
shift
|
260 |
+
__do_train=$1
|
261 |
+
;;
|
262 |
+
--do_eval)
|
263 |
+
shift
|
264 |
+
__do_eval=$1
|
265 |
+
;;
|
266 |
+
--experimental_slack)
|
267 |
+
shift
|
268 |
+
__experimental_slack=$1
|
269 |
+
;;
|
270 |
+
-ndew | --num_dist_eval_workers)
|
271 |
+
shift
|
272 |
+
__num_dist_eval_workers=$1
|
273 |
+
;;
|
274 |
+
-opt | --optimizer)
|
275 |
+
shift
|
276 |
+
__optimizer=$1
|
277 |
+
;;
|
278 |
+
-port | --ssh_port)
|
279 |
+
shift
|
280 |
+
__ssh_port=$1
|
281 |
+
;;
|
282 |
+
-h | --help)
|
283 |
+
help
|
284 |
+
exit 1
|
285 |
+
;;
|
286 |
+
* )
|
287 |
+
__aux_param=$1
|
288 |
+
shift
|
289 |
+
echo "The parameter $1 will be passed directly to python script"
|
290 |
+
__aux_scirpt_params="${__aux_scirpt_params}:${__aux_param}=${1}"
|
291 |
+
;;
|
292 |
+
esac
|
293 |
+
shift
|
294 |
+
done
|
295 |
+
|
296 |
+
export CFG_FILE=${__config:-"${BASE_PATH}/defaults.cfg"}
|
297 |
+
if [[ -f ${CFG_FILE} ]]; then
|
298 |
+
source ${CFG_FILE}
|
299 |
+
else
|
300 |
+
echo "Could not find ${CFG_FILE}"
|
301 |
+
exit 1
|
302 |
+
fi
|
303 |
+
|
304 |
+
# Set default values for environmental variable
|
305 |
+
export HOST_FILE=${__hostfile:-"${OMPI_MCA_orte_default_hostfile}"}
|
306 |
+
export SSH_PORT=${__ssh_port:-"3022"}
|
307 |
+
|
308 |
+
if [[ -z "${HABANA_LOGS}" ]]; then
|
309 |
+
export HABANA_LOGS="/var/logs/habana_logs"
|
310 |
+
echo "Creating default directory for habana_logs."
|
311 |
+
mkdir -p $HABANA_LOGS
|
312 |
+
fi
|
313 |
+
export EVAL_FILES_DIR=${EVAL_FILES_DIR}
|
314 |
+
export OUTPUT_DIR=${OUTPUT_DIR}
|
315 |
+
export PHASE1_CKPT=${INITIAL_CHECKPOINT}
|
316 |
+
export INITIAL_CHECKPOINT=${INITIAL_CHECKPOINT}
|
317 |
+
export BERT_CONFIG_DIR=${BERT_CONFIG_DIR}
|
318 |
+
export NUM_WORKERS_PER_HLS=${NUM_WORKERS_PER_HLS}
|
319 |
+
export OPTIMIZE_DMA_ENGINES_ALLOCATION=${OPTIMIZE_DMA_ENGINES_ALLOCATION}
|
320 |
+
export TF_CPU_RUNTIME_FALLBACK=${TF_CPU_RUNTIME_FALLBACK}
|
321 |
+
export TF_HCCL_MEMORY_ALLOWANCE_MB=${TF_HCCL_MEMORY_ALLOWANCE_MB}
|
322 |
+
export HABANA_INITIAL_WORKSPACE_SIZE_MB=${HABANA_INITIAL_WORKSPACE_SIZE_MB}
|
323 |
+
|
324 |
+
# Override defaults with command line options if needed
|
325 |
+
export MPI_TCP_INCLUDE=${__mpi_tcp_include:-$MPI_TCP_INCLUDE}
|
326 |
+
export USE_HOROVOD=${__use_horovod:-$USE_HOROVOD}
|
327 |
+
export WARMUP_STEPS=${__warmup_steps:-$WARMUP_STEPS}
|
328 |
+
export LEARNING_RATE=${__learning_rate:-$LEARNING_RATE}
|
329 |
+
export STOP_THRESHOLD=${__stop_threshold:-$STOP_THRESHOLD}
|
330 |
+
export NUM_ACCUMULATION_STEPS=${__num_accumul_steps:-$NUM_ACCUMULATION_STEPS}
|
331 |
+
export TRAIN_BATCH_SIZE=${__train_batchsize:-$TRAIN_BATCH_SIZE}
|
332 |
+
export EVAL_BATCH_SIZE=${__eval_batchsize:-$EVAL_BATCH_SIZE}
|
333 |
+
export TRAIN_STEPS=${__train_steps:-$TRAIN_STEPS}
|
334 |
+
export LAMB_BETA_1=${__lamb_beta_1:-$LAMB_BETA_1}
|
335 |
+
export LAMB_BETA_2=${__lamb_beta_2:-$LAMB_BETA_2}
|
336 |
+
export EPSILON=${__epsilon:-$EPSILON}
|
337 |
+
export LAMB_WEIGHT_DECAY_RATE=${__lamb_weight_decay_rate:-$LAMB_WEIGHT_DECAY_RATE}
|
338 |
+
export LAMB_LEARNING_RATE_DECAY_POLY_POWER=${__lamb_lr_decay_poly_power:-$LAMB_LEARNING_RATE_DECAY_POLY_POWER}
|
339 |
+
export SAMPLES_START_EVAL=${__samples_start_eval:-$SAMPLES_START_EVAL}
|
340 |
+
export MAX_EVAL_STEPS=${__max_eval_steps:-$MAX_EVAL_STEPS}
|
341 |
+
export NUM_WORKERS_TOTAL=${__num_workers_total:-$NUM_WORKERS_TOTAL}
|
342 |
+
export PACKED_DATA=${__packed_data:-$PACKED_DATA}
|
343 |
+
export SAVE_CHECKPOINTS_STEPS=${__save_checkpoints_steps:-$SAVE_CHECKPOINTS_STEPS}
|
344 |
+
SAMPLES_BETWEEN_EVAL=$(($TRAIN_BATCH_SIZE*$NUM_WORKERS_TOTAL*$NUM_ACCUMULATION_STEPS*$SAVE_CHECKPOINTS_STEPS))
|
345 |
+
export SAMPLES_BETWEEN_EVAL=${__samples_btw_eval:-$SAMPLES_BETWEEN_EVAL}
|
346 |
+
export CPU_BIND_TYPE=${__cpu_bind_type:-$CPU_BIND_TYPE}
|
347 |
+
export EVAL_FILES_DIR=${__eval_files_dir:-$EVAL_FILES_DIR}
|
348 |
+
export SIGNALING_FROM_GRAPH=${__signaling_from_graph:-$SIGNALING_FROM_GRAPH}
|
349 |
+
export OUTPUT_DIR=${__output_dir:-$OUTPUT_DIR}
|
350 |
+
export PHASE1_CKPT=${__initial_checkpoint:-$INITIAL_CHECKPOINT}
|
351 |
+
export BERT_CONFIG_DIR=${__config_dir:-$BERT_CONFIG_DIR}
|
352 |
+
export HLS_TYPE=${__hls_type:-$HLS_TYPE}
|
353 |
+
export USE_DRAM_OUTPUT=${__use_dram_output:-"True"}
|
354 |
+
export USE_LIGHTWEIGHT_CHECKPOINT=${__light_weight:-$USE_LIGHTWEIGHT_CHECKPOINT}
|
355 |
+
export LIGHTWEIGHT_CHECKPOINT_IMPL=${__light_weight_impl:-"basic"}
|
356 |
+
export USE_ASYNC_CHECKPOINTING=${__async_checkpointing:-$USE_ASYNC_CHECKPOINTING}
|
357 |
+
export LOG_DIR=${__log_dir:-$LOG_DIR}
|
358 |
+
export DO_TRAIN=${__do_train:-$DO_TRAIN}
|
359 |
+
export DO_EVAL=${__do_eval:-$DO_EVAL}
|
360 |
+
export EXPERIMENTAL_SLACK=${__experimental_slack:-$EXPERIMENTAL_SLACK}
|
361 |
+
export NUM_DIST_EVAL_WORKERS=${__num_dist_eval_workers:-$NUM_DIST_EVAL_WORKERS}
|
362 |
+
export AUX_PARAMS=${__aux_scirpt_params:-$AUX_PARAMS}
|
363 |
+
export OPTIMIZER=${__optimizer:-$OPTIMIZER}
|
364 |
+
|
365 |
+
if [[ "$HLS_TYPE" == "HLS2" ]]; then
|
366 |
+
export NUM_WORKERS_PER_HLS=8
|
367 |
+
else
|
368 |
+
"============== WRONG HLS TYPE!! ==============="
|
369 |
+
exit -1
|
370 |
+
fi
|
371 |
+
|
372 |
+
if [ "$PACKED_DATA" == "False" ]; then
|
373 |
+
export INPUT_FILES_DIR=${__input_files_dir:-$INPUT_FILES_DIR_UNPACKED}
|
374 |
+
else
|
375 |
+
export INPUT_FILES_DIR=${__input_files_dir:-$INPUT_FILES_DIR_PACKED}
|
376 |
+
fi
|
377 |
+
|
378 |
+
if [ "$USE_HOROVOD" == "True" ]; then
|
379 |
+
export HOROVOD_STALL_CHECK_DISABLE=1
|
380 |
+
echo HOROVOD_STALL_CHECK_DISABLE=$HOROVOD_STALL_CHECK_DISABLE
|
381 |
+
|
382 |
+
# SAO:ON by default
|
383 |
+
export TF_DISABLE_SCOPED_ALLOCATOR=${TF_DISABLE_SCOPED_ALLOCATOR:-False}
|
384 |
+
echo TF_DISABLE_SCOPED_ALLOCATOR=$TF_DISABLE_SCOPED_ALLOCATOR
|
385 |
+
fi
|
386 |
+
|
387 |
+
function getmulti_hls_ips()
|
388 |
+
{
|
389 |
+
multi_hcl_ip="MULTI_HLS_IPS="
|
390 |
+
hostsFile=$1
|
391 |
+
firstHost=1
|
392 |
+
hostCount=0
|
393 |
+
|
394 |
+
# iterate over non-empty and non-commented lines
|
395 |
+
for h in $(cat $hostsFile | sed '/^$/d' | grep -v '^#'); do
|
396 |
+
if [[ $firstHost -eq 1 ]]; then
|
397 |
+
firstHost=0
|
398 |
+
else
|
399 |
+
multi_hcl_ip+=","
|
400 |
+
fi
|
401 |
+
multi_hcl_ip+=$h
|
402 |
+
hostCount=$((hostCount + 1))
|
403 |
+
done
|
404 |
+
|
405 |
+
echo "[getmulti_hls_ips] Host Count : $hostCount"
|
406 |
+
echo "[getmulti_hls_ips] Exporting : $multi_hcl_ip"
|
407 |
+
export $multi_hcl_ip
|
408 |
+
}
|
409 |
+
|
410 |
+
|
411 |
+
function run_per_ip()
|
412 |
+
{
|
413 |
+
if [ -n "$OMPI_COMM_WORLD_SIZE" ]; then
|
414 |
+
print_error "Function run_per_ip is not meant to be ran from within an OpenMPI context. It is intended to invoke mpirun by itelf."
|
415 |
+
exit 1
|
416 |
+
fi
|
417 |
+
_cmd="$@"
|
418 |
+
# Due to technical difficulties with the following solution, the _cmd stderr shall be redirected to stdout.
|
419 |
+
if [[ -z ${MULTI_HLS_IPS} ]]; then
|
420 |
+
echo "[launch_bert_hvd] MULTI_HLS_IPS undefined - maybe a missing /root/shared/hosts file?"
|
421 |
+
exit -1
|
422 |
+
else
|
423 |
+
if [ -n "$MPI_TCP_INCLUDE" ]; then
|
424 |
+
_option_btl_tcp_if_include="--mca btl_tcp_if_include ${MPI_TCP_INCLUDE}"
|
425 |
+
else
|
426 |
+
_option_btl_tcp_if_include=""
|
427 |
+
fi
|
428 |
+
mpirun --allow-run-as-root \
|
429 |
+
--mca plm_rsh_args -p${SSH_PORT} \
|
430 |
+
${_option_btl_tcp_if_include} \
|
431 |
+
--tag-output \
|
432 |
+
--merge-stderr-to-stdout \
|
433 |
+
--prefix ${OMPI_PREFIX} \
|
434 |
+
-H ${MULTI_HLS_IPS} \
|
435 |
+
bash -c "`declare`; `declare -x`; ($_cmd 2>&1)" 2>/dev/null
|
436 |
+
fi
|
437 |
+
}
|
438 |
+
|
439 |
+
export MULTI_HLS_IPS=localhost
|
440 |
+
if [[ -f ${HOST_FILE} ]]; then
|
441 |
+
getmulti_hls_ips ${HOST_FILE}
|
442 |
+
fi
|
443 |
+
|
444 |
+
# Create recipes directory if it does not exist and adjust dirctory name
|
445 |
+
# if we are collecting traces - which require debug information
|
446 |
+
run_per_ip mkdir -p ${OUTPUT_DIR} # 2>/dev/null
|
447 |
+
run_per_ip rm -rf ${OUTPUT_DIR}/* # 2>/dev/null
|
448 |
+
run_per_ip mkdir -p ${LOG_DIR}
|
449 |
+
mkdir -p ${LOG_DIR}
|
450 |
+
|
451 |
+
run_per_ip pip install -r $BASE_PATH/../TensorFlow/nlp/bert/requirements.txt
|
452 |
+
|
453 |
+
#run_per_ip rm -rf /tmp/checkpoint /tmp/eval /tmp/events.out.tfevents.* /tmp/graph.pbtxt /tmp/model.ckpt-*
|
454 |
+
#run_per_ip rm -rf /tmp/rank_*/checkpoint /tmp/rank_*/eval /tmp/rank_*/events.out.tfevents.* /tmp/rank_*/graph.pbtxt /tmp/rank_*/model.ckpt-*
|
455 |
+
|
456 |
+
function setup_libjemalloc()
|
457 |
+
{
|
458 |
+
local libjemalloc_1_lib="libjemalloc.so.1"
|
459 |
+
local libjemalloc_2_lib="libjemalloc.so.2"
|
460 |
+
local is_v2_not_present=`LD_PRELOAD=${libjemalloc_2_lib} head -0 2>&1 > /dev/null`
|
461 |
+
|
462 |
+
if [ -z "${is_v2_not_present}" ]; then
|
463 |
+
export LD_PRELOAD=${libjemalloc_2_lib}:$LD_PRELOAD
|
464 |
+
else
|
465 |
+
export LD_PRELOAD=${libjemalloc_1_lib}:$LD_PRELOAD
|
466 |
+
fi
|
467 |
+
}
|
468 |
+
run_per_ip setup_libjemalloc
|
469 |
+
|
470 |
+
if [[ -z ${MULTI_HLS_IPS} ]]; then
|
471 |
+
echo "[launch_bert_hvd] MULTI_HLS_IPS undefined - maybe a missing /root/shared/hosts file?"
|
472 |
+
exit -1
|
473 |
+
else
|
474 |
+
IFS=',' read -ra IPS <<< "$MULTI_HLS_IPS"
|
475 |
+
let MPI_NP=${#IPS[@]}*${NUM_WORKERS_PER_HLS}
|
476 |
+
export NUM_WORKERS_TOTAL=${NUM_WORKERS_TOTAL:-$MPI_NP}
|
477 |
+
|
478 |
+
if [[ $NUM_WORKERS_TOTAL != $MPI_NP ]]; then
|
479 |
+
echo $NUM_WORKERS_TOTAL $MPI_NP
|
480 |
+
echo "=============== WRONG NUMBER_WORKERS_TOTAL!! ==============="
|
481 |
+
exit -1
|
482 |
+
fi
|
483 |
+
|
484 |
+
echo NUM_WORKERS_TOTAL=$NUM_WORKERS_TOTAL
|
485 |
+
|
486 |
+
function generate_mpi_hostfile()
|
487 |
+
{
|
488 |
+
echo "Generating MPI hostfile..."
|
489 |
+
local num_nodes=${2:-8}
|
490 |
+
local file_name="hostfile"
|
491 |
+
export MPI_HOSTFILE_PATH=$1/${file_name}
|
492 |
+
|
493 |
+
rm -rf ${MPI_HOSTFILE_PATH}
|
494 |
+
echo "PATH: ${MPI_HOSTFILE_PATH}"
|
495 |
+
touch ${MPI_HOSTFILE_PATH}
|
496 |
+
|
497 |
+
IFS=',' read -ra IPS <<< "$MULTI_HLS_IPS"
|
498 |
+
for i in "${IPS[@]}"; do
|
499 |
+
echo "$i slots=${num_nodes}" >> ${MPI_HOSTFILE_PATH}
|
500 |
+
done
|
501 |
+
echo "Config: "
|
502 |
+
cat ${MPI_HOSTFILE_PATH}
|
503 |
+
}
|
504 |
+
|
505 |
+
generate_mpi_hostfile ${OUTPUT_DIR} ${NUM_WORKERS_PER_HLS}
|
506 |
+
|
507 |
+
export testdate=`date +%Y-%m-%d`
|
508 |
+
export testtime=`date +%H%M%S`
|
509 |
+
export OUTPUT_DIR=${__output_dir:-/root/scratch/bert/bert_gaudi${NUM_WORKERS_TOTAL}_${testdate}_${testtime}}
|
510 |
+
|
511 |
+
run_per_ip mkdir -p ${OUTPUT_DIR}
|
512 |
+
|
513 |
+
run_per_ip rm -f $LOG_DIR/result_*
|
514 |
+
run_per_ip rm -f ${LOG_DIR}/tf_bert_pretraining_lamb.log
|
515 |
+
|
516 |
+
LOGFILE=$LOG_DIR/tf_bert_pretraining_lamb.log
|
517 |
+
export TF_RECIPE_CACHE_PATH=/tmp/bert_pretrain/phase_2
|
518 |
+
run_per_ip mkdir -p $TF_RECIPE_CACHE_PATH
|
519 |
+
|
520 |
+
MPI_MAP_BY=socket
|
521 |
+
MPI_MAP_BY_PE=`lscpu | grep "^CPU(s):"| awk -v NUM=${NUM_WORKERS_PER_HLS} '{print int($2/NUM/2)}'`
|
522 |
+
if [[ "$CPU_BIND_TYPE" == "numa" || "$CPU_BIND_TYPE" == "none" ]]; then
|
523 |
+
MPIRUN_ARGS_MAP_BY_PE="-bind-to none"
|
524 |
+
else
|
525 |
+
MPIRUN_ARGS_MAP_BY_PE="--bind-to core --map-by $MPI_MAP_BY:PE=$MPI_MAP_BY_PE"
|
526 |
+
fi
|
527 |
+
|
528 |
+
if [ -n "$MPI_TCP_INCLUDE" ]; then
|
529 |
+
_option_btl_tcp_if_include="--mca btl_tcp_if_include ${MPI_TCP_INCLUDE}"
|
530 |
+
else
|
531 |
+
_option_btl_tcp_if_include=""
|
532 |
+
fi
|
533 |
+
|
534 |
+
TRAINING_COMMAND="mpirun --allow-run-as-root \
|
535 |
+
--display-map \
|
536 |
+
--report-bindings \
|
537 |
+
--bind-to none \
|
538 |
+
-np ${NUM_WORKERS_TOTAL}\
|
539 |
+
--hostfile ${MPI_HOSTFILE_PATH} \
|
540 |
+
--prefix ${OMPI_PREFIX} \
|
541 |
+
--mca plm_rsh_args -p${SSH_PORT} \
|
542 |
+
${_option_btl_tcp_if_include} \
|
543 |
+
--merge-stderr-to-stdout \
|
544 |
+
--tag-output \
|
545 |
+
--output-filename ${LOG_DIR}/bert_log \
|
546 |
+
-x USE_HOROVOD=${USE_HOROVOD} \
|
547 |
+
-x TF_MODULES_RELEASE_BUILD=/usr/lib/habanalabs/ \
|
548 |
+
-x HABANA_LOGS=${HABANA_LOGS} \
|
549 |
+
-x LEARNING_RATE=${LEARNING_RATE} \
|
550 |
+
-x STOP_THRESHOLD=${STOP_THRESHOLD} \
|
551 |
+
-x NUM_ACCUMULATION_STEPS=${NUM_ACCUMULATION_STEPS} \
|
552 |
+
-x TRAIN_BATCH_SIZE=${TRAIN_BATCH_SIZE} \
|
553 |
+
-x EVAL_BATCH_SIZE=${EVAL_BATCH_SIZE} \
|
554 |
+
-x TRAIN_STEPS=${TRAIN_STEPS} \
|
555 |
+
-x NUM_WORKERS_TOTAL=${NUM_WORKERS_TOTAL} \
|
556 |
+
-x WARMUP_STEPS=${WARMUP_STEPS} \
|
557 |
+
-x LAMB_BETA_1=${LAMB_BETA_1} \
|
558 |
+
-x LAMB_BETA_2=${LAMB_BETA_2} \
|
559 |
+
-x EPSILON=${EPSILON} \
|
560 |
+
-x LAMB_WEIGHT_DECAY_RATE=${LAMB_WEIGHT_DECAY_RATE} \
|
561 |
+
-x LAMB_LEARNING_RATE_DECAY_POLY_POWER=${LAMB_LEARNING_RATE_DECAY_POLY_POWER} \
|
562 |
+
-x SAMPLES_BETWEEN_EVAL=${SAMPLES_BETWEEN_EVAL} \
|
563 |
+
-x SAMPLES_START_EVAL=${SAMPLES_START_EVAL} \
|
564 |
+
-x MAX_EVAL_STEPS=${MAX_EVAL_STEPS} \
|
565 |
+
-x INPUT_FILES_DIR=${INPUT_FILES_DIR} \
|
566 |
+
-x EVAL_FILES_DIR=${EVAL_FILES_DIR} \
|
567 |
+
-x OUTPUT_DIR=${OUTPUT_DIR} \
|
568 |
+
-x PHASE1_CKPT=${PHASE1_CKPT} \
|
569 |
+
-x BERT_CONFIG_DIR=${BERT_CONFIG_DIR} \
|
570 |
+
-x OPTIMIZE_DMA_ENGINES_ALLOCATION=${OPTIMIZE_DMA_ENGINES_ALLOCATION} \
|
571 |
+
-x TF_CPU_RUNTIME_FALLBACK=${TF_CPU_RUNTIME_FALLBACK} \
|
572 |
+
-x TF_HCCL_MEMORY_ALLOWANCE_MB=${TF_HCCL_MEMORY_ALLOWANCE_MB} \
|
573 |
+
-x HABANA_INITIAL_WORKSPACE_SIZE_MB=${HABANA_INITIAL_WORKSPACE_SIZE_MB} \
|
574 |
+
-x HLS_TYPE=${HLS_TYPE} \
|
575 |
+
-x MPI_TCP_INCLUDE=${MPI_TCP_INCLUDE} \
|
576 |
+
-x SAVE_CHECKPOINTS_STEPS=${SAVE_CHECKPOINTS_STEPS} \
|
577 |
+
-x PACKED_DATA=${PACKED_DATA} \
|
578 |
+
-x TESTDATE=${testdate} \
|
579 |
+
-x TESTTIME=${testtime} \
|
580 |
+
-x CPU_BIND_TYPE=${CPU_BIND_TYPE} \
|
581 |
+
${MPIRUN_ARGS_MAP_BY_PE} \
|
582 |
+
-x NUM_WORKERS_PER_HLS=${NUM_WORKERS_PER_HLS} \
|
583 |
+
-x USE_DRAM_OUTPUT=${USE_DRAM_OUTPUT} \
|
584 |
+
-x USE_LIGHTWEIGHT_CHECKPOINT=${USE_LIGHTWEIGHT_CHECKPOINT} \
|
585 |
+
-x LIGHTWEIGHT_CHECKPOINT_IMPL=${LIGHTWEIGHT_CHECKPOINT_IMPL} \
|
586 |
+
-x USE_ASYNC_CHECKPOINTING=${USE_ASYNC_CHECKPOINTING} \
|
587 |
+
-x LOG_DIR=${LOG_DIR} \
|
588 |
+
-x TF_RECIPE_CACHE_PATH \
|
589 |
+
-x DO_TRAIN=${DO_TRAIN} \
|
590 |
+
-x DO_EVAL=${DO_EVAL} \
|
591 |
+
-x EXPERIMENTAL_SLACK=${EXPERIMENTAL_SLACK} \
|
592 |
+
-x NUM_DIST_EVAL_WORKERS=${NUM_DIST_EVAL_WORKERS} \
|
593 |
+
-x WARMUP_STEPS=${WARMUP_STEPS}
|
594 |
+
-x AUX_PARAMS=${AUX_PARAMS} \
|
595 |
+
-x TF_ENABLE_DYNAMIC_SHAPES=${TF_ENABLE_DYNAMIC_SHAPES} \
|
596 |
+
-x OPTIMIZER=${OPTIMIZER} \
|
597 |
+
-x SIGNALING_FROM_GRAPH=${SIGNALING_FROM_GRAPH} \
|
598 |
+
${BASE_PATH}/run.sh"
|
599 |
+
|
600 |
+
echo "TRAINING COMMAND = ${TRAINING_COMMAND}"
|
601 |
+
printf "[launch_bert_hvd] Starting training...\n\n"
|
602 |
+
time $TRAINING_COMMAND |& tee -a $LOGFILE
|
603 |
+
fi
|
604 |
+
run_per_ip rm -rf $OUTPUT_DIR/*/model.ckpt-*
|
605 |
+
rm -rf $BASE_PATH/log
|
606 |
+
cp /root/build_log.csv ${OUTPUT_DIR}/
|
607 |
+
cp ${MPI_HOSTFILE_PATH} ${OUTPUT_DIR}/
|
608 |
+
cp -r $LOG_DIR/bert_log $BASE_PATH/log
|
609 |
+
cp $TF_RECIPE_CACHE_PATH/tf_bert_pretraining* ${OUTPUT_DIR}/
|
610 |
+
chmod -R 777 ${OUTPUT_DIR}
|
611 |
+
exit $exit_code
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/HLS-Gaudi2-TF/run.sh
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /bin/bash
|
2 |
+
|
3 |
+
#set -x
|
4 |
+
###############################################################################
|
5 |
+
# Copyright (C) 2020-2023 Habana Labs, Ltd. an Intel Company
|
6 |
+
#
|
7 |
+
###############################################################################
|
8 |
+
|
9 |
+
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
|
10 |
+
export BASE_PATH="$( cd "$(dirname "$(readlink -f ${SCRIPT_DIR}/defaults.cfg)" )" && pwd)"
|
11 |
+
export PYTHONPATH=${BASE_PATH}:${BASE_PATH}/../TensorFlow/common
|
12 |
+
|
13 |
+
PT_VERSION=`python3 -c 'import sys; print(f"{sys.version_info[0]}.{sys.version_info[1]}")'`
|
14 |
+
TF_VERSION=`python3 -c "import tensorflow as tf; print(tf.__version__.replace('.', '_'))"`
|
15 |
+
PATCH_PATH=/usr/local/lib/python${PT_VERSION}/dist-packages/habana_frameworks/tensorflow/tf${TF_VERSION}/lib/habanalabs
|
16 |
+
export PYTHONPATH=${PATCH_PATH}:${PYTHONPATH}
|
17 |
+
|
18 |
+
TRAIN_BATCH_SIZE=${TRAIN_BATCH_SIZE:-7}
|
19 |
+
EVAL_BATCH_SIZE=${EVAL_BATCH_SIZE:-125}
|
20 |
+
LEARNING_RATE=${LEARNING_RATE:-5e-5}
|
21 |
+
PRECISION=${PRECISION:-fp32}
|
22 |
+
WARMUP_STEPS=${WARMUP_STEPS:-0}
|
23 |
+
TRAIN_STEPS=${TRAIN_STEPS:-8103}
|
24 |
+
SAVE_CHECKPOINTS_STEPS=${SAVE_CHECKPOINTS_STEPS:-335}
|
25 |
+
NUM_ACCUMULATION_STEPS=${NUM_ACCUMULATION_STEPS:-4}
|
26 |
+
SAMPLES_BETWEEN_EVAL=${SAMPLES_BETWEEN_EVAL:-150080}
|
27 |
+
STOP_THRESHOLD=${STOP_THRESHOLD:-0.720}
|
28 |
+
SAMPLES_START_EVAL=${SAMPLES_START_EVAL:-3000000}
|
29 |
+
MAX_EVAL_STEPS=${MAX_EVAL_STEPS:-0}
|
30 |
+
IS_DIST_EVAL_ENABLED=${IS_DIST_EVAL_ENABLED:-false}
|
31 |
+
MAX_SEQ_LENGTH=${MAX_SEQ_LENGTH:-512}
|
32 |
+
MAX_PRED_PER_SEQ=${MAX_PRED_PER_SEQ:-76}
|
33 |
+
FAST_PERF_ONLY=${FAST_PERF_ONLY:-0}
|
34 |
+
PACKED_DATA=${PACKED_DATA:-False}
|
35 |
+
TESTDATE=${TESTDATE}
|
36 |
+
TESTTIME=${TESTTIME}
|
37 |
+
LAMB_BETA_1=${LAMB_BETA_1:-0.9}
|
38 |
+
LAMB_BETA_2=${LAMB_BETA_2:-0.999}
|
39 |
+
EPSILON=${EPSILON:-1e-6}
|
40 |
+
LAMB_WEIGHT_DECAY_RATE=${LAMB_WEIGHT_DECAY_RATE:-0.01}
|
41 |
+
LAMB_LEARNING_RATE_DECAY_POLY_POWER=${LAMB_LEARNING_RATE_DECAY_POLY_POWER:-1.0}
|
42 |
+
NUM_WORKERS_PER_HLS=${NUM_WORKERS_PER_HLS:-4}
|
43 |
+
DO_TRAIN=${DO_TRAIN:-True}
|
44 |
+
DO_EVAL=${DO_EVAL:-True}
|
45 |
+
EXPERIMENTAL_SLACK=${EXPERIMENTAL_SLACK:-True}
|
46 |
+
NUM_DIST_EVAL_WORKERS=${NUM_DIST_EVAL_WORKERS:-0}
|
47 |
+
OPTIMIZER=${OPTIMIZER:-'lamb'}
|
48 |
+
|
49 |
+
export TF_BF16_CONVERSION=${BASE_PATH}/../TensorFlow/common/bf16_config/bert.json
|
50 |
+
export USE_LIGHTWEIGHT_CHECKPOINT=${USE_LIGHTWEIGHT_CHECKPOINT:-True}
|
51 |
+
export LIGHTWEIGHT_CHECKPOINT_IMPL=${LIGHTWEIGHT_CHECKPOINT_IMPL:-"basic"}
|
52 |
+
export USE_ASYNC_CHECKPOINTING=${USE_ASYNC_CHECKPOINTING:-False}
|
53 |
+
export BERT_CONFIG_FILE=${BERT_CONFIG_FILE:-${BERT_CONFIG_DIR}/bert_config.json}
|
54 |
+
|
55 |
+
if [[ $SIGNALING_FROM_GRAPH -eq 1 ]]; then
|
56 |
+
export TF_DISABLE_SCOPED_ALLOCATOR=True
|
57 |
+
export HOROVOD_FUSION_THRESHOLD=0
|
58 |
+
export TF_USE_SIGNALING_FROM_ENCAP_OP=1
|
59 |
+
else
|
60 |
+
export TF_USE_SIGNALING_FROM_ENCAP_OP=0
|
61 |
+
fi
|
62 |
+
|
63 |
+
# Currently sharded LAMB works only when ScopedAllocator is disabled and loop unrolling is False
|
64 |
+
if [ $OPTIMIZER == "sharded_lamb" ]; then
|
65 |
+
export TF_DISABLE_SCOPED_ALLOCATOR=True
|
66 |
+
AUX_PARAMS="${AUX_PARAMS} --loop_unrolling_for_train_op=False"
|
67 |
+
fi
|
68 |
+
|
69 |
+
# Under the hood, AMP (Arithmetic Mixed Precision) training is applied via TF_BF16_CONVERSION
|
70 |
+
# default precision is fp32.
|
71 |
+
precision="--noamp"
|
72 |
+
|
73 |
+
USE_HOROVOD=${USE_HOROVOD:-"False"}
|
74 |
+
if [ $USE_HOROVOD == "True" ]; then
|
75 |
+
horovod="--horovod --allreduce_post_accumulation=True"
|
76 |
+
IS_DIST_EVAL_ENABLED="True"
|
77 |
+
else
|
78 |
+
horovod=""
|
79 |
+
fi
|
80 |
+
|
81 |
+
#PHASE 1 Config
|
82 |
+
export PHASE1_CKPT=${PHASE1_CKPT:-/root/datasets/bert_pretraining/MLPerf_BERT_checkpoint/model.ckpt-28252}
|
83 |
+
export INPUT_FILES_DIR=${INPUT_FILES_DIR:-/root/datasets/bert_pretraining/training}
|
84 |
+
export EVAL_FILES_DIR=${EVAL_FILES_DIR:-/root/datasets/bert_pretraining/evaluation}
|
85 |
+
|
86 |
+
#Generate Host Folder
|
87 |
+
if [ $USE_DRAM_OUTPUT == "True" ]; then
|
88 |
+
host=$(hostname)
|
89 |
+
if [ "$OMPI_COMM_WORLD_LOCAL_RANK" == "0" ]; then
|
90 |
+
mkdir -p /mnt/dramfs
|
91 |
+
mount -t tmpfs -o size=200g tmpfs /mnt/dramfs
|
92 |
+
fi
|
93 |
+
export OUTPUT_DIR=/mnt/dramfs/bert_gaudi${NUM_WORKERS_TOTAL}_${TESTDATE}_${TESTTIME}/${host}
|
94 |
+
mkdir -p $OUTPUT_DIR
|
95 |
+
fi
|
96 |
+
|
97 |
+
# clear cache
|
98 |
+
if [[ $OMPI_COMM_WORLD_LOCAL_RANK -eq 0 ]]; then
|
99 |
+
PROC_FS=${PROC_FS:-"/proc"}
|
100 |
+
sync && echo 3 > $PROC_FS/sys/vm/drop_caches
|
101 |
+
fi
|
102 |
+
|
103 |
+
if [ $PACKED_DATA == "False" ]; then
|
104 |
+
packing_arg=""
|
105 |
+
else
|
106 |
+
packing_arg="--enable_packed_data_mode --avg_seq_per_pack=2"
|
107 |
+
fi
|
108 |
+
|
109 |
+
AUX_PARAMS=$(echo ${AUX_PARAMS} | sed s/:/\ /g)
|
110 |
+
|
111 |
+
enable_device_warmup=True
|
112 |
+
|
113 |
+
TRAIN_COMMAND="python3 ${BASE_PATH}/../TensorFlow/nlp/bert/run_pretraining.py \
|
114 |
+
--input_files_dir=$INPUT_FILES_DIR \
|
115 |
+
--init_checkpoint=$PHASE1_CKPT \
|
116 |
+
--eval_files_dir=$EVAL_FILES_DIR\
|
117 |
+
--output_dir=$OUTPUT_DIR \
|
118 |
+
--bert_config_file=$BERT_CONFIG_FILE \
|
119 |
+
--do_train=$DO_TRAIN \
|
120 |
+
--do_eval=$DO_EVAL \
|
121 |
+
--experimental_slack=$EXPERIMENTAL_SLACK \
|
122 |
+
--is_dist_eval_enabled=$IS_DIST_EVAL_ENABLED \
|
123 |
+
--train_batch_size=$TRAIN_BATCH_SIZE \
|
124 |
+
--eval_batch_size=$EVAL_BATCH_SIZE \
|
125 |
+
--max_eval_steps=$MAX_EVAL_STEPS \
|
126 |
+
--max_seq_length=$MAX_SEQ_LENGTH \
|
127 |
+
--max_predictions_per_seq=$MAX_PRED_PER_SEQ \
|
128 |
+
--num_train_steps=$TRAIN_STEPS \
|
129 |
+
--num_accumulation_steps=$NUM_ACCUMULATION_STEPS \
|
130 |
+
--num_warmup_steps=$WARMUP_STEPS \
|
131 |
+
--save_checkpoints_steps=$SAVE_CHECKPOINTS_STEPS \
|
132 |
+
--learning_rate=$LEARNING_RATE \
|
133 |
+
$horovod \
|
134 |
+
$precision \
|
135 |
+
$packing_arg \
|
136 |
+
--enable_device_warmup=$enable_device_warmup \
|
137 |
+
--samples_between_eval=$SAMPLES_BETWEEN_EVAL \
|
138 |
+
--stop_threshold=$STOP_THRESHOLD \
|
139 |
+
--samples_start_eval=$SAMPLES_START_EVAL \
|
140 |
+
--beta_1=$LAMB_BETA_1 \
|
141 |
+
--beta_2=$LAMB_BETA_2 \
|
142 |
+
--epsilon=$EPSILON \
|
143 |
+
--weight_decay_rate=$LAMB_WEIGHT_DECAY_RATE \
|
144 |
+
--power=$LAMB_LEARNING_RATE_DECAY_POLY_POWER \
|
145 |
+
--enable_habana_backend \
|
146 |
+
--dllog_path=$LOG_DIR/bert_dllog.json \
|
147 |
+
--use_lightweight_checkpoint=$USE_LIGHTWEIGHT_CHECKPOINT \
|
148 |
+
--lightweight_checkpoint_impl=$LIGHTWEIGHT_CHECKPOINT_IMPL \
|
149 |
+
--use_async_checkpointing=$USE_ASYNC_CHECKPOINTING \
|
150 |
+
--num_dist_eval_workers=$NUM_DIST_EVAL_WORKERS \
|
151 |
+
--optimizer_type=$OPTIMIZER \
|
152 |
+
${AUX_PARAMS}
|
153 |
+
"
|
154 |
+
|
155 |
+
LD_PRELOAD=${PRELOAD_PATH} ${TRAIN_COMMAND}
|
156 |
+
|
157 |
+
if [[ $OMPI_COMM_WORLD_LOCAL_RANK == "0" ]]; then
|
158 |
+
rm -rf $OUTPUT_DIR/*/model.ckpt-*
|
159 |
+
rm -rf $OUTPUT_DIR/*/checkpoint
|
160 |
+
if [[ $USE_DRAM_OUTPUT == "True" ]]; then
|
161 |
+
cp -r $LOG_DIR/result_* /root/scratch/bert/bert_gaudi${NUM_WORKERS_TOTAL}_${TESTDATE}_${TESTTIME}
|
162 |
+
rm -rf /mnt/dramfs/bert_gaudi${NUM_WORKERS_TOTAL}_${TESTDATE}_${TESTTIME}
|
163 |
+
fi
|
164 |
+
fi
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/bf16_config/bert.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"allowlist": [
|
3 |
+
"_ScopedAllocatorSplit",
|
4 |
+
"_ScopedAllocatorConcat",
|
5 |
+
"_ScopedAllocator",
|
6 |
+
"BatchMatMul",
|
7 |
+
"BatchMatMulV2",
|
8 |
+
"BiasAdd",
|
9 |
+
"BiasAddGrad",
|
10 |
+
"EuclideanNorm",
|
11 |
+
"Exp",
|
12 |
+
"HabanaDropout",
|
13 |
+
"HabanaDropoutGrad",
|
14 |
+
"HabanaDropoutStateful",
|
15 |
+
"HabanaGelu",
|
16 |
+
"HabanaGeluGrad",
|
17 |
+
"HabanaLayerNorm",
|
18 |
+
"HabanaLayerNormV2",
|
19 |
+
"HabanaLayerNormGrad",
|
20 |
+
"HabanaLayerNormGradV2",
|
21 |
+
"HabanaMaskedSoftmax",
|
22 |
+
"HabanaSoftmaxGrad",
|
23 |
+
"HabanaLogSoftmaxGrad",
|
24 |
+
"HorovodAllreduce",
|
25 |
+
"L2Loss",
|
26 |
+
"Log",
|
27 |
+
"LogSoftmax",
|
28 |
+
"MatMul",
|
29 |
+
"Softmax",
|
30 |
+
"Sum",
|
31 |
+
"Tanh",
|
32 |
+
"TanhGrad"
|
33 |
+
],
|
34 |
+
"conditional_list": [
|
35 |
+
"Add",
|
36 |
+
"AddV2",
|
37 |
+
"AddN",
|
38 |
+
"ExpandDims",
|
39 |
+
"Identity",
|
40 |
+
"Reshape",
|
41 |
+
"Slice",
|
42 |
+
"Split",
|
43 |
+
"StridedSliceGrad",
|
44 |
+
"Transpose"
|
45 |
+
],
|
46 |
+
"strict_conditional_list": [],
|
47 |
+
"non_convertible_exceptions": [
|
48 |
+
[".*KEEP_FP32_PRECISION.*", ""]
|
49 |
+
],
|
50 |
+
"convertible_exceptions": [
|
51 |
+
["bert/encoder/layer_[0-9]+/attention/self/add", "AddV2"],
|
52 |
+
["bert/encoder/layer_[0-9]+/attention/self/Mul", "Mul"],
|
53 |
+
["clip_by_global_norm/mul", "Mul"],
|
54 |
+
["global_norm/mul", "Mul"],
|
55 |
+
["global_norm/global_norm", "Sqrt"]
|
56 |
+
]
|
57 |
+
}
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/common.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
|
3 |
+
###############################################################################
|
4 |
+
|
5 |
+
import os
|
6 |
+
import logging
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
+
_log = logging.getLogger(__file__)
|
10 |
+
|
11 |
+
|
12 |
+
def setup_jemalloc() -> None:
|
13 |
+
"""
|
14 |
+
Setup libjemalloc.so.1 or libjemalloc.so.1 (depending on the OS version)
|
15 |
+
by exporting LD_PRELOAD env variable.
|
16 |
+
"""
|
17 |
+
_log.info("libjemalloc.so has been requested")
|
18 |
+
paths = {"LD_LIBRARY_PATH"}
|
19 |
+
env_vals = [os.environ[x] for x in paths if os.environ.get(x) is not None]
|
20 |
+
env_vals.extend(["/usr/lib/x86_64-linux-gnu"])
|
21 |
+
sep = ":"
|
22 |
+
final_path = None
|
23 |
+
locations = sep.join(env_vals).split(sep)
|
24 |
+
for path in locations:
|
25 |
+
if path:
|
26 |
+
libpath = f"{path}/libjemalloc.so.1"
|
27 |
+
if os.path.isfile(libpath):
|
28 |
+
final_path = os.path.realpath(libpath)
|
29 |
+
for path in locations:
|
30 |
+
if path:
|
31 |
+
libpath = f"{path}/libjemalloc.so.2"
|
32 |
+
if os.path.isfile(libpath):
|
33 |
+
final_path = os.path.realpath(libpath)
|
34 |
+
if final_path:
|
35 |
+
os.environ["LD_PRELOAD"] = f"{final_path}:{os.environ.get('LD_PRELOAD', '')}"
|
36 |
+
else:
|
37 |
+
raise FileExistsError("Neither libjemalloc.so.1 nor libjemalloc.so.2 found.")
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/debug.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
###############################################################################
|
16 |
+
# Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
|
17 |
+
###############################################################################
|
18 |
+
|
19 |
+
from absl import flags
|
20 |
+
from absl import logging
|
21 |
+
from tensorflow.core.protobuf import debug_event_pb2
|
22 |
+
from tensorflow.python.debug.lib import debug_events_writer
|
23 |
+
from tensorflow.python.framework import op_callbacks
|
24 |
+
from tensorflow.python.ops import gen_debug_ops
|
25 |
+
import tensorflow as tf
|
26 |
+
import re
|
27 |
+
import os
|
28 |
+
import json
|
29 |
+
|
30 |
+
try:
|
31 |
+
import horovod.tensorflow as hvd
|
32 |
+
except ImportError:
|
33 |
+
hvd = None
|
34 |
+
|
35 |
+
|
36 |
+
flags.DEFINE_string(name='dump_config', default=None,
|
37 |
+
help='Defines config for tensor dumping')
|
38 |
+
|
39 |
+
|
40 |
+
class _DumpCallback(object):
|
41 |
+
def __init__(self, dump_root, tensor_debug_mode, circular_buffer_size, op_regex, output_regex=None):
|
42 |
+
self._dump_root = dump_root
|
43 |
+
if hvd is not None and hvd.is_initialized():
|
44 |
+
self._dump_root = os.path.join(
|
45 |
+
self._dump_root, f"rank_{hvd.rank()}")
|
46 |
+
self._tensor_debug_mode = debug_event_pb2.TensorDebugMode.Value(
|
47 |
+
tensor_debug_mode)
|
48 |
+
self._circular_buffer_size = circular_buffer_size
|
49 |
+
self._op_regex = re.compile(op_regex) if isinstance(
|
50 |
+
op_regex, str) else op_regex
|
51 |
+
self._output_regex = re.compile(output_regex) if isinstance(
|
52 |
+
output_regex, str) else output_regex
|
53 |
+
self._tfdbg_run_id = ''
|
54 |
+
self._dump_op_counter = 0
|
55 |
+
|
56 |
+
debug_writer_args = {
|
57 |
+
"dump_root": self._dump_root,
|
58 |
+
"circular_buffer_size": self._circular_buffer_size
|
59 |
+
}
|
60 |
+
|
61 |
+
if not tf.__version__.startswith("2.2"):
|
62 |
+
debug_writer_args["tfdbg_run_id"] = self._tfdbg_run_id
|
63 |
+
|
64 |
+
self._writer = debug_events_writer.DebugEventsWriter(
|
65 |
+
**debug_writer_args)
|
66 |
+
|
67 |
+
def callback(self, op_type, inputs, attrs, outputs, op_name=None, graph=None):
|
68 |
+
if op_name is not None and self._op_regex.match(op_name):
|
69 |
+
graph_name = "missing-graph-name"
|
70 |
+
if graph is not None and hasattr(graph, "name"):
|
71 |
+
graph_name = graph.name
|
72 |
+
|
73 |
+
logging.info("Adding dump op for '%s' of type '%s' from graph '%s'" % (
|
74 |
+
op_name, op_type, graph_name))
|
75 |
+
|
76 |
+
new_outputs = []
|
77 |
+
|
78 |
+
for output_slot, output in enumerate(outputs):
|
79 |
+
if self._output_regex is not None and not self._output_regex.match(output.name):
|
80 |
+
logging.info("Skipped output: " + output.name)
|
81 |
+
new_outputs.append(output)
|
82 |
+
continue
|
83 |
+
debug_identity_op_kwargs = {
|
84 |
+
"tfdbg_context_id": graph_name,
|
85 |
+
"op_name": op_name,
|
86 |
+
"output_slot": output_slot,
|
87 |
+
"tensor_debug_mode": self._tensor_debug_mode,
|
88 |
+
"debug_urls": ["file://%s" % self._dump_root],
|
89 |
+
"name": "dump_%d" % self._dump_op_counter
|
90 |
+
}
|
91 |
+
|
92 |
+
if not tf.__version__.startswith("2.2"):
|
93 |
+
debug_identity_op_kwargs["circular_buffer_size"] = self._circular_buffer_size
|
94 |
+
debug_identity_op_kwargs["tfdbg_run_id"] = self._tfdbg_run_id
|
95 |
+
|
96 |
+
self._dump_op_counter = self._dump_op_counter + 1
|
97 |
+
new_outputs.append(gen_debug_ops.debug_identity_v2(
|
98 |
+
output, **debug_identity_op_kwargs))
|
99 |
+
|
100 |
+
return new_outputs
|
101 |
+
else:
|
102 |
+
return None
|
103 |
+
|
104 |
+
def __enter__(self, *args, **kwargs):
|
105 |
+
op_callbacks.add_op_callback(self.callback)
|
106 |
+
logging.info("Enabled tensor dumping")
|
107 |
+
|
108 |
+
def __exit__(self, *args, **kwargs):
|
109 |
+
op_callbacks.remove_op_callback(self.callback)
|
110 |
+
logging.info("Disabled tensor dumping")
|
111 |
+
|
112 |
+
def __del__(self):
|
113 |
+
self._writer.Close()
|
114 |
+
|
115 |
+
|
116 |
+
class _Dummy(object):
|
117 |
+
def __enter__(self, *args, **kwargs):
|
118 |
+
pass
|
119 |
+
|
120 |
+
def __exit__(self, *args, **kwargs):
|
121 |
+
pass
|
122 |
+
|
123 |
+
|
124 |
+
def dump_callback(config_file=None):
|
125 |
+
if config_file is not None:
|
126 |
+
kwargs = json.load(open(config_file, 'r'))
|
127 |
+
return _DumpCallback(**kwargs)
|
128 |
+
try:
|
129 |
+
kwargs = json.load(open(flags.FLAGS.dump_config, 'r'))
|
130 |
+
return _DumpCallback(**kwargs)
|
131 |
+
except:
|
132 |
+
return _Dummy()
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/horovod_helpers_gpu.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import horovod.tensorflow as hvd
|
3 |
+
|
4 |
+
def hvd_init():
|
5 |
+
hvd.init()
|
6 |
+
|
7 |
+
def hvd_size():
|
8 |
+
return hvd.size()
|
9 |
+
|
10 |
+
def hvd_rank():
|
11 |
+
return hvd.rank()
|
12 |
+
|
13 |
+
def comm_size():
|
14 |
+
return int(os.environ.get("OMPI_COMM_WORLD_SIZE", 1))
|
15 |
+
|
16 |
+
def horovod_enabled():
|
17 |
+
try:
|
18 |
+
return hvd.size() > 1
|
19 |
+
except ValueError:
|
20 |
+
return False
|
21 |
+
|
22 |
+
def comm_local_rank():
|
23 |
+
return int(os.environ.get("OMPI_COMM_WORLD_LOCAL_RANK", 0))
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/modeling/performance.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Lint as: python3
|
2 |
+
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ==============================================================================
|
16 |
+
"""Functions and classes related to training performance."""
|
17 |
+
|
18 |
+
import tensorflow as tf
|
19 |
+
|
20 |
+
|
21 |
+
def configure_optimizer(optimizer,
|
22 |
+
use_float16=False,
|
23 |
+
use_graph_rewrite=False,
|
24 |
+
loss_scale="dynamic"):
|
25 |
+
"""Configures optimizer object with performance options."""
|
26 |
+
if use_float16:
|
27 |
+
# Wraps optimizer with a LossScaleOptimizer. This is done automatically
|
28 |
+
# in compile() with the "mixed_float16" policy, but since we do not call
|
29 |
+
# compile(), we must wrap the optimizer manually.
|
30 |
+
optimizer = (
|
31 |
+
tf.keras.mixed_precision.experimental.LossScaleOptimizer(
|
32 |
+
optimizer, loss_scale=loss_scale))
|
33 |
+
if use_graph_rewrite:
|
34 |
+
# Note: the model dtype must be 'float32', which will ensure
|
35 |
+
# tf.ckeras.mixed_precision and
|
36 |
+
# tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
|
37 |
+
# up.
|
38 |
+
optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
|
39 |
+
optimizer)
|
40 |
+
return optimizer
|
41 |
+
|
42 |
+
|
43 |
+
def set_mixed_precision_policy(dtype, loss_scale=None):
|
44 |
+
"""Sets mix precision policy."""
|
45 |
+
if dtype == tf.float16:
|
46 |
+
policy = tf.keras.mixed_precision.experimental.Policy(
|
47 |
+
'mixed_float16', loss_scale=loss_scale)
|
48 |
+
tf.keras.mixed_precision.experimental.set_policy(policy)
|
49 |
+
elif dtype == tf.bfloat16:
|
50 |
+
policy = tf.keras.mixed_precision.experimental.Policy(
|
51 |
+
'mixed_bfloat16')
|
52 |
+
tf.keras.mixed_precision.experimental.set_policy(policy)
|
53 |
+
elif dtype == tf.float32:
|
54 |
+
tf.keras.mixed_precision.experimental.set_policy('float32')
|
55 |
+
else:
|
56 |
+
raise ValueError("Unexpected dtype: %s" % dtype)
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/modeling/tf_utils.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Common TF utilities."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import six
|
22 |
+
import tensorflow as tf
|
23 |
+
|
24 |
+
from tensorflow.python.util import deprecation
|
25 |
+
from TensorFlow.common.modeling import activations
|
26 |
+
|
27 |
+
|
28 |
+
@deprecation.deprecated(
|
29 |
+
None,
|
30 |
+
"tf.keras.layers.Layer supports multiple positional args and kwargs as "
|
31 |
+
"input tensors. pack/unpack inputs to override __call__ is no longer "
|
32 |
+
"needed."
|
33 |
+
)
|
34 |
+
def pack_inputs(inputs):
|
35 |
+
"""Pack a list of `inputs` tensors to a tuple.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
inputs: a list of tensors.
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
a tuple of tensors. if any input is None, replace it with a special constant
|
42 |
+
tensor.
|
43 |
+
"""
|
44 |
+
inputs = tf.nest.flatten(inputs)
|
45 |
+
outputs = []
|
46 |
+
for x in inputs:
|
47 |
+
if x is None:
|
48 |
+
outputs.append(tf.constant(0, shape=[], dtype=tf.int32))
|
49 |
+
else:
|
50 |
+
outputs.append(x)
|
51 |
+
return tuple(outputs)
|
52 |
+
|
53 |
+
|
54 |
+
@deprecation.deprecated(
|
55 |
+
None,
|
56 |
+
"tf.keras.layers.Layer supports multiple positional args and kwargs as "
|
57 |
+
"input tensors. pack/unpack inputs to override __call__ is no longer "
|
58 |
+
"needed."
|
59 |
+
)
|
60 |
+
def unpack_inputs(inputs):
|
61 |
+
"""unpack a tuple of `inputs` tensors to a tuple.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
inputs: a list of tensors.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
a tuple of tensors. if any input is a special constant tensor, replace it
|
68 |
+
with None.
|
69 |
+
"""
|
70 |
+
inputs = tf.nest.flatten(inputs)
|
71 |
+
outputs = []
|
72 |
+
for x in inputs:
|
73 |
+
if is_special_none_tensor(x):
|
74 |
+
outputs.append(None)
|
75 |
+
else:
|
76 |
+
outputs.append(x)
|
77 |
+
x = tuple(outputs)
|
78 |
+
|
79 |
+
# To trick the very pointless 'unbalanced-tuple-unpacking' pylint check
|
80 |
+
# from triggering.
|
81 |
+
if len(x) == 1:
|
82 |
+
return x[0]
|
83 |
+
return tuple(outputs)
|
84 |
+
|
85 |
+
|
86 |
+
def is_special_none_tensor(tensor):
|
87 |
+
"""Checks if a tensor is a special None Tensor."""
|
88 |
+
return tensor.shape.ndims == 0 and tensor.dtype == tf.int32
|
89 |
+
|
90 |
+
|
91 |
+
# TODO(hongkuny): consider moving custom string-map lookup to keras api.
|
92 |
+
def get_activation(identifier):
|
93 |
+
"""Maps a identifier to a Python function, e.g., "relu" => `tf.nn.relu`.
|
94 |
+
|
95 |
+
It checks string first and if it is one of customized activation not in TF,
|
96 |
+
the corresponding activation will be returned. For non-customized activation
|
97 |
+
names and callable identifiers, always fallback to tf.keras.activations.get.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
identifier: String name of the activation function or callable.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
A Python function corresponding to the activation function.
|
104 |
+
"""
|
105 |
+
if isinstance(identifier, six.string_types):
|
106 |
+
name_to_fn = {
|
107 |
+
"gelu": activations.gelu,
|
108 |
+
"simple_swish": activations.simple_swish,
|
109 |
+
"hard_swish": activations.hard_swish,
|
110 |
+
"identity": activations.identity,
|
111 |
+
}
|
112 |
+
identifier = str(identifier).lower()
|
113 |
+
if identifier in name_to_fn:
|
114 |
+
return tf.keras.activations.get(name_to_fn[identifier])
|
115 |
+
return tf.keras.activations.get(identifier)
|
116 |
+
|
117 |
+
|
118 |
+
def get_shape_list(tensor, expected_rank=None, name=None):
|
119 |
+
"""Returns a list of the shape of tensor, preferring static dimensions.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
tensor: A tf.Tensor object to find the shape of.
|
123 |
+
expected_rank: (optional) int. The expected rank of `tensor`. If this is
|
124 |
+
specified and the `tensor` has a different rank, and exception will be
|
125 |
+
thrown.
|
126 |
+
name: Optional name of the tensor for the error message.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
A list of dimensions of the shape of tensor. All static dimensions will
|
130 |
+
be returned as python integers, and dynamic dimensions will be returned
|
131 |
+
as tf.Tensor scalars.
|
132 |
+
"""
|
133 |
+
if expected_rank is not None:
|
134 |
+
assert_rank(tensor, expected_rank, name)
|
135 |
+
|
136 |
+
shape = tensor.shape.as_list()
|
137 |
+
|
138 |
+
non_static_indexes = []
|
139 |
+
for (index, dim) in enumerate(shape):
|
140 |
+
if dim is None:
|
141 |
+
non_static_indexes.append(index)
|
142 |
+
|
143 |
+
if not non_static_indexes:
|
144 |
+
return shape
|
145 |
+
|
146 |
+
dyn_shape = tf.shape(tensor)
|
147 |
+
for index in non_static_indexes:
|
148 |
+
shape[index] = dyn_shape[index]
|
149 |
+
return shape
|
150 |
+
|
151 |
+
|
152 |
+
def assert_rank(tensor, expected_rank, name=None):
|
153 |
+
"""Raises an exception if the tensor rank is not of the expected rank.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
tensor: A tf.Tensor to check the rank of.
|
157 |
+
expected_rank: Python integer or list of integers, expected rank.
|
158 |
+
name: Optional name of the tensor for the error message.
|
159 |
+
|
160 |
+
Raises:
|
161 |
+
ValueError: If the expected shape doesn't match the actual shape.
|
162 |
+
"""
|
163 |
+
expected_rank_dict = {}
|
164 |
+
if isinstance(expected_rank, six.integer_types):
|
165 |
+
expected_rank_dict[expected_rank] = True
|
166 |
+
else:
|
167 |
+
for x in expected_rank:
|
168 |
+
expected_rank_dict[x] = True
|
169 |
+
|
170 |
+
actual_rank = tensor.shape.ndims
|
171 |
+
if actual_rank not in expected_rank_dict:
|
172 |
+
raise ValueError(
|
173 |
+
"For the tensor `%s`, the actual tensor rank `%d` (shape = %s) is not "
|
174 |
+
"equal to the expected tensor rank `%s`" %
|
175 |
+
(name, actual_rank, str(tensor.shape), str(expected_rank)))
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/tb_utils.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import tensorflow as tf
|
4 |
+
from copy import deepcopy
|
5 |
+
from tensorboard.plugins.hparams import api as hp
|
6 |
+
from tensorflow.python.eager import context
|
7 |
+
from tensorflow.keras import backend as K
|
8 |
+
from tensorflow.python.ops import summary_ops_v2
|
9 |
+
from tensorflow.python.summary import summary as tf_summary
|
10 |
+
from tensorflow.python.training.summary_io import SummaryWriterCache
|
11 |
+
from tensorflow.compat.v1.keras.callbacks import TensorBoard, Callback
|
12 |
+
|
13 |
+
|
14 |
+
def _remove_prefix(s, prefix):
|
15 |
+
if s.startswith(prefix):
|
16 |
+
s = s[len(prefix):]
|
17 |
+
return s
|
18 |
+
|
19 |
+
|
20 |
+
def _parse_precision():
|
21 |
+
flag = os.environ.get('TF_BF16_CONVERSION', '0')
|
22 |
+
flag = flag.lower()
|
23 |
+
try:
|
24 |
+
value = int(flag)
|
25 |
+
except:
|
26 |
+
value = -1
|
27 |
+
|
28 |
+
if flag == 'false' or value == 0:
|
29 |
+
return 'fp32'
|
30 |
+
elif flag == 'true' or value == 1:
|
31 |
+
return 'bf16'
|
32 |
+
return flag
|
33 |
+
|
34 |
+
|
35 |
+
def _set_precision_if_missing(hparams: dict):
|
36 |
+
if 'precision' not in hparams:
|
37 |
+
hparams['precision'] = _parse_precision()
|
38 |
+
return hparams
|
39 |
+
|
40 |
+
|
41 |
+
def _copy_and_clean_hparams(hparams: dict):
|
42 |
+
hparams_ = dict()
|
43 |
+
for name, value in hparams.items():
|
44 |
+
if isinstance(value, (str, bool, int, float)):
|
45 |
+
hparams_[name] = value
|
46 |
+
continue
|
47 |
+
|
48 |
+
try:
|
49 |
+
hparams_[name] = str(value)
|
50 |
+
tf.compat.v1.logging.info(
|
51 |
+
f'Type of parameter "{name}" is not one of (bool, int, float, str). '
|
52 |
+
'It will be saved as a string.')
|
53 |
+
except:
|
54 |
+
tf.compat.v1.logging.info(
|
55 |
+
f'Conversion of parameter "{name}" to string failed. '
|
56 |
+
'Parameter will not be saved.')
|
57 |
+
|
58 |
+
return hparams_
|
59 |
+
|
60 |
+
|
61 |
+
def write_hparams_v1(writer, hparams: dict):
|
62 |
+
hparams = _copy_and_clean_hparams(hparams)
|
63 |
+
hparams = _set_precision_if_missing(hparams)
|
64 |
+
|
65 |
+
# We create Session here, because in case of older topologies
|
66 |
+
# that run in graph mode the FileWriter needs it.
|
67 |
+
with tf.compat.v1.Session():
|
68 |
+
if isinstance(writer, str):
|
69 |
+
writer = SummaryWriterCache.get(writer)
|
70 |
+
summary = hp.hparams_pb(hparams).SerializeToString()
|
71 |
+
writer.add_summary(summary)
|
72 |
+
|
73 |
+
|
74 |
+
def write_hparams_v2(writer, hparams: dict):
|
75 |
+
hparams = _copy_and_clean_hparams(hparams)
|
76 |
+
hparams = _set_precision_if_missing(hparams)
|
77 |
+
|
78 |
+
with writer.as_default():
|
79 |
+
hp.hparams(hparams)
|
80 |
+
|
81 |
+
|
82 |
+
class ExamplesPerSecondEstimatorHook(tf.compat.v1.train.StepCounterHook):
|
83 |
+
"""Calculate and report global_step/sec and examples/sec during runtime."""
|
84 |
+
# Copy-pasted from tensorflow_estimator/python/estimator/tpu/tpu_estimator.py
|
85 |
+
|
86 |
+
def __init__(self,
|
87 |
+
batch_size=None,
|
88 |
+
every_n_steps=1,
|
89 |
+
every_n_secs=None,
|
90 |
+
output_dir=None,
|
91 |
+
summary_writer=None,
|
92 |
+
extra_metrics=None,
|
93 |
+
verbose=False):
|
94 |
+
super().__init__(
|
95 |
+
every_n_steps=every_n_steps,
|
96 |
+
every_n_secs=every_n_secs,
|
97 |
+
output_dir=output_dir,
|
98 |
+
summary_writer=summary_writer)
|
99 |
+
self._extra_metrics = extra_metrics or {}
|
100 |
+
self._verbose = verbose
|
101 |
+
if batch_size is not None:
|
102 |
+
self._extra_metrics['examples/sec'] = batch_size
|
103 |
+
|
104 |
+
def _add_summary(self, tag, value, step):
|
105 |
+
Summary = tf.compat.v1.Summary
|
106 |
+
global_step_summary = Summary(value=[
|
107 |
+
Summary.Value(tag=tag, simple_value=value)
|
108 |
+
])
|
109 |
+
self._summary_writer.add_summary(global_step_summary, step)
|
110 |
+
if self._verbose:
|
111 |
+
tf.compat.v1.logging.info(f'{tag}: {value}')
|
112 |
+
|
113 |
+
def _log_and_record(self, elapsed_steps, elapsed_time, global_step):
|
114 |
+
global_step_per_sec = elapsed_steps / elapsed_time
|
115 |
+
if self._summary_writer is not None:
|
116 |
+
self._add_summary('global_step/sec',
|
117 |
+
global_step_per_sec, global_step)
|
118 |
+
for name, factor in self._extra_metrics.items():
|
119 |
+
value = factor * global_step_per_sec
|
120 |
+
self._add_summary(name, value, global_step)
|
121 |
+
|
122 |
+
|
123 |
+
class ExamplesPerSecondKerasHook(Callback):
|
124 |
+
def __init__(self,
|
125 |
+
every_n_steps=1,
|
126 |
+
every_n_secs=None,
|
127 |
+
output_dir=None,
|
128 |
+
summary_writer=None):
|
129 |
+
self.writer = summary_writer or SummaryWriterCache.get(output_dir)
|
130 |
+
self._timer = tf.compat.v1.train.SecondOrStepTimer(
|
131 |
+
every_n_secs, every_n_steps)
|
132 |
+
self._total_examples = 0
|
133 |
+
self._should_trigger = True
|
134 |
+
|
135 |
+
def on_train_begin(self, logs=None):
|
136 |
+
self._timer.reset()
|
137 |
+
|
138 |
+
def on_train_batch_begin(self, batch, logs=None):
|
139 |
+
self._should_trigger = self._timer.should_trigger_for_step(
|
140 |
+
logs.get('batch', 0))
|
141 |
+
|
142 |
+
def on_train_batch_end(self, batch, logs=None):
|
143 |
+
step = logs.get('batch', 0)
|
144 |
+
self._total_examples += logs.get('size', 0)
|
145 |
+
if self._should_trigger:
|
146 |
+
elapsed_time, elapsed_steps = self._timer.update_last_triggered_step(
|
147 |
+
step)
|
148 |
+
if elapsed_time is not None:
|
149 |
+
self._log_and_record(
|
150 |
+
elapsed_steps, elapsed_time, step, self._total_examples)
|
151 |
+
self._total_examples = 0
|
152 |
+
|
153 |
+
def _log_and_record(self, elapsed_steps, elapsed_time,
|
154 |
+
global_step, total_examples=None):
|
155 |
+
Summary = tf.compat.v1.Summary
|
156 |
+
global_step_per_sec = elapsed_steps / elapsed_time
|
157 |
+
if self.writer is not None:
|
158 |
+
global_step_summary = Summary(value=[
|
159 |
+
Summary.Value(
|
160 |
+
tag='global_step/sec', simple_value=global_step_per_sec)
|
161 |
+
])
|
162 |
+
self.writer.add_summary(global_step_summary, global_step)
|
163 |
+
if total_examples is not None:
|
164 |
+
examples_per_sec = total_examples / elapsed_time
|
165 |
+
example_summary = Summary(value=[
|
166 |
+
Summary.Value(tag='examples/sec',
|
167 |
+
simple_value=examples_per_sec)
|
168 |
+
])
|
169 |
+
self.writer.add_summary(example_summary, global_step)
|
170 |
+
|
171 |
+
|
172 |
+
class TBSummary(object):
|
173 |
+
"""
|
174 |
+
Creates a proxy for FileWriter for TensorBoard.
|
175 |
+
|
176 |
+
:param log_dir: - path where experiment is running (usually the same as
|
177 |
+
model_dir in Estimator)
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(self, log_dir: str):
|
181 |
+
super().__init__()
|
182 |
+
self._log_dir = log_dir
|
183 |
+
self._session = None
|
184 |
+
|
185 |
+
def __enter__(self):
|
186 |
+
self._session = tf.compat.v1.Session()
|
187 |
+
return self
|
188 |
+
|
189 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
190 |
+
if self._session:
|
191 |
+
self._session.close()
|
192 |
+
self._session = None
|
193 |
+
|
194 |
+
def add_scalar(self, tag, value, global_step=None):
|
195 |
+
with self._session:
|
196 |
+
writer = SummaryWriterCache.get(self._log_dir)
|
197 |
+
summary = tf.compat.v1.Summary(
|
198 |
+
value=[tf.compat.v1.Summary.Value(tag=tag, simple_value=value)])
|
199 |
+
event = tf.compat.v1.Event(summary=summary)
|
200 |
+
event.wall_time = time.time()
|
201 |
+
event.step = global_step
|
202 |
+
writer.add_event(event)
|
203 |
+
|
204 |
+
|
205 |
+
class TensorBoardWithHParamsV1(TensorBoard):
|
206 |
+
"""
|
207 |
+
Adds TensorBoard visualization to training process.
|
208 |
+
|
209 |
+
Writes training tfevent file into default log directory, but
|
210 |
+
stores evaluation in log_dir/eval subdirectory.
|
211 |
+
"""
|
212 |
+
|
213 |
+
def __init__(self, hparams, *args, **kwargs):
|
214 |
+
super().__init__(*args, **kwargs)
|
215 |
+
self.hparams = hparams
|
216 |
+
self._train_writer = None
|
217 |
+
self._eval_writer = None
|
218 |
+
|
219 |
+
def _switch_writer(self, mode):
|
220 |
+
self.writer = self._train_writer if mode == 'train' else self._eval_writer
|
221 |
+
|
222 |
+
def _init_writer(self, model):
|
223 |
+
"""Sets file writer."""
|
224 |
+
if context.executing_eagerly():
|
225 |
+
raise NotImplementedError('hook does not support eager execution')
|
226 |
+
|
227 |
+
self._train_writer = SummaryWriterCache.get(self.log_dir)
|
228 |
+
self._eval_writer = SummaryWriterCache.get(
|
229 |
+
os.path.join(self.log_dir, 'eval'))
|
230 |
+
self._switch_writer('train')
|
231 |
+
|
232 |
+
write_hparams_v1(self.writer, self.hparams)
|
233 |
+
|
234 |
+
def _write_custom_summaries(self, step, logs=None):
|
235 |
+
"""
|
236 |
+
This methods works on the assumption that metrics containing `val`
|
237 |
+
in name are related to validation (that's the default in Keras).
|
238 |
+
"""
|
239 |
+
|
240 |
+
logs = logs or {}
|
241 |
+
train_logs = {}
|
242 |
+
eval_logs = {}
|
243 |
+
|
244 |
+
for name, value in logs.items():
|
245 |
+
if 'val' in name:
|
246 |
+
if name.startswith('batch_val_'):
|
247 |
+
name = 'batch_' + _remove_prefix(name, 'batch_val_')
|
248 |
+
elif name.startswith('epoch_val_'):
|
249 |
+
name = _remove_prefix(name, 'epoch_val_')
|
250 |
+
eval_logs[name] = value
|
251 |
+
else:
|
252 |
+
if name.startswith('batch_'):
|
253 |
+
name = _remove_prefix(name, 'batch_')
|
254 |
+
train_logs[name] = value
|
255 |
+
|
256 |
+
self._switch_writer('eval')
|
257 |
+
super()._write_custom_summaries(step, eval_logs)
|
258 |
+
self._switch_writer('train')
|
259 |
+
super()._write_custom_summaries(step, train_logs)
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/common/utils.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ******************************************************************************
|
2 |
+
# Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
|
3 |
+
# ******************************************************************************
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
from contextlib import contextmanager
|
9 |
+
from tensorflow.python.training.session_run_hook import SessionRunHook, SessionRunArgs
|
10 |
+
|
11 |
+
import tensorflow as tf
|
12 |
+
from tensorflow.python.training import training_util
|
13 |
+
from tensorflow.core.protobuf import config_pb2
|
14 |
+
from tensorflow.python.client import timeline
|
15 |
+
from tensorflow.python.platform import gfile
|
16 |
+
|
17 |
+
@contextmanager
|
18 |
+
def disable_session_recovery():
|
19 |
+
""" Disable session recovery on backend errors.
|
20 |
+
|
21 |
+
MonitoredSession that is used by Estimator hard-codes that AbortedError
|
22 |
+
and UnavailableError should not terminate but instead silently restart
|
23 |
+
training. This constitutes a broad list of c++ backend errors, including
|
24 |
+
OOM, that may cause endless error/restart loop.
|
25 |
+
"""
|
26 |
+
from tensorflow.python.training import training
|
27 |
+
module= sys.modules['tensorflow.python.training.monitored_session']
|
28 |
+
ignored_error_list_attr = "_PREEMPTION_ERRORS"
|
29 |
+
orig_ignored_errors = getattr(module, ignored_error_list_attr)
|
30 |
+
setattr(module, ignored_error_list_attr, tuple())
|
31 |
+
yield
|
32 |
+
setattr(module, ignored_error_list_attr, orig_ignored_errors)
|
33 |
+
|
34 |
+
|
35 |
+
class RangeTFChromeProfilerHook(tf.compat.v1.estimator.SessionRunHook):
|
36 |
+
|
37 |
+
def __init__(self,
|
38 |
+
start_iter=None,
|
39 |
+
num_iters=None,
|
40 |
+
output_dir="."):
|
41 |
+
self._start_iter=start_iter
|
42 |
+
self._end_iter=start_iter+num_iters
|
43 |
+
self._curr_iter=0
|
44 |
+
self._output_dir=output_dir
|
45 |
+
self._metadata=[]
|
46 |
+
|
47 |
+
def before_run(self, run_context):
|
48 |
+
self._curr_iter=self._curr_iter+1
|
49 |
+
if self._curr_iter > self._start_iter and self._curr_iter <= self._end_iter:
|
50 |
+
return tf.estimator.SessionRunArgs(None, options=config_pb2.RunOptions(trace_level=config_pb2.RunOptions.FULL_TRACE))
|
51 |
+
else:
|
52 |
+
return None
|
53 |
+
|
54 |
+
def after_run(self, run_context, run_values):
|
55 |
+
if self._curr_iter > self._start_iter and self._curr_iter <= self._end_iter:
|
56 |
+
self._metadata.append(run_values.run_metadata.step_stats)
|
57 |
+
|
58 |
+
if self._curr_iter == self._end_iter:
|
59 |
+
self._save(self._curr_iter, self._output_dir)
|
60 |
+
run_context.request_stop()
|
61 |
+
|
62 |
+
def _save(self, step, save_path):
|
63 |
+
logging.info("Saving timeline for %d into '%s'.", step, save_path)
|
64 |
+
if not os.path.exists(save_path):
|
65 |
+
os.makedirs(save_path)
|
66 |
+
|
67 |
+
traces=self._metadata[0]
|
68 |
+
for ds in self._metadata[1:]:
|
69 |
+
traces.dev_stats.MergeFrom(ds.dev_stats)
|
70 |
+
|
71 |
+
with gfile.Open("{}/tf_trace.json".format(save_path), "w") as f:
|
72 |
+
trace = timeline.Timeline(traces)
|
73 |
+
f.write(
|
74 |
+
trace.generate_chrome_trace_format(show_dataflow=False, show_memory=False))
|
75 |
+
|
76 |
+
|
77 |
+
class RangeTFHltvProfilerHook(SessionRunHook):
|
78 |
+
def __init__(self,
|
79 |
+
output_dir="",
|
80 |
+
profile_steps=""
|
81 |
+
):
|
82 |
+
self.output_dir = output_dir
|
83 |
+
profile_steps_error_message = (
|
84 |
+
'profile_steps must be a comma separated pair of positive integers, '
|
85 |
+
'specifying the first and last steps to be profiled.'
|
86 |
+
)
|
87 |
+
try:
|
88 |
+
profile_steps = [int(i) for i in profile_steps.split(',')]
|
89 |
+
except ValueError:
|
90 |
+
raise ValueError(profile_steps_error_message)
|
91 |
+
if len(profile_steps) != 2:
|
92 |
+
raise ValueError(profile_steps_error_message)
|
93 |
+
self.start_step, self.stop_step = profile_steps
|
94 |
+
if self.start_step < 0 or self.start_step > self.stop_step:
|
95 |
+
raise ValueError(profile_steps_error_message)
|
96 |
+
self._step=0
|
97 |
+
|
98 |
+
def before_run(self, run_context):
|
99 |
+
if self._step == self.start_step:
|
100 |
+
tf.profiler.experimental.start(self.output_dir)
|
101 |
+
elif self._step == self.stop_step+1:
|
102 |
+
tf.profiler.experimental.stop()
|
103 |
+
|
104 |
+
self._step = self._step + 1
|
105 |
+
return SessionRunArgs({})
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adding Abseil (absl) flags quickstart
|
2 |
+
## Defining a flag
|
3 |
+
absl flag definitions are similar to argparse, although they are defined on a global namespace.
|
4 |
+
|
5 |
+
For instance defining a string flag looks like:
|
6 |
+
```$xslt
|
7 |
+
from absl import flags
|
8 |
+
flags.DEFINE_string(
|
9 |
+
name="my_flag",
|
10 |
+
default="a_sensible_default",
|
11 |
+
help="Here is what this flag does."
|
12 |
+
)
|
13 |
+
```
|
14 |
+
|
15 |
+
All three arguments are required, but default may be `None`. A common optional argument is
|
16 |
+
short_name for defining abreviations. Certain `DEFINE_*` methods will have other required arguments.
|
17 |
+
For instance `DEFINE_enum` requires the `enum_values` argument to be specified.
|
18 |
+
|
19 |
+
## Key Flags
|
20 |
+
absl has the concept of a key flag. Any flag defined in `__main__` is considered a key flag by
|
21 |
+
default. Key flags are displayed in `--help`, others only appear in `--helpfull`. In order to
|
22 |
+
handle key flags that are defined outside the module in question, absl provides the
|
23 |
+
`flags.adopt_module_key_flags()` method. This adds the key flags of a different module to one's own
|
24 |
+
key flags. For example:
|
25 |
+
```$xslt
|
26 |
+
File: flag_source.py
|
27 |
+
---------------------------------------
|
28 |
+
|
29 |
+
from absl import flags
|
30 |
+
flags.DEFINE_string(name="my_flag", default="abc", help="a flag.")
|
31 |
+
```
|
32 |
+
|
33 |
+
```$xslt
|
34 |
+
File: my_module.py
|
35 |
+
---------------------------------------
|
36 |
+
|
37 |
+
from absl import app as absl_app
|
38 |
+
from absl import flags
|
39 |
+
|
40 |
+
import flag_source
|
41 |
+
|
42 |
+
flags.adopt_module_key_flags(flag_source)
|
43 |
+
|
44 |
+
def main(_):
|
45 |
+
pass
|
46 |
+
|
47 |
+
absl_app.run(main, [__file__, "-h"]
|
48 |
+
```
|
49 |
+
|
50 |
+
when `my_module.py` is run it will show the help text for `my_flag`. Because not all flags defined
|
51 |
+
in a file are equally important, `official/utils/flags/core.py` (generally imported as flags_core)
|
52 |
+
provides an abstraction for handling key flag declaration in an easy way through the
|
53 |
+
`register_key_flags_in_core()` function, which allows a module to make a single
|
54 |
+
`adopt_key_flags(flags_core)` call when using the util flag declaration functions.
|
55 |
+
|
56 |
+
## Validators
|
57 |
+
Often the constraints on a flag are complicated. absl provides the validator decorator to allow
|
58 |
+
one to mark a function as a flag validation function. Suppose we want users to provide a flag
|
59 |
+
which is a palindrome.
|
60 |
+
|
61 |
+
```$xslt
|
62 |
+
from absl import flags
|
63 |
+
|
64 |
+
flags.DEFINE_string(name="pal_flag", short_name="pf", default="", help="Give me a palindrome")
|
65 |
+
|
66 |
+
@flags.validator("pal_flag")
|
67 |
+
def _check_pal(provided_pal_flag):
|
68 |
+
return provided_pal_flag == provided_pal_flag[::-1]
|
69 |
+
|
70 |
+
```
|
71 |
+
|
72 |
+
Validators take the form that returning True (truthy) passes, and all others
|
73 |
+
(False, None, exception) fail.
|
74 |
+
|
75 |
+
## Testing
|
76 |
+
To test using absl, simply declare flags in the setupClass method of TensorFlow's TestCase.
|
77 |
+
|
78 |
+
```$xslt
|
79 |
+
from absl import flags
|
80 |
+
import tensorflow as tf
|
81 |
+
|
82 |
+
def define_flags():
|
83 |
+
flags.DEFINE_string(name="test_flag", default="abc", help="an example flag")
|
84 |
+
|
85 |
+
|
86 |
+
class BaseTester(unittest.TestCase):
|
87 |
+
|
88 |
+
@classmethod
|
89 |
+
def setUpClass(cls):
|
90 |
+
super(BaseTester, cls).setUpClass()
|
91 |
+
define_flags()
|
92 |
+
|
93 |
+
def test_trivial(self):
|
94 |
+
flags_core.parse_flags([__file__, "test_flag", "def"])
|
95 |
+
self.AssertEqual(flags.FLAGS.test_flag, "def")
|
96 |
+
|
97 |
+
```
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/__init__.py
ADDED
File without changes
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_base.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Flags which will be nearly universal across models."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
from absl import flags
|
22 |
+
import tensorflow as tf
|
23 |
+
|
24 |
+
from TensorFlow.utils.flags._conventions import help_wrap
|
25 |
+
from TensorFlow.utils.logs import hooks_helper
|
26 |
+
|
27 |
+
|
28 |
+
def define_base(data_dir=True, model_dir=True, clean=False, train_epochs=False,
|
29 |
+
epochs_between_evals=False, stop_threshold=False,
|
30 |
+
batch_size=True, num_gpu=False, hooks=False, export_dir=False,
|
31 |
+
distribution_strategy=False, run_eagerly=False):
|
32 |
+
"""Register base flags.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
data_dir: Create a flag for specifying the input data directory.
|
36 |
+
model_dir: Create a flag for specifying the model file directory.
|
37 |
+
clean: Create a flag for removing the model_dir.
|
38 |
+
train_epochs: Create a flag to specify the number of training epochs.
|
39 |
+
epochs_between_evals: Create a flag to specify the frequency of testing.
|
40 |
+
stop_threshold: Create a flag to specify a threshold accuracy or other
|
41 |
+
eval metric which should trigger the end of training.
|
42 |
+
batch_size: Create a flag to specify the batch size.
|
43 |
+
num_gpu: Create a flag to specify the number of GPUs used.
|
44 |
+
hooks: Create a flag to specify hooks for logging.
|
45 |
+
export_dir: Create a flag to specify where a SavedModel should be exported.
|
46 |
+
distribution_strategy: Create a flag to specify which Distribution Strategy
|
47 |
+
to use.
|
48 |
+
run_eagerly: Create a flag to specify to run eagerly op by op.
|
49 |
+
Returns:
|
50 |
+
A list of flags for core.py to marks as key flags.
|
51 |
+
"""
|
52 |
+
key_flags = []
|
53 |
+
|
54 |
+
if data_dir:
|
55 |
+
flags.DEFINE_string(
|
56 |
+
name="data_dir", short_name="dd", default="/tmp",
|
57 |
+
help=help_wrap("The location of the input data."))
|
58 |
+
key_flags.append("data_dir")
|
59 |
+
|
60 |
+
if model_dir:
|
61 |
+
flags.DEFINE_string(
|
62 |
+
name="model_dir", short_name="md", default="/tmp",
|
63 |
+
help=help_wrap("The location of the model checkpoint files."))
|
64 |
+
key_flags.append("model_dir")
|
65 |
+
|
66 |
+
if clean:
|
67 |
+
flags.DEFINE_boolean(
|
68 |
+
name="clean", default=False,
|
69 |
+
help=help_wrap("If set, model_dir will be removed if it exists."))
|
70 |
+
key_flags.append("clean")
|
71 |
+
|
72 |
+
if train_epochs:
|
73 |
+
flags.DEFINE_integer(
|
74 |
+
name="train_epochs", short_name="te", default=1,
|
75 |
+
help=help_wrap("The number of epochs used to train."))
|
76 |
+
key_flags.append("train_epochs")
|
77 |
+
|
78 |
+
if epochs_between_evals:
|
79 |
+
flags.DEFINE_integer(
|
80 |
+
name="epochs_between_evals", short_name="ebe", default=1,
|
81 |
+
help=help_wrap("The number of training epochs to run between "
|
82 |
+
"evaluations."))
|
83 |
+
key_flags.append("epochs_between_evals")
|
84 |
+
|
85 |
+
if stop_threshold:
|
86 |
+
flags.DEFINE_float(
|
87 |
+
name="stop_threshold", short_name="st",
|
88 |
+
default=None,
|
89 |
+
help=help_wrap("If passed, training will stop at the earlier of "
|
90 |
+
"train_epochs and when the evaluation metric is "
|
91 |
+
"greater than or equal to stop_threshold."))
|
92 |
+
|
93 |
+
if batch_size:
|
94 |
+
flags.DEFINE_integer(
|
95 |
+
name="batch_size", short_name="bs", default=32,
|
96 |
+
help=help_wrap("Batch size for training and evaluation. When using "
|
97 |
+
"multiple gpus, this is the global batch size for "
|
98 |
+
"all devices. For example, if the batch size is 32 "
|
99 |
+
"and there are 4 GPUs, each GPU will get 8 examples on "
|
100 |
+
"each step."))
|
101 |
+
key_flags.append("batch_size")
|
102 |
+
|
103 |
+
if num_gpu:
|
104 |
+
flags.DEFINE_integer(
|
105 |
+
name="num_gpus", short_name="ng",
|
106 |
+
default=1,
|
107 |
+
help=help_wrap(
|
108 |
+
"How many GPUs to use at each worker with the "
|
109 |
+
"DistributionStrategies API. The default is 1."))
|
110 |
+
|
111 |
+
if run_eagerly:
|
112 |
+
flags.DEFINE_boolean(
|
113 |
+
name="run_eagerly", default=False,
|
114 |
+
help="Run the model op by op without building a model function.")
|
115 |
+
|
116 |
+
if hooks:
|
117 |
+
# Construct a pretty summary of hooks.
|
118 |
+
hook_list_str = (
|
119 |
+
u"\ufeff Hook:\n" + u"\n".join([u"\ufeff {}".format(key) for key
|
120 |
+
in hooks_helper.HOOKS]))
|
121 |
+
flags.DEFINE_list(
|
122 |
+
name="hooks", short_name="hk", default="LoggingTensorHook",
|
123 |
+
help=help_wrap(
|
124 |
+
u"A list of (case insensitive) strings to specify the names of "
|
125 |
+
u"training hooks.\n{}\n\ufeff Example: `--hooks ProfilerHook,"
|
126 |
+
u"ExamplesPerSecondHook`\n See official.utils.logs.hooks_helper "
|
127 |
+
u"for details.".format(hook_list_str))
|
128 |
+
)
|
129 |
+
key_flags.append("hooks")
|
130 |
+
|
131 |
+
if export_dir:
|
132 |
+
flags.DEFINE_string(
|
133 |
+
name="export_dir", short_name="ed", default=None,
|
134 |
+
help=help_wrap("If set, a SavedModel serialization of the model will "
|
135 |
+
"be exported to this directory at the end of training. "
|
136 |
+
"See the README for more details and relevant links.")
|
137 |
+
)
|
138 |
+
key_flags.append("export_dir")
|
139 |
+
|
140 |
+
if distribution_strategy:
|
141 |
+
flags.DEFINE_string(
|
142 |
+
name="distribution_strategy", short_name="ds", default="mirrored",
|
143 |
+
help=help_wrap("The Distribution Strategy to use for training. "
|
144 |
+
"Accepted values are 'off', 'one_device', "
|
145 |
+
"'mirrored', 'parameter_server', 'collective', "
|
146 |
+
"case insensitive. 'off' means not to use "
|
147 |
+
"Distribution Strategy; 'default' means to choose "
|
148 |
+
"from `MirroredStrategy` or `OneDeviceStrategy` "
|
149 |
+
"according to the number of GPUs.")
|
150 |
+
)
|
151 |
+
|
152 |
+
|
153 |
+
return key_flags
|
154 |
+
|
155 |
+
|
156 |
+
def get_num_gpus(flags_obj):
|
157 |
+
"""Treat num_gpus=-1 as 'use all'."""
|
158 |
+
if flags_obj.num_gpus != -1:
|
159 |
+
return flags_obj.num_gpus
|
160 |
+
|
161 |
+
from tensorflow.python.client import device_lib # pylint: disable=g-import-not-at-top
|
162 |
+
local_device_protos = device_lib.list_local_devices()
|
163 |
+
return sum([1 for d in local_device_protos if d.device_type == "GPU"])
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_conventions.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Central location for shared argparse convention definitions."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import sys
|
22 |
+
import codecs
|
23 |
+
import functools
|
24 |
+
|
25 |
+
from absl import app as absl_app
|
26 |
+
from absl import flags
|
27 |
+
|
28 |
+
|
29 |
+
# This codifies help string conventions and makes it easy to update them if
|
30 |
+
# necessary. Currently the only major effect is that help bodies start on the
|
31 |
+
# line after flags are listed. All flag definitions should wrap the text bodies
|
32 |
+
# with help wrap when calling DEFINE_*.
|
33 |
+
_help_wrap = functools.partial(flags.text_wrap, length=80, indent="",
|
34 |
+
firstline_indent="\n")
|
35 |
+
|
36 |
+
|
37 |
+
# Pretty formatting causes issues when utf-8 is not installed on a system.
|
38 |
+
def _stdout_utf8():
|
39 |
+
try:
|
40 |
+
codecs.lookup("utf-8")
|
41 |
+
except LookupError:
|
42 |
+
return False
|
43 |
+
return sys.stdout.encoding == "UTF-8"
|
44 |
+
|
45 |
+
|
46 |
+
if _stdout_utf8():
|
47 |
+
help_wrap = _help_wrap
|
48 |
+
else:
|
49 |
+
def help_wrap(text, *args, **kwargs):
|
50 |
+
return _help_wrap(text, *args, **kwargs).replace(u"\ufeff", u"")
|
51 |
+
|
52 |
+
|
53 |
+
# Replace None with h to also allow -h
|
54 |
+
absl_app.HelpshortFlag.SHORT_NAME = "h"
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/_device.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Flags for managing compute devices. Currently only contains TPU flags."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
from absl import flags
|
22 |
+
import tensorflow as tf
|
23 |
+
|
24 |
+
from TensorFlow.utils.flags._conventions import help_wrap
|
25 |
+
|
26 |
+
|
27 |
+
def require_cloud_storage(flag_names):
|
28 |
+
"""Register a validator to check directory flags.
|
29 |
+
Args:
|
30 |
+
flag_names: An iterable of strings containing the names of flags to be
|
31 |
+
checked.
|
32 |
+
"""
|
33 |
+
msg = "TPU requires GCS path for {}".format(", ".join(flag_names))
|
34 |
+
@flags.multi_flags_validator(["tpu"] + flag_names, message=msg)
|
35 |
+
def _path_check(flag_values): # pylint: disable=missing-docstring
|
36 |
+
if flag_values["tpu"] is None:
|
37 |
+
return True
|
38 |
+
|
39 |
+
valid_flags = True
|
40 |
+
for key in flag_names:
|
41 |
+
if not flag_values[key].startswith("gs://"):
|
42 |
+
tf.compat.v1.logging.error("{} must be a GCS path.".format(key))
|
43 |
+
valid_flags = False
|
44 |
+
|
45 |
+
return valid_flags
|
46 |
+
|
47 |
+
|
48 |
+
def define_device(tpu=True):
|
49 |
+
"""Register device specific flags.
|
50 |
+
Args:
|
51 |
+
tpu: Create flags to specify TPU operation.
|
52 |
+
Returns:
|
53 |
+
A list of flags for core.py to marks as key flags.
|
54 |
+
"""
|
55 |
+
|
56 |
+
key_flags = []
|
57 |
+
|
58 |
+
if tpu:
|
59 |
+
flags.DEFINE_string(
|
60 |
+
name="tpu", default=None,
|
61 |
+
help=help_wrap(
|
62 |
+
"The Cloud TPU to use for training. This should be either the name "
|
63 |
+
"used when creating the Cloud TPU, or a "
|
64 |
+
"grpc://ip.address.of.tpu:8470 url. Passing `local` will use the"
|
65 |
+
"CPU of the local instance instead. (Good for debugging.)"))
|
66 |
+
key_flags.append("tpu")
|
67 |
+
|
68 |
+
flags.DEFINE_string(
|
69 |
+
name="tpu_zone", default=None,
|
70 |
+
help=help_wrap(
|
71 |
+
"[Optional] GCE zone where the Cloud TPU is located in. If not "
|
72 |
+
"specified, we will attempt to automatically detect the GCE "
|
73 |
+
"project from metadata."))
|
74 |
+
|
75 |
+
flags.DEFINE_string(
|
76 |
+
name="tpu_gcp_project", default=None,
|
77 |
+
help=help_wrap(
|
78 |
+
"[Optional] Project name for the Cloud TPU-enabled project. If not "
|
79 |
+
"specified, we will attempt to automatically detect the GCE "
|
80 |
+
"project from metadata."))
|
81 |
+
|
82 |
+
flags.DEFINE_integer(name="num_tpu_shards", default=8,
|
83 |
+
help=help_wrap("Number of shards (TPU chips)."))
|
84 |
+
|
85 |
+
return key_flags
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/core.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Public interface for flag definition.
|
16 |
+
|
17 |
+
See _example.py for detailed instructions on defining flags.
|
18 |
+
"""
|
19 |
+
|
20 |
+
from __future__ import absolute_import
|
21 |
+
from __future__ import division
|
22 |
+
from __future__ import print_function
|
23 |
+
|
24 |
+
import sys
|
25 |
+
from six.moves import shlex_quote
|
26 |
+
|
27 |
+
from absl import app as absl_app
|
28 |
+
from absl import flags
|
29 |
+
|
30 |
+
from TensorFlow.utils.flags import _base
|
31 |
+
from TensorFlow.utils.flags import _benchmark
|
32 |
+
from TensorFlow.utils.flags import _conventions
|
33 |
+
from TensorFlow.utils.flags import _device
|
34 |
+
from TensorFlow.utils.flags import _distribution
|
35 |
+
from TensorFlow.utils.flags import _misc
|
36 |
+
from TensorFlow.utils.flags import _performance
|
37 |
+
|
38 |
+
|
39 |
+
def set_defaults(**kwargs):
|
40 |
+
for key, value in kwargs.items():
|
41 |
+
flags.FLAGS.set_default(name=key, value=value)
|
42 |
+
|
43 |
+
|
44 |
+
def parse_flags(argv=None):
|
45 |
+
"""Reset flags and reparse. Currently only used in testing."""
|
46 |
+
flags.FLAGS.unparse_flags()
|
47 |
+
absl_app.parse_flags_with_usage(argv or sys.argv)
|
48 |
+
|
49 |
+
|
50 |
+
def register_key_flags_in_core(f):
|
51 |
+
"""Defines a function in core.py, and registers its key flags.
|
52 |
+
|
53 |
+
absl uses the location of a flags.declare_key_flag() to determine the context
|
54 |
+
in which a flag is key. By making all declares in core, this allows model
|
55 |
+
main functions to call flags.adopt_module_key_flags() on core and correctly
|
56 |
+
chain key flags.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
f: The function to be wrapped
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
The "core-defined" version of the input function.
|
63 |
+
"""
|
64 |
+
|
65 |
+
def core_fn(*args, **kwargs):
|
66 |
+
key_flags = f(*args, **kwargs)
|
67 |
+
[flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned
|
68 |
+
return core_fn
|
69 |
+
|
70 |
+
|
71 |
+
define_base = register_key_flags_in_core(_base.define_base)
|
72 |
+
# We have define_base_eager for compatibility, since it used to be a separate
|
73 |
+
# function from define_base.
|
74 |
+
define_base_eager = define_base
|
75 |
+
define_log_steps = register_key_flags_in_core(_benchmark.define_log_steps)
|
76 |
+
define_benchmark = register_key_flags_in_core(_benchmark.define_benchmark)
|
77 |
+
define_device = register_key_flags_in_core(_device.define_device)
|
78 |
+
define_image = register_key_flags_in_core(_misc.define_image)
|
79 |
+
define_performance = register_key_flags_in_core(_performance.define_performance)
|
80 |
+
define_distribution = register_key_flags_in_core(
|
81 |
+
_distribution.define_distribution)
|
82 |
+
|
83 |
+
|
84 |
+
help_wrap = _conventions.help_wrap
|
85 |
+
|
86 |
+
|
87 |
+
get_num_gpus = _base.get_num_gpus
|
88 |
+
get_tf_dtype = _performance.get_tf_dtype
|
89 |
+
get_loss_scale = _performance.get_loss_scale
|
90 |
+
DTYPE_MAP = _performance.DTYPE_MAP
|
91 |
+
require_cloud_storage = _device.require_cloud_storage
|
92 |
+
|
93 |
+
def _get_nondefault_flags_as_dict():
|
94 |
+
"""Returns the nondefault flags as a dict from flag name to value."""
|
95 |
+
nondefault_flags = {}
|
96 |
+
for flag_name in flags.FLAGS:
|
97 |
+
flag_value = getattr(flags.FLAGS, flag_name)
|
98 |
+
if (flag_name != flags.FLAGS[flag_name].short_name and
|
99 |
+
flag_value != flags.FLAGS[flag_name].default):
|
100 |
+
nondefault_flags[flag_name] = flag_value
|
101 |
+
return nondefault_flags
|
102 |
+
|
103 |
+
|
104 |
+
def get_nondefault_flags_as_str():
|
105 |
+
"""Returns flags as a string that can be passed as command line arguments.
|
106 |
+
|
107 |
+
E.g., returns: "--batch_size=256 --use_synthetic_data" for the following code
|
108 |
+
block:
|
109 |
+
|
110 |
+
```
|
111 |
+
flags.FLAGS.batch_size = 256
|
112 |
+
flags.FLAGS.use_synthetic_data = True
|
113 |
+
print(get_nondefault_flags_as_str())
|
114 |
+
```
|
115 |
+
|
116 |
+
Only flags with nondefault values are returned, as passing default flags as
|
117 |
+
command line arguments has no effect.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
A string with the flags, that can be passed as command line arguments to a
|
121 |
+
program to use the flags.
|
122 |
+
"""
|
123 |
+
nondefault_flags = _get_nondefault_flags_as_dict()
|
124 |
+
flag_strings = []
|
125 |
+
for name, value in sorted(nondefault_flags.items()):
|
126 |
+
if isinstance(value, bool):
|
127 |
+
flag_str = '--{}'.format(name) if value else '--no{}'.format(name)
|
128 |
+
elif isinstance(value, list):
|
129 |
+
flag_str = '--{}={}'.format(name, ','.join(value))
|
130 |
+
else:
|
131 |
+
flag_str = '--{}={}'.format(name, value)
|
132 |
+
flag_strings.append(flag_str)
|
133 |
+
return ' '.join(shlex_quote(flag_str) for flag_str in flag_strings)
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/flags/guidelines.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Using flags in official models
|
2 |
+
|
3 |
+
1. **All common flags must be incorporated in the models.**
|
4 |
+
|
5 |
+
Common flags (i.e. batch_size, model_dir, etc.) are provided by various flag definition functions,
|
6 |
+
and channeled through `official.utils.flags.core`. For instance to define common supervised
|
7 |
+
learning parameters one could use the following code:
|
8 |
+
|
9 |
+
```$xslt
|
10 |
+
from absl import app as absl_app
|
11 |
+
from absl import flags
|
12 |
+
|
13 |
+
from TensorFlow.utils.flags import core as flags_core
|
14 |
+
|
15 |
+
|
16 |
+
def define_flags():
|
17 |
+
flags_core.define_base()
|
18 |
+
flags.adopt_key_flags(flags_core)
|
19 |
+
|
20 |
+
|
21 |
+
def main(_):
|
22 |
+
flags_obj = flags.FLAGS
|
23 |
+
print(flags_obj)
|
24 |
+
|
25 |
+
|
26 |
+
if __name__ == "__main__"
|
27 |
+
absl_app.run(main)
|
28 |
+
```
|
29 |
+
2. **Validate flag values.**
|
30 |
+
|
31 |
+
See the [Validators](#validators) section for implementation details.
|
32 |
+
|
33 |
+
Validators in the official model repo should not access the file system, such as verifying
|
34 |
+
that files exist, due to the strict ordering requirements.
|
35 |
+
|
36 |
+
3. **Flag values should not be mutated.**
|
37 |
+
|
38 |
+
Instead of mutating flag values, use getter functions to return the desired values. An example
|
39 |
+
getter function is `get_tf_dtype` function below:
|
40 |
+
|
41 |
+
```
|
42 |
+
# Map string to TensorFlow dtype
|
43 |
+
DTYPE_MAP = {
|
44 |
+
"fp16": tf.float16,
|
45 |
+
"fp32": tf.float32,
|
46 |
+
}
|
47 |
+
|
48 |
+
def get_tf_dtype(flags_obj):
|
49 |
+
if getattr(flags_obj, "fp16_implementation", None) == "graph_rewrite":
|
50 |
+
# If the graph_rewrite is used, we build the graph with fp32, and let the
|
51 |
+
# graph rewrite change ops to fp16.
|
52 |
+
return tf.float32
|
53 |
+
return DTYPE_MAP[flags_obj.dtype]
|
54 |
+
|
55 |
+
|
56 |
+
def main(_):
|
57 |
+
flags_obj = flags.FLAGS()
|
58 |
+
|
59 |
+
# Do not mutate flags_obj
|
60 |
+
# if flags_obj.fp16_implementation == "graph_rewrite":
|
61 |
+
# flags_obj.dtype = "float32" # Don't do this
|
62 |
+
|
63 |
+
print(get_tf_dtype(flags_obj))
|
64 |
+
...
|
65 |
+
```
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/misc/callstack_sampler.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A simple Python callstack sampler."""
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import datetime
|
5 |
+
import signal
|
6 |
+
import traceback
|
7 |
+
|
8 |
+
|
9 |
+
class CallstackSampler(object):
|
10 |
+
"""A simple signal-based Python callstack sampler.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self, interval=None):
|
14 |
+
self.stacks = []
|
15 |
+
self.interval = 0.001 if interval is None else interval
|
16 |
+
|
17 |
+
def _sample(self, signum, frame):
|
18 |
+
"""Samples the current stack."""
|
19 |
+
del signum
|
20 |
+
stack = traceback.extract_stack(frame)
|
21 |
+
formatted_stack = []
|
22 |
+
formatted_stack.append(datetime.datetime.utcnow())
|
23 |
+
for filename, lineno, function_name, text in stack:
|
24 |
+
formatted_frame = '{}:{}({})({})'.format(filename, lineno, function_name,
|
25 |
+
text)
|
26 |
+
formatted_stack.append(formatted_frame)
|
27 |
+
self.stacks.append(formatted_stack)
|
28 |
+
signal.setitimer(signal.ITIMER_VIRTUAL, self.interval, 0)
|
29 |
+
|
30 |
+
@contextlib.contextmanager
|
31 |
+
def profile(self):
|
32 |
+
signal.signal(signal.SIGVTALRM, self._sample)
|
33 |
+
signal.setitimer(signal.ITIMER_VIRTUAL, self.interval, 0)
|
34 |
+
try:
|
35 |
+
yield
|
36 |
+
finally:
|
37 |
+
signal.setitimer(signal.ITIMER_VIRTUAL, 0)
|
38 |
+
|
39 |
+
def save(self, fname):
|
40 |
+
with open(fname, 'w') as f:
|
41 |
+
for s in self.stacks:
|
42 |
+
for l in s:
|
43 |
+
f.write('%s\n' % l)
|
44 |
+
f.write('\n')
|
45 |
+
|
46 |
+
|
47 |
+
@contextlib.contextmanager
|
48 |
+
def callstack_sampling(filename, interval=None):
|
49 |
+
"""Periodically samples the Python callstack.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
filename: the filename
|
53 |
+
interval: the sampling interval, in seconds. Defaults to 0.001.
|
54 |
+
|
55 |
+
Yields:
|
56 |
+
nothing
|
57 |
+
"""
|
58 |
+
sampler = CallstackSampler(interval=interval)
|
59 |
+
with sampler.profile():
|
60 |
+
yield
|
61 |
+
sampler.save(filename)
|
62 |
+
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/__init__.py
ADDED
File without changes
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/bert/implementations/TensorFlow/utils/testing/benchmark_wrappers.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Lint as: python3
|
2 |
+
"""Utils to annotate and trace benchmarks."""
|
3 |
+
|
4 |
+
from __future__ import absolute_import
|
5 |
+
from __future__ import division
|
6 |
+
from __future__ import print_function
|
7 |
+
|
8 |
+
from absl import flags
|
9 |
+
from absl import logging
|
10 |
+
from absl.testing import flagsaver
|
11 |
+
|
12 |
+
FLAGS = flags.FLAGS
|
13 |
+
|
14 |
+
flags.DEFINE_multi_string(
|
15 |
+
'benchmark_method_flags', None,
|
16 |
+
'Optional list of runtime flags of the form key=value. Specify '
|
17 |
+
'multiple times to specify different flags. These will override the FLAGS '
|
18 |
+
'object directly after hardcoded settings in individual benchmark methods '
|
19 |
+
'before they call _run_and_report benchmark. Example if we set '
|
20 |
+
'--benchmark_method_flags=train_steps=10 and a benchmark method hardcodes '
|
21 |
+
'FLAGS.train_steps=10000 and later calls _run_and_report_benchmark, '
|
22 |
+
'it\'ll only run for 10 steps. This is useful for '
|
23 |
+
'debugging/profiling workflows.')
|
24 |
+
|
25 |
+
|
26 |
+
def enable_runtime_flags(decorated_func):
|
27 |
+
"""Sets attributes from --benchmark_method_flags for method execution.
|
28 |
+
|
29 |
+
@enable_runtime_flags decorator temporarily adds flags passed in via
|
30 |
+
--benchmark_method_flags and runs the decorated function in that context.
|
31 |
+
|
32 |
+
A user can set --benchmark_method_flags=train_steps=5 to run the benchmark
|
33 |
+
method in the snippet below with FLAGS.train_steps=5 for debugging (without
|
34 |
+
modifying the benchmark code).
|
35 |
+
|
36 |
+
class ModelBenchmark():
|
37 |
+
|
38 |
+
@benchmark_wrappers.enable_runtime_flags
|
39 |
+
def _run_and_report_benchmark(self):
|
40 |
+
# run benchmark ...
|
41 |
+
# report benchmark results ...
|
42 |
+
|
43 |
+
def benchmark_method(self):
|
44 |
+
FLAGS.train_steps = 1000
|
45 |
+
...
|
46 |
+
self._run_and_report_benchmark()
|
47 |
+
|
48 |
+
Args:
|
49 |
+
decorated_func: The method that runs the benchmark after previous setup
|
50 |
+
execution that set some flags.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
new_func: The same method which executes in a temporary context where flag
|
54 |
+
overrides from --benchmark_method_flags are active.
|
55 |
+
"""
|
56 |
+
|
57 |
+
def runner(*args, **kwargs):
|
58 |
+
"""Creates a temporary context to activate --benchmark_method_flags."""
|
59 |
+
if FLAGS.benchmark_method_flags:
|
60 |
+
saved_flag_values = flagsaver.save_flag_values()
|
61 |
+
for key_value in FLAGS.benchmark_method_flags:
|
62 |
+
key, value = key_value.split('=', 1)
|
63 |
+
try:
|
64 |
+
numeric_float = float(value)
|
65 |
+
numeric_int = int(numeric_float)
|
66 |
+
if abs(numeric_int) == abs(numeric_float):
|
67 |
+
flag_value = numeric_int
|
68 |
+
else:
|
69 |
+
flag_value = numeric_float
|
70 |
+
except ValueError:
|
71 |
+
flag_value = value
|
72 |
+
logging.info('Setting --%s=%s', key, flag_value)
|
73 |
+
setattr(FLAGS, key, flag_value)
|
74 |
+
else:
|
75 |
+
saved_flag_values = None
|
76 |
+
try:
|
77 |
+
result = decorated_func(*args, **kwargs)
|
78 |
+
return result
|
79 |
+
finally:
|
80 |
+
if saved_flag_values:
|
81 |
+
flagsaver.restore_flag_values(saved_flag_values)
|
82 |
+
|
83 |
+
return runner
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/LICENSE
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BSD 3-Clause License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Habana Labs, Ltd. an Intel Company
|
4 |
+
Copyright (c) Soumith Chintala 2016,
|
5 |
+
All rights reserved.
|
6 |
+
|
7 |
+
Redistribution and use in source and binary forms, with or without
|
8 |
+
modification, are permitted provided that the following conditions are met:
|
9 |
+
|
10 |
+
* Redistributions of source code must retain the above copyright notice, this
|
11 |
+
list of conditions and the following disclaimer.
|
12 |
+
|
13 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
14 |
+
this list of conditions and the following disclaimer in the documentation
|
15 |
+
and/or other materials provided with the distribution.
|
16 |
+
|
17 |
+
* Neither the name of the copyright holder nor the names of its
|
18 |
+
contributors may be used to endorse or promote products derived from
|
19 |
+
this software without specific prior written permission.
|
20 |
+
|
21 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
22 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
23 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
24 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
25 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
26 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
27 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
28 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
29 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/mlperf_variable_map.json
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"conv1.weight": "conv0_weight",
|
3 |
+
"bn1.weight": "bn0_gamma",
|
4 |
+
"bn1.bias": "bn0_beta",
|
5 |
+
"layer1.0.conv1.weight": "stage1_unit1_conv1_weight",
|
6 |
+
"layer1.0.bn1.weight": "stage1_unit1_bn1_gamma",
|
7 |
+
"layer1.0.bn1.bias": "stage1_unit1_bn1_beta",
|
8 |
+
"layer1.0.conv2.weight": "stage1_unit1_conv2_weight",
|
9 |
+
"layer1.0.bn2.weight": "stage1_unit1_bn2_gamma",
|
10 |
+
"layer1.0.bn2.bias": "stage1_unit1_bn2_beta",
|
11 |
+
"layer1.0.conv3.weight": "stage1_unit1_conv3_weight",
|
12 |
+
"layer1.0.bn3.weight": "stage1_unit1_bn3_gamma",
|
13 |
+
"layer1.0.bn3.bias": "stage1_unit1_bn3_beta",
|
14 |
+
"layer1.0.downsample.0.weight": "stage1_unit1_conv1sc_weight",
|
15 |
+
"layer1.0.downsample.1.weight": "stage1_unit1_bnsc_gamma",
|
16 |
+
"layer1.0.downsample.1.bias": "stage1_unit1_bnsc_beta",
|
17 |
+
"layer1.1.conv1.weight": "stage1_unit2_conv1_weight",
|
18 |
+
"layer1.1.bn1.weight": "stage1_unit2_bn1_gamma",
|
19 |
+
"layer1.1.bn1.bias": "stage1_unit2_bn1_beta",
|
20 |
+
"layer1.1.conv2.weight": "stage1_unit2_conv2_weight",
|
21 |
+
"layer1.1.bn2.weight": "stage1_unit2_bn2_gamma",
|
22 |
+
"layer1.1.bn2.bias": "stage1_unit2_bn2_beta",
|
23 |
+
"layer1.1.conv3.weight": "stage1_unit2_conv3_weight",
|
24 |
+
"layer1.1.bn3.weight": "stage1_unit2_bn3_gamma",
|
25 |
+
"layer1.1.bn3.bias": "stage1_unit2_bn3_beta",
|
26 |
+
"layer1.2.conv1.weight": "stage1_unit3_conv1_weight",
|
27 |
+
"layer1.2.bn1.weight": "stage1_unit3_bn1_gamma",
|
28 |
+
"layer1.2.bn1.bias": "stage1_unit3_bn1_beta",
|
29 |
+
"layer1.2.conv2.weight": "stage1_unit3_conv2_weight",
|
30 |
+
"layer1.2.bn2.weight": "stage1_unit3_bn2_gamma",
|
31 |
+
"layer1.2.bn2.bias": "stage1_unit3_bn2_beta",
|
32 |
+
"layer1.2.conv3.weight": "stage1_unit3_conv3_weight",
|
33 |
+
"layer1.2.bn3.weight": "stage1_unit3_bn3_gamma",
|
34 |
+
"layer1.2.bn3.bias": "stage1_unit3_bn3_beta",
|
35 |
+
"layer2.0.conv1.weight": "stage2_unit1_conv1_weight",
|
36 |
+
"layer2.0.bn1.weight": "stage2_unit1_bn1_gamma",
|
37 |
+
"layer2.0.bn1.bias": "stage2_unit1_bn1_beta",
|
38 |
+
"layer2.0.conv2.weight": "stage2_unit1_conv2_weight",
|
39 |
+
"layer2.0.bn2.weight": "stage2_unit1_bn2_gamma",
|
40 |
+
"layer2.0.bn2.bias": "stage2_unit1_bn2_beta",
|
41 |
+
"layer2.0.conv3.weight": "stage2_unit1_conv3_weight",
|
42 |
+
"layer2.0.bn3.weight": "stage2_unit1_bn3_gamma",
|
43 |
+
"layer2.0.bn3.bias": "stage2_unit1_bn3_beta",
|
44 |
+
"layer2.0.downsample.0.weight": "stage2_unit1_conv1sc_weight",
|
45 |
+
"layer2.0.downsample.1.weight": "stage2_unit1_bnsc_gamma",
|
46 |
+
"layer2.0.downsample.1.bias": "stage2_unit1_bnsc_beta",
|
47 |
+
"layer2.1.conv1.weight": "stage2_unit2_conv1_weight",
|
48 |
+
"layer2.1.bn1.weight": "stage2_unit2_bn1_gamma",
|
49 |
+
"layer2.1.bn1.bias": "stage2_unit2_bn1_beta",
|
50 |
+
"layer2.1.conv2.weight": "stage2_unit2_conv2_weight",
|
51 |
+
"layer2.1.bn2.weight": "stage2_unit2_bn2_gamma",
|
52 |
+
"layer2.1.bn2.bias": "stage2_unit2_bn2_beta",
|
53 |
+
"layer2.1.conv3.weight": "stage2_unit2_conv3_weight",
|
54 |
+
"layer2.1.bn3.weight": "stage2_unit2_bn3_gamma",
|
55 |
+
"layer2.1.bn3.bias": "stage2_unit2_bn3_beta",
|
56 |
+
"layer2.2.conv1.weight": "stage2_unit3_conv1_weight",
|
57 |
+
"layer2.2.bn1.weight": "stage2_unit3_bn1_gamma",
|
58 |
+
"layer2.2.bn1.bias": "stage2_unit3_bn1_beta",
|
59 |
+
"layer2.2.conv2.weight": "stage2_unit3_conv2_weight",
|
60 |
+
"layer2.2.bn2.weight": "stage2_unit3_bn2_gamma",
|
61 |
+
"layer2.2.bn2.bias": "stage2_unit3_bn2_beta",
|
62 |
+
"layer2.2.conv3.weight": "stage2_unit3_conv3_weight",
|
63 |
+
"layer2.2.bn3.weight": "stage2_unit3_bn3_gamma",
|
64 |
+
"layer2.2.bn3.bias": "stage2_unit3_bn3_beta",
|
65 |
+
"layer2.3.conv1.weight": "stage2_unit4_conv1_weight",
|
66 |
+
"layer2.3.bn1.weight": "stage2_unit4_bn1_gamma",
|
67 |
+
"layer2.3.bn1.bias": "stage2_unit4_bn1_beta",
|
68 |
+
"layer2.3.conv2.weight": "stage2_unit4_conv2_weight",
|
69 |
+
"layer2.3.bn2.weight": "stage2_unit4_bn2_gamma",
|
70 |
+
"layer2.3.bn2.bias": "stage2_unit4_bn2_beta",
|
71 |
+
"layer2.3.conv3.weight": "stage2_unit4_conv3_weight",
|
72 |
+
"layer2.3.bn3.weight": "stage2_unit4_bn3_gamma",
|
73 |
+
"layer2.3.bn3.bias": "stage2_unit4_bn3_beta",
|
74 |
+
"layer3.0.conv1.weight": "stage3_unit1_conv1_weight",
|
75 |
+
"layer3.0.bn1.weight": "stage3_unit1_bn1_gamma",
|
76 |
+
"layer3.0.bn1.bias": "stage3_unit1_bn1_beta",
|
77 |
+
"layer3.0.conv2.weight": "stage3_unit1_conv2_weight",
|
78 |
+
"layer3.0.bn2.weight": "stage3_unit1_bn2_gamma",
|
79 |
+
"layer3.0.bn2.bias": "stage3_unit1_bn2_beta",
|
80 |
+
"layer3.0.conv3.weight": "stage3_unit1_conv3_weight",
|
81 |
+
"layer3.0.bn3.weight": "stage3_unit1_bn3_gamma",
|
82 |
+
"layer3.0.bn3.bias": "stage3_unit1_bn3_beta",
|
83 |
+
"layer3.0.downsample.0.weight": "stage3_unit1_conv1sc_weight",
|
84 |
+
"layer3.0.downsample.1.weight": "stage3_unit1_bnsc_gamma",
|
85 |
+
"layer3.0.downsample.1.bias": "stage3_unit1_bnsc_beta",
|
86 |
+
"layer3.1.conv1.weight": "stage3_unit2_conv1_weight",
|
87 |
+
"layer3.1.bn1.weight": "stage3_unit2_bn1_gamma",
|
88 |
+
"layer3.1.bn1.bias": "stage3_unit2_bn1_beta",
|
89 |
+
"layer3.1.conv2.weight": "stage3_unit2_conv2_weight",
|
90 |
+
"layer3.1.bn2.weight": "stage3_unit2_bn2_gamma",
|
91 |
+
"layer3.1.bn2.bias": "stage3_unit2_bn2_beta",
|
92 |
+
"layer3.1.conv3.weight": "stage3_unit2_conv3_weight",
|
93 |
+
"layer3.1.bn3.weight": "stage3_unit2_bn3_gamma",
|
94 |
+
"layer3.1.bn3.bias": "stage3_unit2_bn3_beta",
|
95 |
+
"layer3.2.conv1.weight": "stage3_unit3_conv1_weight",
|
96 |
+
"layer3.2.bn1.weight": "stage3_unit3_bn1_gamma",
|
97 |
+
"layer3.2.bn1.bias": "stage3_unit3_bn1_beta",
|
98 |
+
"layer3.2.conv2.weight": "stage3_unit3_conv2_weight",
|
99 |
+
"layer3.2.bn2.weight": "stage3_unit3_bn2_gamma",
|
100 |
+
"layer3.2.bn2.bias": "stage3_unit3_bn2_beta",
|
101 |
+
"layer3.2.conv3.weight": "stage3_unit3_conv3_weight",
|
102 |
+
"layer3.2.bn3.weight": "stage3_unit3_bn3_gamma",
|
103 |
+
"layer3.2.bn3.bias": "stage3_unit3_bn3_beta",
|
104 |
+
"layer3.3.conv1.weight": "stage3_unit4_conv1_weight",
|
105 |
+
"layer3.3.bn1.weight": "stage3_unit4_bn1_gamma",
|
106 |
+
"layer3.3.bn1.bias": "stage3_unit4_bn1_beta",
|
107 |
+
"layer3.3.conv2.weight": "stage3_unit4_conv2_weight",
|
108 |
+
"layer3.3.bn2.weight": "stage3_unit4_bn2_gamma",
|
109 |
+
"layer3.3.bn2.bias": "stage3_unit4_bn2_beta",
|
110 |
+
"layer3.3.conv3.weight": "stage3_unit4_conv3_weight",
|
111 |
+
"layer3.3.bn3.weight": "stage3_unit4_bn3_gamma",
|
112 |
+
"layer3.3.bn3.bias": "stage3_unit4_bn3_beta",
|
113 |
+
"layer3.4.conv1.weight": "stage3_unit5_conv1_weight",
|
114 |
+
"layer3.4.bn1.weight": "stage3_unit5_bn1_gamma",
|
115 |
+
"layer3.4.bn1.bias": "stage3_unit5_bn1_beta",
|
116 |
+
"layer3.4.conv2.weight": "stage3_unit5_conv2_weight",
|
117 |
+
"layer3.4.bn2.weight": "stage3_unit5_bn2_gamma",
|
118 |
+
"layer3.4.bn2.bias": "stage3_unit5_bn2_beta",
|
119 |
+
"layer3.4.conv3.weight": "stage3_unit5_conv3_weight",
|
120 |
+
"layer3.4.bn3.weight": "stage3_unit5_bn3_gamma",
|
121 |
+
"layer3.4.bn3.bias": "stage3_unit5_bn3_beta",
|
122 |
+
"layer3.5.conv1.weight": "stage3_unit6_conv1_weight",
|
123 |
+
"layer3.5.bn1.weight": "stage3_unit6_bn1_gamma",
|
124 |
+
"layer3.5.bn1.bias": "stage3_unit6_bn1_beta",
|
125 |
+
"layer3.5.conv2.weight": "stage3_unit6_conv2_weight",
|
126 |
+
"layer3.5.bn2.weight": "stage3_unit6_bn2_gamma",
|
127 |
+
"layer3.5.bn2.bias": "stage3_unit6_bn2_beta",
|
128 |
+
"layer3.5.conv3.weight": "stage3_unit6_conv3_weight",
|
129 |
+
"layer3.5.bn3.weight": "stage3_unit6_bn3_gamma",
|
130 |
+
"layer3.5.bn3.bias": "stage3_unit6_bn3_beta",
|
131 |
+
"layer4.0.conv1.weight": "stage4_unit1_conv1_weight",
|
132 |
+
"layer4.0.bn1.weight": "stage4_unit1_bn1_gamma",
|
133 |
+
"layer4.0.bn1.bias": "stage4_unit1_bn1_beta",
|
134 |
+
"layer4.0.conv2.weight": "stage4_unit1_conv2_weight",
|
135 |
+
"layer4.0.bn2.weight": "stage4_unit1_bn2_gamma",
|
136 |
+
"layer4.0.bn2.bias": "stage4_unit1_bn2_beta",
|
137 |
+
"layer4.0.conv3.weight": "stage4_unit1_conv3_weight",
|
138 |
+
"layer4.0.bn3.weight": "stage4_unit1_bn3_gamma",
|
139 |
+
"layer4.0.bn3.bias": "stage4_unit1_bn3_beta",
|
140 |
+
"layer4.0.downsample.0.weight": "stage4_unit1_conv1sc_weight",
|
141 |
+
"layer4.0.downsample.1.weight": "stage4_unit1_bnsc_gamma",
|
142 |
+
"layer4.0.downsample.1.bias": "stage4_unit1_bnsc_beta",
|
143 |
+
"layer4.1.conv1.weight": "stage4_unit2_conv1_weight",
|
144 |
+
"layer4.1.bn1.weight": "stage4_unit2_bn1_gamma",
|
145 |
+
"layer4.1.bn1.bias": "stage4_unit2_bn1_beta",
|
146 |
+
"layer4.1.conv2.weight": "stage4_unit2_conv2_weight",
|
147 |
+
"layer4.1.bn2.weight": "stage4_unit2_bn2_gamma",
|
148 |
+
"layer4.1.bn2.bias": "stage4_unit2_bn2_beta",
|
149 |
+
"layer4.1.conv3.weight": "stage4_unit2_conv3_weight",
|
150 |
+
"layer4.1.bn3.weight": "stage4_unit2_bn3_gamma",
|
151 |
+
"layer4.1.bn3.bias": "stage4_unit2_bn3_beta",
|
152 |
+
"layer4.2.conv1.weight": "stage4_unit3_conv1_weight",
|
153 |
+
"layer4.2.bn1.weight": "stage4_unit3_bn1_gamma",
|
154 |
+
"layer4.2.bn1.bias": "stage4_unit3_bn1_beta",
|
155 |
+
"layer4.2.conv2.weight": "stage4_unit3_conv2_weight",
|
156 |
+
"layer4.2.bn2.weight": "stage4_unit3_bn2_gamma",
|
157 |
+
"layer4.2.bn2.bias": "stage4_unit3_bn2_beta",
|
158 |
+
"layer4.2.conv3.weight": "stage4_unit3_conv3_weight",
|
159 |
+
"layer4.2.bn3.weight": "stage4_unit3_bn3_gamma",
|
160 |
+
"layer4.2.bn3.bias": "stage4_unit3_bn3_beta",
|
161 |
+
"fc.weight": "fc1_weight",
|
162 |
+
"fc.bias": "fc1_bias"
|
163 |
+
}
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/model/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .resnet import *
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/model/optimizer.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2022 Habana Labs, Ltd. an Intel Company
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.optim.lr_scheduler import _LRScheduler
|
5 |
+
|
6 |
+
class PolynomialDecayWithWarmup(_LRScheduler):
|
7 |
+
"""Polynomial learning rate decay until step reach to max_decay_step
|
8 |
+
|
9 |
+
Args
|
10 |
+
optimizer (Optimizer): Wrapped optimizer.
|
11 |
+
max_decay_steps: after this step, we stop decreasing learning rate
|
12 |
+
end_learning_rate: scheduler stoping learning rate decay, value of learning rate must be this value
|
13 |
+
power: The power of the polynomial.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, optimizer, batch_size, steps_per_epoch, train_steps, initial_learning_rate=9.0, warmup_epochs=3,
|
17 |
+
end_learning_rate=0.0001, power=2.0, lars_decay_epochs=36, mlperf_mlloger=None, mlperf_mllog=None, opt_name=None):
|
18 |
+
self.last_step = 0
|
19 |
+
self.steps_per_epoch = steps_per_epoch
|
20 |
+
self.train_steps = train_steps
|
21 |
+
self.initial_learning_rate = initial_learning_rate
|
22 |
+
self.warmup_epochs = warmup_epochs
|
23 |
+
self.end_learning_rate = end_learning_rate
|
24 |
+
self.power = power
|
25 |
+
self.warmup_steps = warmup_epochs * (steps_per_epoch - 1)
|
26 |
+
self.decay_steps = lars_decay_epochs * (steps_per_epoch - 1) - self.warmup_steps + 1
|
27 |
+
self.opt_name = opt_name.lower()
|
28 |
+
|
29 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.LARS_OPT_END_LR, value=self.end_learning_rate)
|
30 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.LARS_OPT_LR_DECAY_STEPS, value=int(self.decay_steps))
|
31 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.LARS_OPT_LR_DECAY_POLY_POWER, value=power)
|
32 |
+
mlperf_mlloger.event(key=self.opt_name+'_'+mlperf_mllog.constants.OPT_LR_WARMUP_EPOCHS, value=float(self.warmup_epochs))
|
33 |
+
mlperf_mlloger.event(key=self.opt_name+'_'+mlperf_mllog.constants.OPT_BASE_LR, value=self.initial_learning_rate)
|
34 |
+
|
35 |
+
super().__init__(optimizer)
|
36 |
+
|
37 |
+
def get_lr(self):
|
38 |
+
warmup_steps = self.warmup_steps
|
39 |
+
warmup_rate = (
|
40 |
+
self.initial_learning_rate * self.last_step / warmup_steps)
|
41 |
+
|
42 |
+
poly_steps = self.last_step - warmup_steps
|
43 |
+
poly_steps = poly_steps if poly_steps > 1 else 1
|
44 |
+
|
45 |
+
poly_rate = (self.initial_learning_rate - self.end_learning_rate) * \
|
46 |
+
((1 - poly_steps / self.decay_steps) **
|
47 |
+
(self.power)) + self.end_learning_rate
|
48 |
+
|
49 |
+
decay_rate = warmup_rate if self.last_step <= warmup_steps else poly_rate
|
50 |
+
return decay_rate
|
51 |
+
|
52 |
+
def step(self, step=None):
|
53 |
+
if step is None:
|
54 |
+
step = self.last_step + 1
|
55 |
+
self.last_step = step if step != 0 else 1
|
56 |
+
if self.last_step <= self.decay_steps + self.warmup_steps:
|
57 |
+
decay_lrs = [self.get_lr()]
|
58 |
+
for param_group, lr in zip(self.optimizer.param_groups, decay_lrs):
|
59 |
+
param_group['lr'] = lr
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/ops_fp32_Resnet.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cross_entropy_loss
|
2 |
+
log_softmax
|
3 |
+
nll_loss
|
4 |
+
softmax
|
5 |
+
topk
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/HLS-Gaudi2-PT/PyTorch/requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mpi4py>=3.0.3
|
2 |
+
scipy>=1.7.1
|
3 |
+
colorlog==6.6.0
|
4 |
+
git+https://github.com/mlperf/[email protected]
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/debug.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
###############################################################################
|
16 |
+
# Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
|
17 |
+
###############################################################################
|
18 |
+
|
19 |
+
from absl import flags
|
20 |
+
from absl import logging
|
21 |
+
from tensorflow.core.protobuf import debug_event_pb2
|
22 |
+
from tensorflow.python.debug.lib import debug_events_writer
|
23 |
+
from tensorflow.python.framework import op_callbacks
|
24 |
+
from tensorflow.python.ops import gen_debug_ops
|
25 |
+
import tensorflow as tf
|
26 |
+
import re
|
27 |
+
import json
|
28 |
+
|
29 |
+
flags.DEFINE_string(name='dump_config', default=None, help='Defines config for tensor dumping')
|
30 |
+
|
31 |
+
|
32 |
+
class _DumpCallback(object):
|
33 |
+
def __init__(self, dump_root, tensor_debug_mode, circular_buffer_size, op_regex):
|
34 |
+
self._dump_root = dump_root
|
35 |
+
self._tensor_debug_mode = debug_event_pb2.TensorDebugMode.Value(tensor_debug_mode)
|
36 |
+
self._circular_buffer_size = circular_buffer_size
|
37 |
+
self._op_regex = re.compile(op_regex) if isinstance(op_regex, str) else op_regex
|
38 |
+
self._tfdbg_run_id = ''
|
39 |
+
self._dump_op_counter = 0
|
40 |
+
|
41 |
+
debug_writer_args = {
|
42 |
+
"dump_root" : self._dump_root,
|
43 |
+
"circular_buffer_size": self._circular_buffer_size
|
44 |
+
}
|
45 |
+
|
46 |
+
if tf.__version__.startswith("2.4"):
|
47 |
+
debug_writer_args["tfdbg_run_id"] = self._tfdbg_run_id
|
48 |
+
|
49 |
+
self._writer = debug_events_writer.DebugEventsWriter(**debug_writer_args)
|
50 |
+
|
51 |
+
def callback(self, op_type, inputs, attrs, outputs, op_name=None, graph=None):
|
52 |
+
if op_name is not None and self._op_regex.match(op_name):
|
53 |
+
graph_name = "missing-graph-name"
|
54 |
+
if graph is not None and hasattr(graph, "name"):
|
55 |
+
graph_name=graph.name
|
56 |
+
|
57 |
+
logging.info("Adding dump op for '%s' of type '%s' from graph '%s'" %(op_name, op_type, graph_name))
|
58 |
+
|
59 |
+
new_outputs = []
|
60 |
+
|
61 |
+
for output_slot, output in enumerate(outputs):
|
62 |
+
debug_identity_op_kwargs = {
|
63 |
+
"tfdbg_context_id": graph_name,
|
64 |
+
"op_name": op_name,
|
65 |
+
"output_slot": output_slot,
|
66 |
+
"tensor_debug_mode": self._tensor_debug_mode,
|
67 |
+
"debug_urls": ["file://%s" % self._dump_root],
|
68 |
+
"name": "dump_%d" % self._dump_op_counter
|
69 |
+
}
|
70 |
+
|
71 |
+
if tf.__version__.startswith("2.4"):
|
72 |
+
debug_identity_op_kwargs["circular_buffer_size"] = self._circular_buffer_size
|
73 |
+
debug_identity_op_kwargs["tfdbg_run_id"] = self._tfdbg_run_id
|
74 |
+
|
75 |
+
self._dump_op_counter = self._dump_op_counter + 1
|
76 |
+
new_outputs.append(gen_debug_ops.debug_identity_v2(output, **debug_identity_op_kwargs))
|
77 |
+
|
78 |
+
return new_outputs
|
79 |
+
else:
|
80 |
+
return None
|
81 |
+
|
82 |
+
def __enter__(self, *args, **kwargs):
|
83 |
+
op_callbacks.add_op_callback(self.callback)
|
84 |
+
logging.info("Enabled tensor dumping")
|
85 |
+
|
86 |
+
def __exit__(self, *args, **kwargs):
|
87 |
+
op_callbacks.remove_op_callback(self.callback)
|
88 |
+
logging.info("Disabled tensor dumping")
|
89 |
+
|
90 |
+
def __del__(self):
|
91 |
+
self._writer.Close()
|
92 |
+
|
93 |
+
class _Dummy(object):
|
94 |
+
def __enter__(self, *args, **kwargs):
|
95 |
+
pass
|
96 |
+
def __exit__(self, *args, **kwargs):
|
97 |
+
pass
|
98 |
+
|
99 |
+
def dump_callback(config_file=None):
|
100 |
+
if config_file is not None:
|
101 |
+
kwargs = json.load(open(config_file, 'r'))
|
102 |
+
return _DumpCallback(**kwargs)
|
103 |
+
try:
|
104 |
+
kwargs = json.load(open(flags.FLAGS.dump_config, 'r'))
|
105 |
+
return _DumpCallback(**kwargs)
|
106 |
+
except:
|
107 |
+
return _Dummy()
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/modeling/__init__.py
ADDED
File without changes
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/modeling/performance.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Lint as: python3
|
2 |
+
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ==============================================================================
|
16 |
+
"""Functions and classes related to training performance."""
|
17 |
+
|
18 |
+
import tensorflow as tf
|
19 |
+
|
20 |
+
|
21 |
+
def configure_optimizer(optimizer,
|
22 |
+
use_float16=False,
|
23 |
+
use_graph_rewrite=False,
|
24 |
+
loss_scale="dynamic"):
|
25 |
+
"""Configures optimizer object with performance options."""
|
26 |
+
if use_float16:
|
27 |
+
# Wraps optimizer with a LossScaleOptimizer. This is done automatically
|
28 |
+
# in compile() with the "mixed_float16" policy, but since we do not call
|
29 |
+
# compile(), we must wrap the optimizer manually.
|
30 |
+
optimizer = (
|
31 |
+
tf.keras.mixed_precision.LossScaleOptimizer(
|
32 |
+
optimizer, loss_scale=loss_scale))
|
33 |
+
if use_graph_rewrite:
|
34 |
+
# Note: the model dtype must be 'float32', which will ensure
|
35 |
+
# tf.ckeras.mixed_precision and
|
36 |
+
# tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite do not double
|
37 |
+
# up.
|
38 |
+
optimizer = tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite(
|
39 |
+
optimizer)
|
40 |
+
return optimizer
|
41 |
+
|
42 |
+
|
43 |
+
def set_mixed_precision_policy(dtype, loss_scale=None):
|
44 |
+
"""Sets mix precision policy."""
|
45 |
+
if dtype == tf.float16:
|
46 |
+
policy = tf.keras.mixed_precision.Policy(
|
47 |
+
'mixed_float16', loss_scale=loss_scale)
|
48 |
+
tf.keras.mixed_precision.set_global_policy(policy)
|
49 |
+
elif dtype == tf.bfloat16:
|
50 |
+
policy = tf.keras.mixed_precision.Policy(
|
51 |
+
'mixed_bfloat16')
|
52 |
+
tf.keras.mixed_precision.set_global_policy(policy)
|
53 |
+
elif dtype == tf.float32:
|
54 |
+
tf.keras.mixed_precision.set_global_policy('float32')
|
55 |
+
else:
|
56 |
+
raise ValueError("Unexpected dtype: %s" % dtype)
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/tb_utils.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import tensorflow as tf
|
4 |
+
from copy import deepcopy
|
5 |
+
from tensorboard.plugins.hparams import api as hp
|
6 |
+
from tensorflow.python.eager import context
|
7 |
+
from tensorflow.keras import backend as K
|
8 |
+
from tensorflow.python.ops import summary_ops_v2
|
9 |
+
from tensorflow.python.summary import summary as tf_summary
|
10 |
+
from tensorflow.python.training.summary_io import SummaryWriterCache
|
11 |
+
from tensorflow.compat.v1.keras.callbacks import TensorBoard, Callback
|
12 |
+
|
13 |
+
|
14 |
+
def _remove_prefix(s, prefix):
|
15 |
+
if s.startswith(prefix):
|
16 |
+
s = s[len(prefix):]
|
17 |
+
return s
|
18 |
+
|
19 |
+
|
20 |
+
def _parse_precision():
|
21 |
+
flag = os.environ.get('TF_BF16_CONVERSION', '0')
|
22 |
+
flag = flag.lower()
|
23 |
+
try:
|
24 |
+
value = int(flag)
|
25 |
+
except:
|
26 |
+
value = -1
|
27 |
+
|
28 |
+
if flag == 'false' or value == 0:
|
29 |
+
return 'fp32'
|
30 |
+
elif flag == 'true' or value == 1:
|
31 |
+
return 'bf16'
|
32 |
+
return flag
|
33 |
+
|
34 |
+
|
35 |
+
def _set_precision_if_missing(hparams: dict):
|
36 |
+
if 'precision' not in hparams:
|
37 |
+
hparams['precision'] = _parse_precision()
|
38 |
+
return hparams
|
39 |
+
|
40 |
+
|
41 |
+
def _copy_and_clean_hparams(hparams: dict):
|
42 |
+
hparams_ = dict()
|
43 |
+
for name, value in hparams.items():
|
44 |
+
if isinstance(value, (str, bool, int, float)):
|
45 |
+
hparams_[name] = value
|
46 |
+
continue
|
47 |
+
|
48 |
+
try:
|
49 |
+
hparams_[name] = str(value)
|
50 |
+
tf.compat.v1.logging.info(
|
51 |
+
f'Type of parameter "{name}" is not one of (bool, int, float, str). '
|
52 |
+
'It will be saved as a string.')
|
53 |
+
except:
|
54 |
+
tf.compat.v1.logging.info(
|
55 |
+
f'Conversion of parameter "{name}" to string failed. '
|
56 |
+
'Parameter will not be saved.')
|
57 |
+
|
58 |
+
return hparams_
|
59 |
+
|
60 |
+
|
61 |
+
def write_hparams_v1(writer, hparams: dict):
|
62 |
+
hparams = _copy_and_clean_hparams(hparams)
|
63 |
+
hparams = _set_precision_if_missing(hparams)
|
64 |
+
|
65 |
+
with tf.compat.v1.Graph().as_default():
|
66 |
+
if isinstance(writer, str):
|
67 |
+
writer = SummaryWriterCache.get(writer)
|
68 |
+
summary = hp.hparams_pb(hparams).SerializeToString()
|
69 |
+
writer.add_summary(summary)
|
70 |
+
|
71 |
+
|
72 |
+
def write_hparams_v2(writer, hparams: dict):
|
73 |
+
hparams = _copy_and_clean_hparams(hparams)
|
74 |
+
hparams = _set_precision_if_missing(hparams)
|
75 |
+
|
76 |
+
with writer.as_default():
|
77 |
+
hp.hparams(hparams)
|
78 |
+
|
79 |
+
|
80 |
+
class ExamplesPerSecondEstimatorHook(tf.compat.v1.train.StepCounterHook):
|
81 |
+
"""Calculate and report global_step/sec and examples/sec during runtime."""
|
82 |
+
# Copy-pasted from tensorflow_estimator/python/estimator/tpu/tpu_estimator.py
|
83 |
+
|
84 |
+
def __init__(self,
|
85 |
+
batch_size=None,
|
86 |
+
every_n_steps=1,
|
87 |
+
every_n_secs=None,
|
88 |
+
output_dir=None,
|
89 |
+
summary_writer=None,
|
90 |
+
extra_metrics=None,
|
91 |
+
log_global_step=False,
|
92 |
+
verbose=False):
|
93 |
+
super().__init__(
|
94 |
+
every_n_steps=every_n_steps,
|
95 |
+
every_n_secs=every_n_secs,
|
96 |
+
output_dir=output_dir,
|
97 |
+
summary_writer=summary_writer)
|
98 |
+
self._metrics = extra_metrics or {}
|
99 |
+
self._verbose = verbose
|
100 |
+
if log_global_step:
|
101 |
+
# Because estimator will log global_step/sec by default
|
102 |
+
# when log_step_count_steps is not None saving it here
|
103 |
+
# would duplicate events in TensorBoard.
|
104 |
+
# Use log_global_step=True when RunConfig.log_step_count_step=None
|
105 |
+
self._metrics['global_step/sec'] = 1
|
106 |
+
if batch_size is not None:
|
107 |
+
self._metrics['examples/sec'] = batch_size
|
108 |
+
|
109 |
+
def _add_summary(self, tag, value, step):
|
110 |
+
Summary = tf.compat.v1.Summary
|
111 |
+
global_step_summary = Summary(value=[
|
112 |
+
Summary.Value(tag=tag, simple_value=value)
|
113 |
+
])
|
114 |
+
self._summary_writer.add_summary(global_step_summary, step)
|
115 |
+
if self._verbose:
|
116 |
+
tf.compat.v1.logging.info(f'{tag}: {value}')
|
117 |
+
|
118 |
+
def _log_and_record(self, elapsed_steps, elapsed_time, global_step):
|
119 |
+
global_step_per_sec = elapsed_steps / elapsed_time
|
120 |
+
if self._summary_writer is not None:
|
121 |
+
for name, factor in self._metrics.items():
|
122 |
+
value = factor * global_step_per_sec
|
123 |
+
self._add_summary(name, value, global_step)
|
124 |
+
|
125 |
+
def after_create_session(self, session, coord):
|
126 |
+
self._timer.reset()
|
127 |
+
|
128 |
+
|
129 |
+
class ExamplesPerSecondKerasHookV1(Callback):
|
130 |
+
def __init__(self,
|
131 |
+
every_n_steps=1,
|
132 |
+
every_n_secs=None,
|
133 |
+
output_dir=None,
|
134 |
+
summary_writer=None,
|
135 |
+
batch_size=None):
|
136 |
+
self.writer = summary_writer or SummaryWriterCache.get(output_dir)
|
137 |
+
self._timer = tf.compat.v1.train.SecondOrStepTimer(
|
138 |
+
every_n_secs, every_n_steps)
|
139 |
+
self._total_examples = 0
|
140 |
+
self._should_trigger = True
|
141 |
+
self._batch_size = batch_size
|
142 |
+
|
143 |
+
def on_train_begin(self, logs=None):
|
144 |
+
self._timer.reset()
|
145 |
+
|
146 |
+
def on_train_batch_begin(self, batch, logs=None):
|
147 |
+
self._should_trigger = self._timer.should_trigger_for_step(
|
148 |
+
logs.get('batch', batch))
|
149 |
+
|
150 |
+
def on_train_batch_end(self, batch, logs=None):
|
151 |
+
step = logs.get('batch', batch)
|
152 |
+
self._total_examples += logs.get('size', 0)
|
153 |
+
if self._should_trigger:
|
154 |
+
elapsed_time, elapsed_steps = self._timer.update_last_triggered_step(
|
155 |
+
step)
|
156 |
+
if elapsed_time is not None:
|
157 |
+
total_examples = self._total_examples
|
158 |
+
if self._batch_size is not None:
|
159 |
+
total_examples = self._batch_size * elapsed_steps
|
160 |
+
self._log_and_record(
|
161 |
+
elapsed_steps, elapsed_time, step, total_examples)
|
162 |
+
self._total_examples = 0
|
163 |
+
|
164 |
+
def _log_and_record(self, elapsed_steps, elapsed_time,
|
165 |
+
global_step, total_examples=None):
|
166 |
+
Summary = tf.compat.v1.Summary
|
167 |
+
global_step_per_sec = elapsed_steps / elapsed_time
|
168 |
+
if self.writer is not None:
|
169 |
+
global_step_summary = Summary(value=[
|
170 |
+
Summary.Value(
|
171 |
+
tag='global_step/sec', simple_value=global_step_per_sec)
|
172 |
+
])
|
173 |
+
self.writer.add_summary(global_step_summary, global_step)
|
174 |
+
if total_examples is not None:
|
175 |
+
examples_per_sec = total_examples / elapsed_time
|
176 |
+
example_summary = Summary(value=[
|
177 |
+
Summary.Value(tag='examples/sec',
|
178 |
+
simple_value=examples_per_sec)
|
179 |
+
])
|
180 |
+
self.writer.add_summary(example_summary, global_step)
|
181 |
+
|
182 |
+
|
183 |
+
class ExamplesPerSecondKerasHookV2(ExamplesPerSecondKerasHookV1):
|
184 |
+
def __init__(self,
|
185 |
+
every_n_steps=1,
|
186 |
+
every_n_secs=None,
|
187 |
+
output_dir=None,
|
188 |
+
summary_writer=None,
|
189 |
+
batch_size=None):
|
190 |
+
writer = summary_writer or summary_ops_v2.create_file_writer_v2(output_dir)
|
191 |
+
super().__init__(every_n_steps, every_n_secs, output_dir, writer, batch_size)
|
192 |
+
|
193 |
+
def _log_and_record(self, elapsed_steps, elapsed_time,
|
194 |
+
global_step, total_examples=None):
|
195 |
+
global_step_per_sec = elapsed_steps / elapsed_time
|
196 |
+
if self.writer is not None:
|
197 |
+
with self.writer.as_default(), summary_ops_v2.always_record_summaries():
|
198 |
+
summary_ops_v2.scalar('global_step/sec', global_step_per_sec,
|
199 |
+
step=global_step)
|
200 |
+
if total_examples is not None:
|
201 |
+
examples_per_sec = total_examples / elapsed_time
|
202 |
+
summary_ops_v2.scalar('examples/sec', examples_per_sec,
|
203 |
+
step=global_step)
|
204 |
+
|
205 |
+
|
206 |
+
ExamplesPerSecondKerasHook = ExamplesPerSecondKerasHookV1
|
207 |
+
|
208 |
+
|
209 |
+
class TBSummary(object):
|
210 |
+
"""
|
211 |
+
Creates a proxy for FileWriter for TensorBoard.
|
212 |
+
|
213 |
+
:param log_dir: - path where experiment is running (usually the same as
|
214 |
+
model_dir in Estimator)
|
215 |
+
"""
|
216 |
+
|
217 |
+
def __init__(self, log_dir: str):
|
218 |
+
super().__init__()
|
219 |
+
self._log_dir = log_dir
|
220 |
+
self._session = None
|
221 |
+
|
222 |
+
def __enter__(self):
|
223 |
+
self._session = tf.compat.v1.Session()
|
224 |
+
return self
|
225 |
+
|
226 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
227 |
+
if self._session:
|
228 |
+
self._session.close()
|
229 |
+
self._session = None
|
230 |
+
|
231 |
+
def add_scalar(self, tag, value, global_step=None):
|
232 |
+
with self._session:
|
233 |
+
writer = SummaryWriterCache.get(self._log_dir)
|
234 |
+
summary = tf.compat.v1.Summary(
|
235 |
+
value=[tf.compat.v1.Summary.Value(tag=tag, simple_value=value)])
|
236 |
+
event = tf.compat.v1.Event(summary=summary)
|
237 |
+
event.wall_time = time.time()
|
238 |
+
event.step = global_step
|
239 |
+
writer.add_event(event)
|
240 |
+
|
241 |
+
|
242 |
+
class TensorBoardWithHParamsV1(TensorBoard):
|
243 |
+
"""
|
244 |
+
Adds TensorBoard visualization to training process.
|
245 |
+
|
246 |
+
Writes training tfevent file into default log directory, but
|
247 |
+
stores evaluation in log_dir/eval subdirectory.
|
248 |
+
"""
|
249 |
+
|
250 |
+
def __init__(self, hparams, *args, **kwargs):
|
251 |
+
super().__init__(*args, **kwargs)
|
252 |
+
self.hparams = hparams
|
253 |
+
self._train_summary = None
|
254 |
+
self._eval_summary = None
|
255 |
+
|
256 |
+
def _switch_writer(self, mode):
|
257 |
+
self.writer = self._train_summary if mode == 'train' else self._eval_summary
|
258 |
+
|
259 |
+
def _init_writer(self, model):
|
260 |
+
"""Sets file writer."""
|
261 |
+
if context.executing_eagerly():
|
262 |
+
raise NotImplementedError('hook does not support eager execution')
|
263 |
+
|
264 |
+
self._train_summary = SummaryWriterCache.get(self.log_dir)
|
265 |
+
self._eval_summary = SummaryWriterCache.get(
|
266 |
+
os.path.join(self.log_dir, 'eval'))
|
267 |
+
self._switch_writer('train')
|
268 |
+
|
269 |
+
write_hparams_v1(self.writer, self.hparams)
|
270 |
+
|
271 |
+
def _write_custom_summaries(self, step, logs=None):
|
272 |
+
"""
|
273 |
+
This methods works on the assumption that metrics containing `val`
|
274 |
+
in name are related to validation (that's the default in Keras).
|
275 |
+
"""
|
276 |
+
|
277 |
+
logs = logs or {}
|
278 |
+
train_logs = {}
|
279 |
+
eval_logs = {}
|
280 |
+
|
281 |
+
for name, value in logs.items():
|
282 |
+
if 'val' in name:
|
283 |
+
if name.startswith('batch_val_'):
|
284 |
+
name = 'batch_' + _remove_prefix(name, 'batch_val_')
|
285 |
+
elif name.startswith('epoch_val_'):
|
286 |
+
name = _remove_prefix(name, 'epoch_val_')
|
287 |
+
eval_logs[name] = value
|
288 |
+
else:
|
289 |
+
if name.startswith('batch_'):
|
290 |
+
name = _remove_prefix(name, 'batch_')
|
291 |
+
train_logs[name] = value
|
292 |
+
|
293 |
+
self._switch_writer('eval')
|
294 |
+
super()._write_custom_summaries(step, eval_logs)
|
295 |
+
self._switch_writer('train')
|
296 |
+
super()._write_custom_summaries(step, train_logs)
|
297 |
+
|
298 |
+
|
299 |
+
class TensorBoardWithHParamsV2(TensorBoard):
|
300 |
+
"""
|
301 |
+
Adds TensorBoard visualization to training process.
|
302 |
+
|
303 |
+
Writes training tfevent file into default log directory, but
|
304 |
+
stores evaluation in log_dir/eval subdirectory.
|
305 |
+
"""
|
306 |
+
|
307 |
+
def __init__(self, hparams, *args, **kwargs):
|
308 |
+
super().__init__(*args, **kwargs)
|
309 |
+
self.hparams = hparams
|
310 |
+
|
311 |
+
def set_model(self, model):
|
312 |
+
"""Sets Keras model and writes graph if specified."""
|
313 |
+
self.model = model
|
314 |
+
self._log_write_dir = self._get_log_write_dir()
|
315 |
+
|
316 |
+
self._train_dir = self._log_write_dir
|
317 |
+
self._train_step = self.model._train_counter # pylint: disable=protected-access
|
318 |
+
|
319 |
+
self._val_dir = os.path.join(self._log_write_dir, 'eval')
|
320 |
+
self._val_step = self.model._test_counter # pylint: disable=protected-access
|
321 |
+
|
322 |
+
self._writers = {} # Resets writers.
|
323 |
+
|
324 |
+
self._should_write_train_graph = False
|
325 |
+
if self.write_graph:
|
326 |
+
self._write_keras_model_summary()
|
327 |
+
self._should_write_train_graph = True
|
328 |
+
if self.embeddings_freq:
|
329 |
+
self._configure_embeddings()
|
330 |
+
|
331 |
+
write_hparams_v2(self._train_writer, self.hparams)
|
332 |
+
|
333 |
+
def _log_epoch_metrics(self, epoch, logs):
|
334 |
+
"""Writes epoch metrics out as scalar summaries.
|
335 |
+
|
336 |
+
Arguments:
|
337 |
+
epoch: Int. The global step to use for TensorBoard.
|
338 |
+
logs: Dict. Keys are scalar summary names, values are scalars.
|
339 |
+
"""
|
340 |
+
if not logs:
|
341 |
+
return
|
342 |
+
|
343 |
+
train_logs = {k: v for k,
|
344 |
+
v in logs.items() if not k.startswith('val_')}
|
345 |
+
val_logs = {k: v for k, v in logs.items() if k.startswith('val_')}
|
346 |
+
train_logs = self._collect_learning_rate(train_logs)
|
347 |
+
|
348 |
+
with summary_ops_v2.always_record_summaries():
|
349 |
+
if train_logs:
|
350 |
+
with self._train_writer.as_default():
|
351 |
+
for name, value in train_logs.items():
|
352 |
+
summary_ops_v2.scalar(name, value, step=epoch)
|
353 |
+
if val_logs:
|
354 |
+
with self._val_writer.as_default():
|
355 |
+
for name, value in val_logs.items():
|
356 |
+
name = name[4:] # Remove 'val_' prefix.
|
357 |
+
summary_ops_v2.scalar(name, value, step=epoch)
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/controller.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""A light weight utilities to train TF2 models."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
# from __future__ import google_type_annotations
|
20 |
+
from __future__ import print_function
|
21 |
+
|
22 |
+
import time
|
23 |
+
import os
|
24 |
+
|
25 |
+
from absl import logging
|
26 |
+
|
27 |
+
import tensorflow.compat.v2 as tf
|
28 |
+
from typing import Callable, Dict, Optional, Text
|
29 |
+
|
30 |
+
from TensorFlow.common.training import utils
|
31 |
+
|
32 |
+
|
33 |
+
class Controller(object):
|
34 |
+
"""Class that facilitates training and evaluation of models."""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
strategy: Optional[tf.distribute.Strategy] = None,
|
39 |
+
train_fn: Optional[Callable[[tf.Tensor],
|
40 |
+
Optional[Dict[Text, tf.Tensor]]]] = None,
|
41 |
+
eval_fn: Optional[Callable[[tf.Tensor],
|
42 |
+
Optional[Dict[Text, tf.Tensor]]]] = None,
|
43 |
+
warmup_fn: Optional[Callable[[tf.Tensor],
|
44 |
+
Optional[Dict[Text, tf.Tensor]]]] = None,
|
45 |
+
global_step: Optional[tf.Variable] = None,
|
46 |
+
# Train related
|
47 |
+
train_steps: Optional[int] = None,
|
48 |
+
steps_per_loop: Optional[int] = None,
|
49 |
+
summary_dir: Optional[Text] = None,
|
50 |
+
checkpoint_manager: Optional[tf.train.CheckpointManager] = None,
|
51 |
+
# summary related
|
52 |
+
summary_interval: Optional[int] = None,
|
53 |
+
# Evaluation related
|
54 |
+
eval_summary_dir: Optional[Text] = None,
|
55 |
+
eval_steps: Optional[int] = None,
|
56 |
+
eval_interval: Optional[int] = None,
|
57 |
+
eval_offset: Optional[int] = 0,
|
58 |
+
# Warmup related
|
59 |
+
device_warmup_steps: Optional[int] = None,
|
60 |
+
train_summary_writer: Optional[tf.summary.SummaryWriter] = None,
|
61 |
+
eval_summary_writer: Optional[tf.summary.SummaryWriter] = None):
|
62 |
+
"""Constructs a `Controller` instance.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
strategy: An instance of `tf.distribute.Strategy`.
|
66 |
+
train_fn: A callable defined as `def train_fn(num_steps)`, which
|
67 |
+
`num_steps` indicates the number of steps to run for each loop.
|
68 |
+
eval_fn: A callable defined as `def eval_fn(num_steps)`, which `num_steps`
|
69 |
+
indicates the number of steps for one evaluation.
|
70 |
+
global_step: An integer `tf.Variable` indicating the global training step
|
71 |
+
number. Usually this can be obtained from `iterations` property of the
|
72 |
+
model's optimizer (e.g. `self.optimizer.iterations`), or users can
|
73 |
+
create their own global step variable as well. If the users create their
|
74 |
+
own global step variable, it is recommended to create the `tf.Variable`
|
75 |
+
inside strategy scope, and with
|
76 |
+
`aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA`.
|
77 |
+
train_steps: The total (maximum) number of training steps to perform.
|
78 |
+
steps_per_loop: The number of steps to run in each "inner loop" of
|
79 |
+
training (passed to the `num_steps` parameter of `train_fn`).
|
80 |
+
summary_dir: The directory to restore and write checkpoints and summaries.
|
81 |
+
If None, it will be set to `checkpoint_manager.directory`.
|
82 |
+
checkpoint_manager: An instance of `tf.train.CheckpointManager`.
|
83 |
+
summary_interval: Step interval for training summaries. Note that this
|
84 |
+
argument only applies to the summaries outside the training loop. If the
|
85 |
+
value is None, then training summaries are not enabled.
|
86 |
+
eval_summary_dir: The directory to write eval summaries. If None, it will
|
87 |
+
be set to `summary_dir`.
|
88 |
+
eval_steps: Number of steps to run evaluation.
|
89 |
+
eval_interval: Step interval for evaluation. If None, will skip evaluation
|
90 |
+
in the middle of training. Note that evaluation only happens outside the
|
91 |
+
training loop, which the loop iteration is specify by `steps_per_loop`
|
92 |
+
parameter.
|
93 |
+
eval_offset: Step number of the first evaluation.
|
94 |
+
train_summary_writer: Instance of tf.summary.SummaryWriter that should be
|
95 |
+
used for saving training summaries to TensorBoard.
|
96 |
+
eval_summary_writer: Instance of tf.summary.SummaryWriter that should be
|
97 |
+
used for saving evaluation summaries to TensorBoard.
|
98 |
+
|
99 |
+
Raises:
|
100 |
+
ValueError: If both `train_fn` and `eval_fn` are None.
|
101 |
+
ValueError: If `train_fn` is not None and `train_steps` is None.
|
102 |
+
ValueError: If `steps_per_loop` is None when `train_fn` is provided.
|
103 |
+
ValueError: If `steps_per_loop` is not a positive integer.
|
104 |
+
"""
|
105 |
+
if train_fn is None and eval_fn is None:
|
106 |
+
raise ValueError("`train_fn` and `eval_fn` should not both be None")
|
107 |
+
|
108 |
+
# TODO(rxsang): Support training until exhaustion by passing
|
109 |
+
# `train_steps=-1`. Currently it cannot be supported with a host training
|
110 |
+
# loop because break statements are not supported with distributed dataset.
|
111 |
+
if train_fn is not None:
|
112 |
+
if train_steps is None:
|
113 |
+
raise ValueError("`train_steps` is required when `train_fn` is "
|
114 |
+
"provided.")
|
115 |
+
if steps_per_loop is None:
|
116 |
+
raise ValueError("`steps_per_loop` is required when `train_fn is "
|
117 |
+
"provided.")
|
118 |
+
if not isinstance(steps_per_loop, int) or steps_per_loop < 1:
|
119 |
+
raise ValueError("`steps_per_loop` should be a positive integer")
|
120 |
+
if summary_interval is not None and summary_interval <= 0:
|
121 |
+
raise ValueError("`summary_interval` should be larger than 0")
|
122 |
+
|
123 |
+
self.strategy = strategy or tf.distribute.get_strategy()
|
124 |
+
|
125 |
+
self.train_fn = train_fn
|
126 |
+
self.eval_fn = eval_fn
|
127 |
+
self.warmup_fn = warmup_fn
|
128 |
+
self.global_step = global_step
|
129 |
+
self.checkpoint_manager = checkpoint_manager
|
130 |
+
self.last_eval_output = None
|
131 |
+
|
132 |
+
if self.train_fn is not None:
|
133 |
+
self.train_steps = train_steps
|
134 |
+
self.steps_per_loop = steps_per_loop
|
135 |
+
self.summary_dir = summary_dir or checkpoint_manager.directory
|
136 |
+
|
137 |
+
self.summary_interval = summary_interval
|
138 |
+
if train_summary_writer is not None:
|
139 |
+
summary_writer = train_summary_writer
|
140 |
+
summary_writer = tf.summary.create_file_writer(
|
141 |
+
self.summary_dir) if self.summary_interval else None
|
142 |
+
# TODO(rxsang): Consider pass SummaryManager directly into Controller for
|
143 |
+
# maximum customizability.
|
144 |
+
self.summary_manager = utils.SummaryManager(
|
145 |
+
summary_writer,
|
146 |
+
tf.summary.scalar,
|
147 |
+
global_step=self.global_step,
|
148 |
+
summary_interval=self.summary_interval)
|
149 |
+
|
150 |
+
if self.eval_fn is not None:
|
151 |
+
if eval_summary_dir is None and self.summary_dir is not None:
|
152 |
+
eval_summary_dir = os.path.join(self.summary_dir, 'eval')
|
153 |
+
if eval_summary_writer is not None:
|
154 |
+
summary_writer = eval_summary_writer
|
155 |
+
elif eval_summary_dir:
|
156 |
+
summary_writer = tf.summary.create_file_writer(eval_summary_dir)
|
157 |
+
else:
|
158 |
+
summary_writer = None
|
159 |
+
self.eval_summary_manager = utils.SummaryManager(
|
160 |
+
summary_writer, tf.summary.scalar, global_step=self.global_step)
|
161 |
+
|
162 |
+
self.eval_steps = eval_steps
|
163 |
+
self.eval_interval = eval_interval
|
164 |
+
self.eval_offset = eval_offset
|
165 |
+
|
166 |
+
# Create and initialize the interval triggers.
|
167 |
+
self.eval_trigger = utils.IntervalTrigger(self.eval_interval,
|
168 |
+
self.eval_offset)
|
169 |
+
|
170 |
+
if self.warmup_fn is not None:
|
171 |
+
self.device_warmup_steps = device_warmup_steps
|
172 |
+
|
173 |
+
if self.global_step:
|
174 |
+
tf.summary.experimental.set_step(self.global_step)
|
175 |
+
|
176 |
+
# Restore Model if needed.
|
177 |
+
if self.checkpoint_manager is not None:
|
178 |
+
model_restored = self._restore_model()
|
179 |
+
if not model_restored and self.checkpoint_manager.checkpoint_interval:
|
180 |
+
# If the model is not restored from a checkpoint, save an initial
|
181 |
+
# checkpoint.
|
182 |
+
ckpt_path = self.checkpoint_manager.save(
|
183 |
+
checkpoint_number=self.global_step)
|
184 |
+
logging.info("Saved checkpoins in %s", ckpt_path)
|
185 |
+
|
186 |
+
def _restore_model(self, checkpoint_path=None):
|
187 |
+
"""Restore or initialize the model.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
checkpoint_path: An optional string indicates the checkpoint path to
|
191 |
+
restore. If None, will restore from `self.checkpoint_manager`.
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
True if the latest checkpoint is found or restored. Otherwise False.
|
195 |
+
"""
|
196 |
+
with self.strategy.scope():
|
197 |
+
# Checkpoint restoring should be inside scope. b/139450638
|
198 |
+
if checkpoint_path is not None:
|
199 |
+
self.checkpoint_manager.checkpoint.restore(checkpoint_path)
|
200 |
+
return True
|
201 |
+
return self.checkpoint_manager.restore_or_initialize()
|
202 |
+
|
203 |
+
def _evaluate_once(self, current_step):
|
204 |
+
"""Runs the evaluation once."""
|
205 |
+
logging.info("Start evaluation at step: %s", current_step)
|
206 |
+
|
207 |
+
with self.eval_summary_manager.summary_writer.as_default():
|
208 |
+
eval_outputs = self.eval_fn(self.eval_steps)
|
209 |
+
|
210 |
+
if eval_outputs:
|
211 |
+
eval_outputs = tf.nest.map_structure(
|
212 |
+
lambda x: (x if isinstance(x, (float, bool)) else x.numpy()),
|
213 |
+
eval_outputs)
|
214 |
+
|
215 |
+
info = "step: {} evaluation metric: {}".format(
|
216 |
+
current_step, eval_outputs)
|
217 |
+
self._log_info(info)
|
218 |
+
self.last_eval_output = eval_outputs
|
219 |
+
|
220 |
+
self.eval_summary_manager.write_summaries(eval_outputs)
|
221 |
+
self.eval_summary_manager.flush()
|
222 |
+
if "continue_training" in eval_outputs.keys():
|
223 |
+
return eval_outputs["continue_training"]
|
224 |
+
else:
|
225 |
+
return True
|
226 |
+
|
227 |
+
def _maybe_save_checkpoints(self, current_step, force_trigger=False):
|
228 |
+
if self.checkpoint_manager.checkpoint_interval:
|
229 |
+
ckpt_path = self.checkpoint_manager.save(
|
230 |
+
checkpoint_number=current_step, check_interval=not force_trigger)
|
231 |
+
if ckpt_path is not None:
|
232 |
+
logging.info("Saved checkpoins in %s", ckpt_path)
|
233 |
+
|
234 |
+
def _maybe_evaluate(self, current_step, force_trigger=False):
|
235 |
+
if self.eval_trigger(current_step, force_trigger):
|
236 |
+
return self._evaluate_once(current_step)
|
237 |
+
return True
|
238 |
+
|
239 |
+
def _log_info(self, message):
|
240 |
+
"""Logs `message` to the `info` log, and also prints to stdout."""
|
241 |
+
logging.info(message)
|
242 |
+
print(message)
|
243 |
+
|
244 |
+
def train(self, evaluate=True, num_acc_steps:int=1, manifest_path=None):
|
245 |
+
"""Runs the training, with optional evaluation.
|
246 |
+
|
247 |
+
This handles evaluation, gathering summaries, and saving checkpoints.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
evaluate: A boolean indicates whether to perform evaluation during
|
251 |
+
training.
|
252 |
+
num_acc_steps: Number of gradient accumulation steps.
|
253 |
+
|
254 |
+
Raises:
|
255 |
+
RuntimeError: If `global_step` is not updated correctly in `train_fn`.
|
256 |
+
"""
|
257 |
+
if self.train_fn is None:
|
258 |
+
raise ValueError("`self.train_fn` is required when calling `train` "
|
259 |
+
"method.")
|
260 |
+
if self.global_step is None:
|
261 |
+
raise ValueError("`self.global_step` is required when calling `train` "
|
262 |
+
"method.")
|
263 |
+
if evaluate and self.eval_fn is None:
|
264 |
+
raise ValueError("`self.eval_fn` is required when calling `train` method "
|
265 |
+
"with `evaluate=True`")
|
266 |
+
|
267 |
+
step_timer = _StepTimer(self.global_step)
|
268 |
+
current_step = self.global_step.numpy()
|
269 |
+
logging.info("Train at step %s of %s", current_step, self.train_steps)
|
270 |
+
while current_step < self.train_steps:
|
271 |
+
# Calculates steps to run for the next train loop.
|
272 |
+
steps_per_loop = min(self.train_steps - current_step, self.steps_per_loop)
|
273 |
+
logging.info("Entering training loop with %s steps, at step %s of %s",
|
274 |
+
steps_per_loop, current_step, self.train_steps)
|
275 |
+
current_step += steps_per_loop
|
276 |
+
steps_per_loop = tf.convert_to_tensor(steps_per_loop, dtype=tf.int32)
|
277 |
+
|
278 |
+
with self.summary_manager.summary_writer.as_default():
|
279 |
+
train_outputs = self.train_fn(steps_per_loop, num_acc_steps, manifest_path)
|
280 |
+
|
281 |
+
# Updates and verifies the current step after a training loop finishes.
|
282 |
+
if current_step != self.global_step.numpy():
|
283 |
+
raise RuntimeError("`self.train_fn` is not updating `global_step` "
|
284 |
+
"correctly, expected: %s, actual: %s" %
|
285 |
+
(current_step, self.global_step.numpy()))
|
286 |
+
|
287 |
+
# Print information like metrics and steps_per_second after a training
|
288 |
+
# loop.
|
289 |
+
if train_outputs:
|
290 |
+
train_outputs = tf.nest.map_structure(
|
291 |
+
lambda x: x.numpy(), train_outputs)
|
292 |
+
steps_per_second = step_timer.steps_per_second()
|
293 |
+
info = "step: {} steps_per_second: {:.2f} {}".format(
|
294 |
+
current_step, steps_per_second, train_outputs)
|
295 |
+
self._log_info(info)
|
296 |
+
|
297 |
+
train_outputs = train_outputs or {}
|
298 |
+
train_outputs["steps_per_second"] = steps_per_second
|
299 |
+
self.summary_manager.write_summaries(train_outputs)
|
300 |
+
|
301 |
+
self._maybe_save_checkpoints(current_step)
|
302 |
+
|
303 |
+
if evaluate:
|
304 |
+
continue_training = self._maybe_evaluate(current_step)
|
305 |
+
if not continue_training:
|
306 |
+
break
|
307 |
+
|
308 |
+
self.summary_manager.write_summaries(train_outputs, always_write=True)
|
309 |
+
self.summary_manager.flush()
|
310 |
+
self._maybe_save_checkpoints(current_step, force_trigger=True)
|
311 |
+
|
312 |
+
def evaluate(self, continuous=False, timeout_fn=None):
|
313 |
+
"""Runs the evaluation.
|
314 |
+
|
315 |
+
Args:
|
316 |
+
continuous: If `True`, will continously monitor the checkpoint directory
|
317 |
+
to evaluate on the latest checkpoint. If `False`, will do the evaluation
|
318 |
+
once.
|
319 |
+
timeout_fn: Optional callable to call after a timeout. If the function
|
320 |
+
returns True, then it means that no new checkpoints will be generated
|
321 |
+
and the iterator will exit.
|
322 |
+
|
323 |
+
Raises:
|
324 |
+
ValueError: If no checkpoint found in `self.checkpoint_manager.directory`.
|
325 |
+
"""
|
326 |
+
if self.eval_fn is None:
|
327 |
+
raise ValueError("`self.eval_fn` should not be None to call "
|
328 |
+
"`evaluate()` method.")
|
329 |
+
|
330 |
+
if not continuous and timeout_fn is not None:
|
331 |
+
raise ValueError("`timeout_fn` can be only passed when `continuous` is "
|
332 |
+
"True")
|
333 |
+
|
334 |
+
if continuous:
|
335 |
+
for checkpoint_path in tf.train.checkpoints_iterator(
|
336 |
+
self.checkpoint_manager.directory, timeout_fn=timeout_fn):
|
337 |
+
self._restore_model(checkpoint_path)
|
338 |
+
self._evaluate_once(self.global_step.numpy())
|
339 |
+
return
|
340 |
+
|
341 |
+
latest_checkpoint = self.checkpoint_manager.latest_checkpoint
|
342 |
+
if not latest_checkpoint:
|
343 |
+
raise ValueError("no checkpoint found in dir %s" %
|
344 |
+
self.checkpoint_manager.directory)
|
345 |
+
self._restore_model()
|
346 |
+
self._evaluate_once(self.global_step.numpy())
|
347 |
+
|
348 |
+
def warmup(self):
|
349 |
+
"""Runs device warmup.
|
350 |
+
|
351 |
+
This handles running a training loop on dummy data to move TF function
|
352 |
+
compilation outside of the training loop.
|
353 |
+
|
354 |
+
"""
|
355 |
+
if self.global_step is None:
|
356 |
+
raise ValueError("`self.global_step` is required when calling `warmup` "
|
357 |
+
"method.")
|
358 |
+
|
359 |
+
step_timer = _StepTimer(self.global_step)
|
360 |
+
current_step = self.global_step.numpy()
|
361 |
+
logging.info("Warmup at step %s of %s", current_step,
|
362 |
+
self.device_warmup_steps)
|
363 |
+
while current_step < self.device_warmup_steps:
|
364 |
+
# Calculates steps to run for the next train loop.
|
365 |
+
steps_per_loop = self.device_warmup_steps
|
366 |
+
logging.info("Entering warmup loop with %s steps, at step %s of %s",
|
367 |
+
steps_per_loop, current_step, self.device_warmup_steps)
|
368 |
+
current_step += steps_per_loop
|
369 |
+
steps_per_loop = tf.convert_to_tensor(steps_per_loop, dtype=tf.int32)
|
370 |
+
|
371 |
+
with self.summary_manager.summary_writer.as_default():
|
372 |
+
self.warmup_fn(steps_per_loop)
|
373 |
+
|
374 |
+
steps_per_second = step_timer.steps_per_second()
|
375 |
+
info = "step: {} steps_per_second: {:.2f}".format(
|
376 |
+
current_step, steps_per_second)
|
377 |
+
self._log_info(info)
|
378 |
+
|
379 |
+
class _StepTimer(object):
|
380 |
+
"""Utility class for measuring steps/second."""
|
381 |
+
|
382 |
+
def __init__(self, step):
|
383 |
+
self.step = step
|
384 |
+
self.start()
|
385 |
+
|
386 |
+
def start(self):
|
387 |
+
self.last_iteration = self.step.numpy()
|
388 |
+
self.last_time = time.time()
|
389 |
+
|
390 |
+
def steps_per_second(self, restart=True):
|
391 |
+
value = ((self.step.numpy() - self.last_iteration) /
|
392 |
+
(time.time() - self.last_time))
|
393 |
+
if restart:
|
394 |
+
self.start()
|
395 |
+
return value
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/grad_utils.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Some gradient util functions to help users writing custom training loop."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
# from __future__ import google_type_annotations
|
20 |
+
from __future__ import print_function
|
21 |
+
|
22 |
+
from absl import logging
|
23 |
+
|
24 |
+
import tensorflow.compat.v2 as tf
|
25 |
+
|
26 |
+
|
27 |
+
def _filter_grads(grads_and_vars):
|
28 |
+
"""Filter out iterable with grad equal to None."""
|
29 |
+
grads_and_vars = tuple(grads_and_vars)
|
30 |
+
if not grads_and_vars:
|
31 |
+
return grads_and_vars
|
32 |
+
filtered = []
|
33 |
+
vars_with_empty_grads = []
|
34 |
+
for grad, var in grads_and_vars:
|
35 |
+
if grad is None:
|
36 |
+
vars_with_empty_grads.append(var)
|
37 |
+
else:
|
38 |
+
filtered.append((grad, var))
|
39 |
+
filtered = tuple(filtered)
|
40 |
+
if not filtered:
|
41 |
+
raise ValueError("No gradients provided for any variable: %s." %
|
42 |
+
([v.name for _, v in grads_and_vars],))
|
43 |
+
if vars_with_empty_grads:
|
44 |
+
logging.warning(
|
45 |
+
("Gradients do not exist for variables %s when minimizing the loss."),
|
46 |
+
([v.name for v in vars_with_empty_grads]))
|
47 |
+
return filtered
|
48 |
+
|
49 |
+
|
50 |
+
def _filter_and_allreduce_gradients(grads_and_vars,
|
51 |
+
allreduce_precision="float32"):
|
52 |
+
"""Filter None grads and then allreduce gradients in specified precision.
|
53 |
+
|
54 |
+
This utils function is used when users intent to explicitly allreduce
|
55 |
+
gradients and customize gradients operations before and after allreduce.
|
56 |
+
The allreduced gradients are then passed to optimizer.apply_gradients(
|
57 |
+
experimental_aggregate_gradients=False).
|
58 |
+
|
59 |
+
Arguments:
|
60 |
+
grads_and_vars: gradients and variables pairs.
|
61 |
+
allreduce_precision: Whether to allreduce gradients in float32 or float16.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
pairs of allreduced non-None gradients and variables.
|
65 |
+
"""
|
66 |
+
filtered_grads_and_vars = _filter_grads(grads_and_vars)
|
67 |
+
(grads, variables) = zip(*filtered_grads_and_vars)
|
68 |
+
if allreduce_precision == "float16":
|
69 |
+
grads = [tf.cast(grad, "float16") for grad in grads]
|
70 |
+
allreduced_grads = tf.distribute.get_replica_context().all_reduce(
|
71 |
+
tf.distribute.ReduceOp.SUM, grads)
|
72 |
+
if allreduce_precision == "float16":
|
73 |
+
allreduced_grads = [tf.cast(grad, "float32") for grad in allreduced_grads]
|
74 |
+
return allreduced_grads, variables
|
75 |
+
|
76 |
+
|
77 |
+
def _run_callbacks(callbacks, grads_and_vars):
|
78 |
+
for callback in callbacks:
|
79 |
+
grads_and_vars = callback(grads_and_vars)
|
80 |
+
return grads_and_vars
|
81 |
+
|
82 |
+
|
83 |
+
def minimize_using_explicit_allreduce(tape,
|
84 |
+
optimizer,
|
85 |
+
loss,
|
86 |
+
trainable_variables,
|
87 |
+
pre_allreduce_callbacks=None,
|
88 |
+
post_allreduce_callbacks=None):
|
89 |
+
"""Minimizes loss for one step by updating `trainable_variables`.
|
90 |
+
|
91 |
+
Minimizes loss for one step by updating `trainable_variables`.
|
92 |
+
This explicitly performs gradient allreduce, instead of relying on implicit
|
93 |
+
allreduce in optimizer.apply_gradients(). If training using FP16 mixed
|
94 |
+
precision, explicit allreduce will aggregate gradients in FP16 format.
|
95 |
+
For TPU and GPU training using FP32, explicit allreduce will aggregate
|
96 |
+
gradients in FP32 format.
|
97 |
+
|
98 |
+
Arguments:
|
99 |
+
tape: An instance of `tf.GradientTape`.
|
100 |
+
optimizer: An instance of `tf.keras.optimizers.Optimizer`.
|
101 |
+
loss: the loss tensor.
|
102 |
+
trainable_variables: A list of model Variables.
|
103 |
+
pre_allreduce_callbacks: A list of callback functions that takes gradients
|
104 |
+
and model variables pairs as input, manipulate them, and returns a new
|
105 |
+
gradients and model variables pairs. The callback functions will be
|
106 |
+
invoked in the list order and before gradients are allreduced.
|
107 |
+
With mixed precision training, the pre_allreduce_allbacks will be
|
108 |
+
applied on scaled_gradients. Default is no callbacks.
|
109 |
+
post_allreduce_callbacks: A list of callback functions that takes
|
110 |
+
gradients and model variables pairs as input, manipulate them, and
|
111 |
+
returns a new gradients and model variables paris. The callback
|
112 |
+
functions will be invoked in the list order and right before gradients
|
113 |
+
are applied to variables for updates. Default is no callbacks.
|
114 |
+
"""
|
115 |
+
if isinstance(optimizer,
|
116 |
+
tf.keras.mixed_precision.LossScaleOptimizer):
|
117 |
+
# FP16 GPU code path
|
118 |
+
with tape:
|
119 |
+
scaled_loss = optimizer.get_scaled_loss(loss)
|
120 |
+
scaled_grads = tape.gradient(scaled_loss, trainable_variables)
|
121 |
+
grads_and_vars = zip(scaled_grads, trainable_variables)
|
122 |
+
if pre_allreduce_callbacks:
|
123 |
+
grads_and_vars = _run_callbacks(pre_allreduce_callbacks, grads_and_vars)
|
124 |
+
(allreduced_scaled_grads,
|
125 |
+
filtered_training_vars) = _filter_and_allreduce_gradients(
|
126 |
+
grads_and_vars, allreduce_precision="float16")
|
127 |
+
allreduced_unscaled_grads = optimizer.get_unscaled_gradients(
|
128 |
+
allreduced_scaled_grads)
|
129 |
+
grads_and_vars = zip(allreduced_unscaled_grads, filtered_training_vars)
|
130 |
+
else:
|
131 |
+
# TPU or FP32 GPU code path
|
132 |
+
grads = tape.gradient(loss, trainable_variables)
|
133 |
+
grads_and_vars = zip(grads, trainable_variables)
|
134 |
+
if pre_allreduce_callbacks:
|
135 |
+
grads_and_vars = _run_callbacks(pre_allreduce_callbacks, grads_and_vars)
|
136 |
+
(allreduced_grads,
|
137 |
+
filtered_training_vars) = _filter_and_allreduce_gradients(
|
138 |
+
grads_and_vars, allreduce_precision="float32")
|
139 |
+
grads_and_vars = zip(allreduced_grads, filtered_training_vars)
|
140 |
+
if post_allreduce_callbacks:
|
141 |
+
grads_and_vars = _run_callbacks(post_allreduce_callbacks, grads_and_vars)
|
142 |
+
optimizer.apply_gradients(
|
143 |
+
grads_and_vars, experimental_aggregate_gradients=False)
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/runnable.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""An abstraction that users can easily handle their custom training loops."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
# from __future__ import google_type_annotations
|
20 |
+
from __future__ import print_function
|
21 |
+
|
22 |
+
import abc
|
23 |
+
import six
|
24 |
+
import tensorflow.compat.v2 as tf
|
25 |
+
from typing import Dict, Optional, Text
|
26 |
+
|
27 |
+
|
28 |
+
@six.add_metaclass(abc.ABCMeta)
|
29 |
+
class AbstractTrainable(tf.Module):
|
30 |
+
"""An abstract class defining the APIs required for training."""
|
31 |
+
|
32 |
+
@abc.abstractmethod
|
33 |
+
def train(self,
|
34 |
+
num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]:
|
35 |
+
"""Implements model training with multiple steps.
|
36 |
+
|
37 |
+
In training, it is common to break the total training steps into several
|
38 |
+
training loops, so users can do checkpointing, write summaries and run some
|
39 |
+
python callbacks. This is necessary for getting good performance in TPU
|
40 |
+
training, as the overhead for launching a multi worker tf.function may be
|
41 |
+
large in Eager mode. It is usually encouraged to create a host training loop
|
42 |
+
(e.g. using a `tf.range` wrapping `strategy.run` inside a
|
43 |
+
`tf.function`) in the TPU case. For the cases that don't require host
|
44 |
+
training loop to acheive peak performance, users can just implement a simple
|
45 |
+
python loop to drive each step.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
num_steps: A guideline for how many training steps to run. Note that it is
|
49 |
+
up to the model what constitutes a "step" (this may involve more than
|
50 |
+
one update to model parameters, e.g. if training a GAN).
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
The function may return a dictionary of `Tensors`, which will be
|
54 |
+
written to logs and as TensorBoard summaries.
|
55 |
+
"""
|
56 |
+
pass
|
57 |
+
|
58 |
+
|
59 |
+
@six.add_metaclass(abc.ABCMeta)
|
60 |
+
class AbstractEvaluable(tf.Module):
|
61 |
+
"""An abstract class defining the APIs required for evaluation."""
|
62 |
+
|
63 |
+
@abc.abstractmethod
|
64 |
+
def evaluate(
|
65 |
+
self, num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]:
|
66 |
+
"""Implements model evaluation.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
num_steps: A guideline for how many evaluation steps to run. Note that it
|
70 |
+
is up to the model what constitutes a "step". Generally, it may be
|
71 |
+
desirable to support both a limited number of eval steps and iterating
|
72 |
+
over a full dataset (however many steps are required) when `num_steps`
|
73 |
+
is `None`.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
The function may return a dictionary of `Tensors`, which will be
|
77 |
+
written to logs and as TensorBoard summaries.
|
78 |
+
"""
|
79 |
+
pass
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/standard_runnable.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""An abstraction that users can easily handle their custom training loops."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
# from __future__ import google_type_annotations
|
20 |
+
from __future__ import print_function
|
21 |
+
|
22 |
+
import abc
|
23 |
+
import six
|
24 |
+
import tensorflow.compat.v2 as tf
|
25 |
+
from typing import Dict, Optional, Text
|
26 |
+
|
27 |
+
from TensorFlow.common.training import runnable
|
28 |
+
from TensorFlow.common.training import utils
|
29 |
+
|
30 |
+
|
31 |
+
@six.add_metaclass(abc.ABCMeta)
|
32 |
+
class StandardTrainable(runnable.AbstractTrainable):
|
33 |
+
"""Implements the standard functionality of AbstractTrainable APIs."""
|
34 |
+
|
35 |
+
def __init__(self, use_tf_while_loop=True, use_tf_function=True):
|
36 |
+
if use_tf_while_loop and not use_tf_function:
|
37 |
+
raise ValueError("`use_tf_while_loop=True` and `use_tf_function=False` "
|
38 |
+
"is not supported")
|
39 |
+
self.use_tf_while_loop = use_tf_while_loop
|
40 |
+
self.use_tf_function = use_tf_function
|
41 |
+
self.train_dataset = None
|
42 |
+
self.train_iter = None
|
43 |
+
self.train_loop_fn = None
|
44 |
+
|
45 |
+
@abc.abstractmethod
|
46 |
+
def build_train_dataset(self, manifest_path=None):
|
47 |
+
"""Builds the training datasets.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
A tf.nest-compatible structure of tf.data.Dataset or DistributedDataset.
|
51 |
+
"""
|
52 |
+
pass
|
53 |
+
|
54 |
+
def train(self, num_steps: Optional[tf.Tensor], num_acc_steps:int=1, manifest_path=None) -> Optional[Dict[Text, tf.Tensor]]:
|
55 |
+
"""See base class."""
|
56 |
+
if self.train_dataset is None:
|
57 |
+
# Build train input dataset
|
58 |
+
self.train_dataset = self.build_train_dataset(manifest_path=manifest_path)
|
59 |
+
self.train_iter = tf.nest.map_structure(iter, self.train_dataset)
|
60 |
+
|
61 |
+
if self.train_loop_fn is None:
|
62 |
+
train_fn = self.train_step
|
63 |
+
if self.use_tf_while_loop:
|
64 |
+
self.train_loop_fn = utils.create_tf_while_loop_fn(train_fn)
|
65 |
+
else:
|
66 |
+
if self.use_tf_function:
|
67 |
+
train_fn = tf.function(train_fn)
|
68 |
+
self.train_loop_fn = utils.create_loop_fn(train_fn)
|
69 |
+
|
70 |
+
self.train_loop_begin()
|
71 |
+
self.train_loop_fn(self.train_iter, num_steps, num_acc_steps)
|
72 |
+
return self.train_loop_end()
|
73 |
+
|
74 |
+
def train_loop_begin(self):
|
75 |
+
"""Called once at the beginning of the training loop.
|
76 |
+
|
77 |
+
This is a good place to reset metrics that accumulate values over multiple
|
78 |
+
steps of training.
|
79 |
+
"""
|
80 |
+
pass
|
81 |
+
|
82 |
+
@abc.abstractmethod
|
83 |
+
def train_step(self, iterator):
|
84 |
+
"""Implements one step of training.
|
85 |
+
|
86 |
+
What a "step" consists of is up to the implementer. If using distribution
|
87 |
+
strategies, the call to this method should take place in the "cross-replica
|
88 |
+
context" for generality, to allow e.g. multiple iterator dequeues and calls
|
89 |
+
to `strategy.run`.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
iterator: A tf.nest-compatible structure of tf.data Iterator or
|
93 |
+
DistributedIterator.
|
94 |
+
"""
|
95 |
+
pass
|
96 |
+
|
97 |
+
def train_loop_end(self) -> Optional[Dict[Text, tf.Tensor]]:
|
98 |
+
"""Called at the end of the training loop.
|
99 |
+
|
100 |
+
This is a good place to get metric results. The value returned from this
|
101 |
+
function will be returned as-is from the train() method.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
The function may return a dictionary of `Tensors`, which will be
|
105 |
+
written to logs and as TensorBoard summaries.
|
106 |
+
"""
|
107 |
+
pass
|
108 |
+
|
109 |
+
|
110 |
+
@six.add_metaclass(abc.ABCMeta)
|
111 |
+
class StandardEvaluable(runnable.AbstractEvaluable):
|
112 |
+
"""Implements the standard functionality of AbstractEvaluable APIs."""
|
113 |
+
|
114 |
+
def __init__(self, use_tf_function=True):
|
115 |
+
self.eval_use_tf_function = use_tf_function
|
116 |
+
self.eval_dataset = None
|
117 |
+
self.eval_loop_fn = None
|
118 |
+
|
119 |
+
@abc.abstractmethod
|
120 |
+
def build_eval_dataset(self):
|
121 |
+
"""Builds the evaluation datasets.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
A tf.nest-compatible structure of tf.data.Dataset or DistributedDataset.
|
125 |
+
"""
|
126 |
+
pass
|
127 |
+
|
128 |
+
def evaluate(
|
129 |
+
self, num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]:
|
130 |
+
"""See base class."""
|
131 |
+
if self.eval_dataset is None:
|
132 |
+
# Build train input dataset
|
133 |
+
self.eval_dataset = self.build_eval_dataset()
|
134 |
+
|
135 |
+
if self.eval_loop_fn is None:
|
136 |
+
eval_fn = self.eval_step
|
137 |
+
if self.eval_use_tf_function:
|
138 |
+
eval_fn = tf.function(eval_fn)
|
139 |
+
self.eval_loop_fn = utils.create_loop_fn(eval_fn)
|
140 |
+
|
141 |
+
# TODO(b/147718615): When async RPC is enabled in eager runtime, we make
|
142 |
+
# eval iterator as a class member so it doesn't get destroyed when out of
|
143 |
+
# the function scope.
|
144 |
+
self.eval_iter = tf.nest.map_structure(iter, self.eval_dataset)
|
145 |
+
|
146 |
+
self.eval_begin()
|
147 |
+
self.eval_loop_fn(self.eval_iter, num_steps)
|
148 |
+
return self.eval_end()
|
149 |
+
|
150 |
+
def eval_begin(self):
|
151 |
+
"""Called once at the beginning of the evaluation.
|
152 |
+
|
153 |
+
This is a good place to reset metrics that accumulate values over the entire
|
154 |
+
evaluation.
|
155 |
+
"""
|
156 |
+
pass
|
157 |
+
|
158 |
+
@abc.abstractmethod
|
159 |
+
def eval_step(self, iterator):
|
160 |
+
"""Implements one step of evaluation.
|
161 |
+
|
162 |
+
What a "step" consists of is up to the implementer. If using distribution
|
163 |
+
strategies, the call to this method should take place in the "cross-replica
|
164 |
+
context" for generality, to allow e.g. multiple iterator dequeues and calls
|
165 |
+
to `strategy.run`.
|
166 |
+
|
167 |
+
Args:
|
168 |
+
iterator: A tf.nest-compatible structure of tf.data Iterator or
|
169 |
+
DistributedIterator.
|
170 |
+
"""
|
171 |
+
pass
|
172 |
+
|
173 |
+
def eval_end(self) -> Optional[Dict[Text, tf.Tensor]]:
|
174 |
+
"""Called at the end of the evaluation.
|
175 |
+
|
176 |
+
This is a good place to get metric results. The value returned from this
|
177 |
+
function will be returned as-is from the evaluate() method.
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
The function may return a dictionary of `Tensors`, which will be
|
181 |
+
written to logs and as TensorBoard summaries.
|
182 |
+
"""
|
183 |
+
pass
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/common/training/utils.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Some layered modules/functions to help users writing custom training loop."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
# from __future__ import google_type_annotations
|
20 |
+
from __future__ import print_function
|
21 |
+
|
22 |
+
import abc
|
23 |
+
import inspect
|
24 |
+
import six
|
25 |
+
|
26 |
+
import tensorflow.compat.v2 as tf
|
27 |
+
|
28 |
+
|
29 |
+
def create_loop_fn(step_fn):
|
30 |
+
"""Creates a multiple steps function driven by the python while loop.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
step_fn: A function which takes `iterator` as input.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
A callable defined as the `loop_fn` defination below.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def loop_fn(iterator, num_steps, state=None, reduce_fn=None):
|
40 |
+
"""A loop function with multiple steps.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
iterator: A nested structure of tf.data `Iterator` or
|
44 |
+
`DistributedIterator`.
|
45 |
+
num_steps: The number of steps in the loop. If `num_steps==-1`, will
|
46 |
+
iterate until exausting the iterator.
|
47 |
+
state: An optional initial state before running the loop.
|
48 |
+
reduce_fn: a callable defined as `def reduce_fn(state, value)`, where
|
49 |
+
`value` is the outputs from `step_fn`.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
The updated state.
|
53 |
+
"""
|
54 |
+
try:
|
55 |
+
step = 0
|
56 |
+
# To make sure the OutOfRangeError exception can be handled well with
|
57 |
+
# async remote eager, we need to wrap the loop body in a `async_scope`.
|
58 |
+
with tf.experimental.async_scope():
|
59 |
+
while (num_steps == -1 or step < num_steps):
|
60 |
+
outputs = step_fn(iterator)
|
61 |
+
if reduce_fn is not None:
|
62 |
+
state = reduce_fn(state, outputs)
|
63 |
+
step += 1
|
64 |
+
return state
|
65 |
+
except (StopIteration, tf.errors.OutOfRangeError):
|
66 |
+
tf.experimental.async_clear_error()
|
67 |
+
return state
|
68 |
+
|
69 |
+
return loop_fn
|
70 |
+
|
71 |
+
|
72 |
+
def create_tf_while_loop_fn(step_fn):
|
73 |
+
"""Create a multiple steps function driven by tf.while_loop on the host.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
step_fn: A function which takes `iterator` as input.
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
A callable defined as the `loop_fn` defination below.
|
80 |
+
"""
|
81 |
+
|
82 |
+
@tf.function
|
83 |
+
def loop_fn(iterator, num_steps, num_acc_steps:int=1):
|
84 |
+
"""A loop function with multiple steps.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
iterator: A nested structure of tf.data `Iterator` or
|
88 |
+
`DistributedIterator`.
|
89 |
+
num_steps: The number of steps in the loop. Must be a tf.Tensor.
|
90 |
+
num_acc_steps: Number of gradient accumulation steps.
|
91 |
+
"""
|
92 |
+
if not isinstance(num_steps, tf.Tensor):
|
93 |
+
raise ValueError("`num_steps` should be an `tf.Tensor`. Python object "
|
94 |
+
"may cause retracing.")
|
95 |
+
|
96 |
+
for _ in tf.range(num_steps):
|
97 |
+
for _ in range(num_acc_steps):
|
98 |
+
step_fn(iterator)
|
99 |
+
|
100 |
+
return loop_fn
|
101 |
+
|
102 |
+
|
103 |
+
def make_distributed_dataset(strategy, dataset_or_fn, *args, **kwargs):
|
104 |
+
"""A helper function to create distributed dataset.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
strategy: An instance of `tf.distribute.Strategy`.
|
108 |
+
dataset_or_fn: A instance of `tf.data.Dataset` or a function which takes an
|
109 |
+
`tf.distribute.InputContext` as input and returns a `tf.data.Dataset`. If
|
110 |
+
it is a function, it could optionally have an argument named
|
111 |
+
`input_context` which is `tf.distribute.InputContext` argument type.
|
112 |
+
*args: The list of arguments to be passed to dataset_or_fn.
|
113 |
+
**kwargs: Any keyword arguments to be passed.
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
A distributed Dataset.
|
117 |
+
"""
|
118 |
+
if strategy is None:
|
119 |
+
strategy = tf.distribute.get_strategy()
|
120 |
+
|
121 |
+
if isinstance(dataset_or_fn, tf.data.Dataset):
|
122 |
+
return strategy.experimental_distribute_dataset(dataset_or_fn)
|
123 |
+
|
124 |
+
if not callable(dataset_or_fn):
|
125 |
+
raise ValueError("`dataset_or_fn` should be either callable or an instance "
|
126 |
+
"of `tf.data.Dataset`")
|
127 |
+
|
128 |
+
def dataset_fn(ctx):
|
129 |
+
"""Wrapped dataset function for creating distributed dataset.."""
|
130 |
+
|
131 |
+
# If `dataset_or_fn` is a function and has `input_context` as argument
|
132 |
+
# names, pass `ctx` as the value of `input_context` when calling
|
133 |
+
# `dataset_or_fn`. Otherwise `ctx` will not be used when calling
|
134 |
+
# `dataset_or_fn`.
|
135 |
+
if six.PY3:
|
136 |
+
argspec = inspect.getfullargspec(dataset_or_fn)
|
137 |
+
else:
|
138 |
+
argspec = inspect.getargspec(dataset_or_fn)
|
139 |
+
args_names = argspec.args
|
140 |
+
|
141 |
+
if "input_context" in args_names:
|
142 |
+
kwargs["input_context"] = ctx
|
143 |
+
ds = dataset_or_fn(*args, **kwargs)
|
144 |
+
return ds
|
145 |
+
|
146 |
+
return strategy.experimental_distribute_datasets_from_function(dataset_fn)
|
147 |
+
|
148 |
+
|
149 |
+
class SummaryManager(object):
|
150 |
+
"""A class manages writing summaries."""
|
151 |
+
|
152 |
+
def __init__(self,
|
153 |
+
summary_writer,
|
154 |
+
summary_fn,
|
155 |
+
global_step=None,
|
156 |
+
summary_interval=None):
|
157 |
+
"""Construct a summary manager object.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
summary_writer: A `tf.summary.SummaryWriter` instance for writing
|
161 |
+
summaries.
|
162 |
+
summary_fn: A callable defined as `def summary_fn(name, tensor,
|
163 |
+
step=None)`, which describes the summary operation.
|
164 |
+
global_step: A `tf.Variable` instance for checking the current global step
|
165 |
+
value, in case users want to save summaries every N steps.
|
166 |
+
summary_interval: An integer, indicates the minimum step interval between
|
167 |
+
two summaries.
|
168 |
+
"""
|
169 |
+
if summary_writer is not None:
|
170 |
+
self._summary_writer = summary_writer
|
171 |
+
self._enabled = True
|
172 |
+
else:
|
173 |
+
self._summary_writer = tf.summary.create_noop_writer()
|
174 |
+
self._enabled = False
|
175 |
+
self._summary_fn = summary_fn
|
176 |
+
|
177 |
+
if global_step is None:
|
178 |
+
self._global_step = tf.summary.experimental.get_step()
|
179 |
+
else:
|
180 |
+
self._global_step = global_step
|
181 |
+
|
182 |
+
if summary_interval is not None:
|
183 |
+
if self._global_step is None:
|
184 |
+
raise ValueError("`summary_interval` is not None, but no `global_step` "
|
185 |
+
"can be obtained ")
|
186 |
+
self._last_summary_step = self._global_step.numpy()
|
187 |
+
self._summary_interval = summary_interval
|
188 |
+
|
189 |
+
@property
|
190 |
+
def summary_interval(self):
|
191 |
+
return self._summary_interval
|
192 |
+
|
193 |
+
@property
|
194 |
+
def summary_writer(self):
|
195 |
+
"""Returns the underlying summary writer."""
|
196 |
+
return self._summary_writer
|
197 |
+
|
198 |
+
def flush(self):
|
199 |
+
"""Flush the underlying summary writer."""
|
200 |
+
if self._enabled:
|
201 |
+
tf.summary.flush(self._summary_writer)
|
202 |
+
|
203 |
+
def write_summaries(self, items, always_write=True):
|
204 |
+
"""Write a bulk of summaries.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
items: a dictionary of `Tensors` for writing summaries.
|
208 |
+
always_write: An optional boolean. If `True`, the manager will always
|
209 |
+
write summaries unless the summaries have been written for the same
|
210 |
+
step. Otherwise the manager will only write the summaries if the
|
211 |
+
interval between summaries are larger than `summary_interval`.
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
A boolean indicates whether the summaries are written or not.
|
215 |
+
"""
|
216 |
+
# TODO(rxsang): Support writing summaries with nested structure, so users
|
217 |
+
# can split the summaries into different directories for nicer visualization
|
218 |
+
# in Tensorboard, like train and eval metrics.
|
219 |
+
if not self._enabled:
|
220 |
+
return False
|
221 |
+
|
222 |
+
if self._summary_interval is not None:
|
223 |
+
current_step = self._global_step.numpy()
|
224 |
+
if current_step == self._last_summary_step:
|
225 |
+
return False
|
226 |
+
if not always_write and current_step < (self._last_summary_step +
|
227 |
+
self._summary_interval):
|
228 |
+
return False
|
229 |
+
self._last_summary_step = current_step
|
230 |
+
|
231 |
+
with self._summary_writer.as_default():
|
232 |
+
for name, tensor in items.items():
|
233 |
+
self._summary_fn(name, tensor, step=self._global_step)
|
234 |
+
return True
|
235 |
+
|
236 |
+
|
237 |
+
@six.add_metaclass(abc.ABCMeta)
|
238 |
+
class Trigger(object):
|
239 |
+
"""An abstract class representing a "trigger" for some event."""
|
240 |
+
|
241 |
+
@abc.abstractmethod
|
242 |
+
def __call__(self, value: float, force_trigger=False):
|
243 |
+
"""Maybe trigger the event based on the given value.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
value: the value for triggering.
|
247 |
+
force_trigger: Whether the trigger is forced triggered.
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
`True` if the trigger is triggered on the given `value`, and
|
251 |
+
`False` otherwise.
|
252 |
+
"""
|
253 |
+
|
254 |
+
@abc.abstractmethod
|
255 |
+
def reset(self):
|
256 |
+
"""Reset states in the trigger."""
|
257 |
+
|
258 |
+
|
259 |
+
class IntervalTrigger(Trigger):
|
260 |
+
"""Triggers on every fixed interval."""
|
261 |
+
|
262 |
+
def __init__(self, interval, start=0):
|
263 |
+
"""Constructs the IntervalTrigger.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
interval: The triggering interval.
|
267 |
+
start: An initial value for the trigger.
|
268 |
+
"""
|
269 |
+
self._interval = interval
|
270 |
+
self._last_trigger_value = start
|
271 |
+
|
272 |
+
def __call__(self, value, force_trigger=False):
|
273 |
+
"""Maybe trigger the event based on the given value.
|
274 |
+
|
275 |
+
Args:
|
276 |
+
value: the value for triggering.
|
277 |
+
force_trigger: If True, the trigger will be forced triggered unless the
|
278 |
+
last trigger value is equal to `value`.
|
279 |
+
|
280 |
+
Returns:
|
281 |
+
`True` if the trigger is triggered on the given `value`, and
|
282 |
+
`False` otherwise.
|
283 |
+
"""
|
284 |
+
if force_trigger and value != self._last_trigger_value:
|
285 |
+
self._last_trigger_value = value
|
286 |
+
return True
|
287 |
+
|
288 |
+
if self._interval and self._interval > 0:
|
289 |
+
if value >= self._last_trigger_value + self._interval:
|
290 |
+
self._last_trigger_value = value
|
291 |
+
return True
|
292 |
+
return False
|
293 |
+
|
294 |
+
def reset(self):
|
295 |
+
"""See base class."""
|
296 |
+
self._last_trigger_value = 0
|
297 |
+
|
298 |
+
|
299 |
+
class EpochHelper(object):
|
300 |
+
"""A Helper class to handle epochs in Customized Training Loop."""
|
301 |
+
|
302 |
+
def __init__(self, epoch_steps, global_step):
|
303 |
+
"""Constructs the EpochHelper.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
epoch_steps: An integer indicates how many steps in an epoch.
|
307 |
+
global_step: A `tf.Variable` instance indicates the current global step.
|
308 |
+
"""
|
309 |
+
self._epoch_steps = epoch_steps
|
310 |
+
self._global_step = global_step
|
311 |
+
self._current_epoch = None
|
312 |
+
self._epoch_start_step = None
|
313 |
+
self._in_epoch = False
|
314 |
+
|
315 |
+
def epoch_begin(self):
|
316 |
+
"""Returns whether a new epoch should begin."""
|
317 |
+
if self._in_epoch:
|
318 |
+
return False
|
319 |
+
current_step = self._global_step.numpy()
|
320 |
+
self._epoch_start_step = current_step
|
321 |
+
self._current_epoch = current_step // self._epoch_steps
|
322 |
+
self._in_epoch = True
|
323 |
+
return True
|
324 |
+
|
325 |
+
def epoch_end(self):
|
326 |
+
"""Returns whether the current epoch should end."""
|
327 |
+
if not self._in_epoch:
|
328 |
+
raise ValueError("`epoch_end` can only be called inside an epoch")
|
329 |
+
current_step = self._global_step.numpy()
|
330 |
+
epoch = current_step // self._epoch_steps
|
331 |
+
|
332 |
+
if epoch > self._current_epoch:
|
333 |
+
self._in_epoch = False
|
334 |
+
return True
|
335 |
+
return False
|
336 |
+
|
337 |
+
@property
|
338 |
+
def batch_index(self):
|
339 |
+
"""Index of the next batch within the current epoch."""
|
340 |
+
return self._global_step.numpy() - self._epoch_start_step
|
341 |
+
|
342 |
+
@property
|
343 |
+
def current_epoch(self):
|
344 |
+
return self._current_epoch
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/__init__.py
ADDED
File without changes
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/common.py
ADDED
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
# List of changes:
|
16 |
+
# - added Habana specific flags
|
17 |
+
# - added helper function for prefetching
|
18 |
+
|
19 |
+
# Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
|
20 |
+
|
21 |
+
"""Common util functions and classes used by both keras cifar and imagenet."""
|
22 |
+
from __future__ import absolute_import
|
23 |
+
from __future__ import division
|
24 |
+
from __future__ import print_function
|
25 |
+
|
26 |
+
import os
|
27 |
+
|
28 |
+
from absl import flags
|
29 |
+
import tensorflow as tf
|
30 |
+
|
31 |
+
import tensorflow_model_optimization as tfmot
|
32 |
+
from TensorFlow.utils.flags import core as flags_core
|
33 |
+
from TensorFlow.utils.misc import keras_utils
|
34 |
+
from TensorFlow.utils.flags._conventions import help_wrap
|
35 |
+
from habana_frameworks.tensorflow.multinode_helpers import comm_size
|
36 |
+
from TensorFlow.common.tb_utils import (
|
37 |
+
ExamplesPerSecondKerasHook, TensorBoardWithHParamsV1)
|
38 |
+
|
39 |
+
from TensorFlow.computer_vision.common import imagenet_preprocessing
|
40 |
+
from TensorFlow.computer_vision.Resnets.utils.optimizers.keras import lars_optimizer
|
41 |
+
from TensorFlow.computer_vision.Resnets.utils.optimizers.keras import lars_util
|
42 |
+
|
43 |
+
try:
|
44 |
+
import horovod.tensorflow as hvd
|
45 |
+
except ImportError:
|
46 |
+
hvd = None
|
47 |
+
|
48 |
+
FLAGS = flags.FLAGS
|
49 |
+
BASE_LEARNING_RATE = 0.1 # This matches Jing's version.
|
50 |
+
TRAIN_TOP_1 = 'training_accuracy_top_1'
|
51 |
+
LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
|
52 |
+
(1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
|
53 |
+
]
|
54 |
+
|
55 |
+
global_batch_size = None
|
56 |
+
def get_global_batch_size(batch_size, num_acc_steps:int=1):
|
57 |
+
global global_batch_size
|
58 |
+
if global_batch_size is None:
|
59 |
+
global_batch_size = batch_size
|
60 |
+
if hvd is not None and hvd.is_initialized():
|
61 |
+
global_batch_size = batch_size * comm_size()
|
62 |
+
global_batch_size = global_batch_size * num_acc_steps
|
63 |
+
return global_batch_size
|
64 |
+
|
65 |
+
class PiecewiseConstantDecayWithWarmup(
|
66 |
+
tf.keras.optimizers.schedules.LearningRateSchedule):
|
67 |
+
"""Piecewise constant decay with warmup schedule."""
|
68 |
+
|
69 |
+
def __init__(self, batch_size, epoch_size, warmup_epochs, boundaries,
|
70 |
+
multipliers, compute_lr_on_cpu=False, name=None):
|
71 |
+
super(PiecewiseConstantDecayWithWarmup, self).__init__()
|
72 |
+
if len(boundaries) != len(multipliers) - 1:
|
73 |
+
raise ValueError('The length of boundaries must be 1 less than the '
|
74 |
+
'length of multipliers')
|
75 |
+
|
76 |
+
base_lr_batch_size = 256
|
77 |
+
steps_per_epoch = epoch_size // batch_size
|
78 |
+
|
79 |
+
self.rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
|
80 |
+
self.step_boundaries = [float(steps_per_epoch) * x for x in boundaries]
|
81 |
+
self.lr_values = [self.rescaled_lr * m for m in multipliers]
|
82 |
+
self.warmup_steps = warmup_epochs * steps_per_epoch
|
83 |
+
self.compute_lr_on_cpu = compute_lr_on_cpu
|
84 |
+
self.name = name
|
85 |
+
|
86 |
+
self.learning_rate_ops_cache = {}
|
87 |
+
|
88 |
+
def __call__(self, step):
|
89 |
+
if tf.executing_eagerly():
|
90 |
+
return self._get_learning_rate(step)
|
91 |
+
|
92 |
+
# In an eager function or graph, the current implementation of optimizer
|
93 |
+
# repeatedly call and thus create ops for the learning rate schedule. To
|
94 |
+
# avoid this, we cache the ops if not executing eagerly.
|
95 |
+
graph = tf.compat.v1.get_default_graph()
|
96 |
+
if graph not in self.learning_rate_ops_cache:
|
97 |
+
if self.compute_lr_on_cpu:
|
98 |
+
with tf.device('/device:CPU:0'):
|
99 |
+
self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
|
100 |
+
else:
|
101 |
+
self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
|
102 |
+
return self.learning_rate_ops_cache[graph]
|
103 |
+
|
104 |
+
def _get_learning_rate(self, step):
|
105 |
+
"""Compute learning rate at given step."""
|
106 |
+
with tf.compat.v1.name_scope(self.name, 'PiecewiseConstantDecayWithWarmup',
|
107 |
+
[self.rescaled_lr, self.step_boundaries,
|
108 |
+
self.lr_values, self.warmup_steps,
|
109 |
+
self.compute_lr_on_cpu]):
|
110 |
+
def warmup_lr(step):
|
111 |
+
return self.rescaled_lr * (
|
112 |
+
tf.cast(step, tf.float32) / tf.cast(self.warmup_steps, tf.float32))
|
113 |
+
def piecewise_lr(step):
|
114 |
+
return tf.compat.v1.train.piecewise_constant(
|
115 |
+
step, self.step_boundaries, self.lr_values)
|
116 |
+
return tf.cond(step < self.warmup_steps,
|
117 |
+
lambda: warmup_lr(step),
|
118 |
+
lambda: piecewise_lr(step))
|
119 |
+
|
120 |
+
def get_config(self):
|
121 |
+
return {
|
122 |
+
'rescaled_lr': self.rescaled_lr,
|
123 |
+
'step_boundaries': self.step_boundaries,
|
124 |
+
'lr_values': self.lr_values,
|
125 |
+
'warmup_steps': self.warmup_steps,
|
126 |
+
'compute_lr_on_cpu': self.compute_lr_on_cpu,
|
127 |
+
'name': self.name
|
128 |
+
}
|
129 |
+
|
130 |
+
|
131 |
+
def get_lr_schedule(flags_obj, global_batch_size, train_steps,mlperf_mlloger,mlperf_mllog):
|
132 |
+
lr_schedule = None
|
133 |
+
|
134 |
+
if flags_obj.lr_schedule == 'polynomial':
|
135 |
+
lr_schedule = lars_util.PolynomialDecayWithWarmup(
|
136 |
+
batch_size=global_batch_size,
|
137 |
+
steps_per_epoch=imagenet_preprocessing.NUM_IMAGES['train'] // global_batch_size,
|
138 |
+
train_steps=train_steps,
|
139 |
+
initial_learning_rate=flags_obj.base_learning_rate,
|
140 |
+
end_learning_rate=flags_obj.end_learning_rate,
|
141 |
+
warmup_epochs=flags_obj.warmup_epochs,
|
142 |
+
mlperf_mlloger=mlperf_mlloger,
|
143 |
+
mlperf_mllog=mlperf_mllog)
|
144 |
+
elif flags_obj.lr_schedule == 'piecewise':
|
145 |
+
lr_schedule = PiecewiseConstantDecayWithWarmup(
|
146 |
+
batch_size=global_batch_size,
|
147 |
+
epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
|
148 |
+
warmup_epochs=LR_SCHEDULE[0][1],
|
149 |
+
boundaries=list(p[1] for p in LR_SCHEDULE[1:]),
|
150 |
+
multipliers=list(p[0] for p in LR_SCHEDULE),
|
151 |
+
compute_lr_on_cpu=False)
|
152 |
+
elif flags_obj.lr_schedule == 'constant':
|
153 |
+
lr_schedule = flags_obj.base_learning_rate * global_batch_size / 256
|
154 |
+
else:
|
155 |
+
raise ValueError('lr_schedule "%s" is unknown.' % flags_obj.lr_schedule)
|
156 |
+
|
157 |
+
return lr_schedule
|
158 |
+
|
159 |
+
|
160 |
+
def get_optimizer(flags_obj, global_batch_size, train_steps,mlperf_mlloger,mlperf_mllog):
|
161 |
+
optimizer = None
|
162 |
+
lr_schedule = get_lr_schedule(flags_obj, global_batch_size, train_steps,mlperf_mlloger,mlperf_mllog)
|
163 |
+
|
164 |
+
if flags_obj.optimizer == 'SGD':
|
165 |
+
# The learning_rate is overwritten at the beginning of each step by callback.
|
166 |
+
optimizer = tf.keras.optimizers.legacy.SGD(learning_rate=lr_schedule, momentum=0.9)
|
167 |
+
|
168 |
+
elif flags_obj.optimizer == 'LARS':
|
169 |
+
optimizer = lars_optimizer.LARSOptimizer(
|
170 |
+
learning_rate=lr_schedule,
|
171 |
+
momentum=flags_obj.momentum,
|
172 |
+
weight_decay=flags_obj.weight_decay,
|
173 |
+
skip_list=['batch_normalization', 'bias', 'bn'],
|
174 |
+
epsilon=flags_obj.lars_epsilon)
|
175 |
+
else:
|
176 |
+
raise ValueError('optimizer "%s" is unknown.' % flags_obj.optimizer)
|
177 |
+
|
178 |
+
return optimizer
|
179 |
+
|
180 |
+
|
181 |
+
def get_callbacks(
|
182 |
+
steps_per_epoch,
|
183 |
+
pruning_method=None,
|
184 |
+
enable_checkpoint_and_export=False,
|
185 |
+
model_dir=None):
|
186 |
+
"""Returns common callbacks."""
|
187 |
+
time_callback = keras_utils.TimeHistory(
|
188 |
+
FLAGS.batch_size,
|
189 |
+
FLAGS.log_steps,
|
190 |
+
logdir=FLAGS.model_dir if FLAGS.enable_tensorboard else None)
|
191 |
+
callbacks = [time_callback]
|
192 |
+
|
193 |
+
if FLAGS.enable_tensorboard:
|
194 |
+
callbacks += [
|
195 |
+
TensorBoardWithHParamsV1(
|
196 |
+
FLAGS.flag_values_dict(),
|
197 |
+
log_dir=FLAGS.model_dir,
|
198 |
+
update_freq=FLAGS.log_steps),
|
199 |
+
ExamplesPerSecondKerasHook(
|
200 |
+
output_dir=FLAGS.model_dir,
|
201 |
+
every_n_steps=FLAGS.log_steps)
|
202 |
+
]
|
203 |
+
|
204 |
+
if FLAGS.profile_steps:
|
205 |
+
profiler_callback = keras_utils.get_profiler_callback(
|
206 |
+
FLAGS.model_dir,
|
207 |
+
FLAGS.profile_steps,
|
208 |
+
FLAGS.enable_tensorboard,
|
209 |
+
steps_per_epoch)
|
210 |
+
callbacks.append(profiler_callback)
|
211 |
+
|
212 |
+
is_pruning_enabled = pruning_method is not None
|
213 |
+
|
214 |
+
if is_pruning_enabled:
|
215 |
+
callbacks.append(tfmot.sparsity.keras.UpdatePruningStep())
|
216 |
+
if model_dir is not None:
|
217 |
+
callbacks.append(tfmot.sparsity.keras.PruningSummaries(
|
218 |
+
log_dir=model_dir, profile_batch=0))
|
219 |
+
|
220 |
+
if enable_checkpoint_and_export:
|
221 |
+
if model_dir is not None:
|
222 |
+
ckpt_full_path = os.path.join(model_dir, 'model.ckpt-{epoch:04d}')
|
223 |
+
callbacks.append(
|
224 |
+
tf.keras.callbacks.ModelCheckpoint(ckpt_full_path,
|
225 |
+
save_weights_only=True))
|
226 |
+
return callbacks
|
227 |
+
|
228 |
+
|
229 |
+
def build_stats(history, eval_output, callbacks):
|
230 |
+
"""Normalizes and returns dictionary of stats.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
history: Results of the training step. Supports both categorical_accuracy
|
234 |
+
and sparse_categorical_accuracy.
|
235 |
+
eval_output: Output of the eval step. Assumes first value is eval_loss and
|
236 |
+
second value is accuracy_top_1.
|
237 |
+
callbacks: a list of callbacks which might include a time history callback
|
238 |
+
used during keras.fit.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
Dictionary of normalized results.
|
242 |
+
"""
|
243 |
+
stats = {}
|
244 |
+
if eval_output:
|
245 |
+
stats['accuracy_top_1'] = float(eval_output[1])
|
246 |
+
stats['eval_loss'] = float(eval_output[0])
|
247 |
+
if history and history.history:
|
248 |
+
train_hist = history.history
|
249 |
+
# Gets final loss from training.
|
250 |
+
stats['loss'] = float(train_hist['loss'][-1])
|
251 |
+
# Gets top_1 training accuracy.
|
252 |
+
if 'categorical_accuracy' in train_hist:
|
253 |
+
stats[TRAIN_TOP_1] = float(train_hist['categorical_accuracy'][-1])
|
254 |
+
elif 'sparse_categorical_accuracy' in train_hist:
|
255 |
+
stats[TRAIN_TOP_1] = float(train_hist['sparse_categorical_accuracy'][-1])
|
256 |
+
elif 'accuracy' in train_hist:
|
257 |
+
stats[TRAIN_TOP_1] = float(train_hist['accuracy'][-1])
|
258 |
+
|
259 |
+
if not callbacks:
|
260 |
+
return stats
|
261 |
+
|
262 |
+
# Look for the time history callback which was used during keras.fit
|
263 |
+
for callback in callbacks:
|
264 |
+
if isinstance(callback, keras_utils.TimeHistory):
|
265 |
+
timestamp_log = callback.timestamp_log
|
266 |
+
stats['step_timestamp_log'] = timestamp_log
|
267 |
+
stats['train_finish_time'] = callback.train_finish_time
|
268 |
+
if callback.epoch_runtime_log:
|
269 |
+
stats['avg_exp_per_second'] = callback.average_examples_per_second
|
270 |
+
|
271 |
+
return stats
|
272 |
+
|
273 |
+
|
274 |
+
def define_keras_flags(
|
275 |
+
dynamic_loss_scale=True,
|
276 |
+
model=False,
|
277 |
+
optimizer=False,
|
278 |
+
pretrained_filepath=False):
|
279 |
+
"""Define flags for Keras models."""
|
280 |
+
flags_core.define_base(clean=True, num_gpu=True, run_eagerly=True,
|
281 |
+
train_epochs=True, epochs_between_evals=True,
|
282 |
+
distribution_strategy=True)
|
283 |
+
flags_core.define_performance(num_parallel_calls=False,
|
284 |
+
synthetic_data=True,
|
285 |
+
dtype=True,
|
286 |
+
all_reduce_alg=True,
|
287 |
+
num_packs=True,
|
288 |
+
tf_gpu_thread_mode=True,
|
289 |
+
datasets_num_private_threads=True,
|
290 |
+
dynamic_loss_scale=dynamic_loss_scale,
|
291 |
+
loss_scale=True,
|
292 |
+
fp16_implementation=True,
|
293 |
+
tf_data_experimental_slack=True,
|
294 |
+
enable_xla=True,
|
295 |
+
dataset_cache=True)
|
296 |
+
flags_core.define_image()
|
297 |
+
flags_core.define_benchmark()
|
298 |
+
flags_core.define_distribution()
|
299 |
+
flags.adopt_module_key_flags(flags_core)
|
300 |
+
|
301 |
+
flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
|
302 |
+
flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
|
303 |
+
# TODO(b/135607288): Remove this flag once we understand the root cause of
|
304 |
+
# slowdown when setting the learning phase in Keras backend.
|
305 |
+
flags.DEFINE_boolean(
|
306 |
+
name='set_learning_phase_to_train', default=True,
|
307 |
+
help='If skip eval, also set Keras learning phase to 1 (training).')
|
308 |
+
flags.DEFINE_boolean(
|
309 |
+
name='explicit_gpu_placement', default=False,
|
310 |
+
help='If not using distribution strategy, explicitly set device scope '
|
311 |
+
'for the Keras training loop.')
|
312 |
+
flags.DEFINE_boolean(name='use_trivial_model', default=False,
|
313 |
+
help='Whether to use a trivial Keras model.')
|
314 |
+
flags.DEFINE_boolean(name='report_accuracy_metrics', default=True,
|
315 |
+
help='Report metrics during training and evaluation.')
|
316 |
+
flags.DEFINE_boolean(name='use_tensor_lr', default=True,
|
317 |
+
help='Use learning rate tensor instead of a callback.')
|
318 |
+
flags.DEFINE_string(
|
319 |
+
name='lr_schedule',
|
320 |
+
default='piecewise',
|
321 |
+
help='learning rate schedule. '
|
322 |
+
'"piecewise" for PiecewiseConstantDecayWithWarmup, '
|
323 |
+
'"polynomial" for PolynomialDecayWithWarmup, '
|
324 |
+
'and "constant" for static learning rate.')
|
325 |
+
flags.DEFINE_boolean(
|
326 |
+
name='enable_tensorboard', default=False,
|
327 |
+
help='Whether to enable Tensorboard callback.')
|
328 |
+
flags.DEFINE_integer(
|
329 |
+
name='train_steps', default=None,
|
330 |
+
help='The number of steps to run for training. If it is larger than '
|
331 |
+
'# batches per epoch, then use # batches per epoch. This flag will be '
|
332 |
+
'ignored if train_epochs is set to be larger than 1. ')
|
333 |
+
flags.DEFINE_string(
|
334 |
+
name='profile_steps', default=None,
|
335 |
+
help='Save profiling data to model dir at given range of global steps. The '
|
336 |
+
'value must be a comma separated pair of positive integers, specifying '
|
337 |
+
'the first and last step to profile. For example, "--profile_steps=2,4" '
|
338 |
+
'triggers the profiler to process 3 steps, starting from the 2nd step. '
|
339 |
+
'Note that profiler has a non-trivial performance overhead, and the '
|
340 |
+
'output file can be gigantic if profiling many steps.')
|
341 |
+
flags.DEFINE_boolean(
|
342 |
+
name='batchnorm_spatial_persistent', default=True,
|
343 |
+
help='Enable the spacial persistent mode for CuDNN batch norm kernel.')
|
344 |
+
flags.DEFINE_boolean(
|
345 |
+
name='enable_get_next_as_optional', default=False,
|
346 |
+
help='Enable get_next_as_optional behavior in DistributedIterator.')
|
347 |
+
flags.DEFINE_boolean(
|
348 |
+
name='enable_checkpoint_and_export', default=False,
|
349 |
+
help='Whether to enable a checkpoint callback and export the savedmodel.')
|
350 |
+
flags.DEFINE_string(
|
351 |
+
name='tpu', default='', help='TPU address to connect to.')
|
352 |
+
flags.DEFINE_integer(
|
353 |
+
name='steps_per_loop',
|
354 |
+
default=500,
|
355 |
+
help='Number of steps per training loop. Only training step happens '
|
356 |
+
'inside the loop. Callbacks will not be called inside. Will be capped at '
|
357 |
+
'steps per epoch.')
|
358 |
+
flags.DEFINE_boolean(
|
359 |
+
name='use_tf_while_loop',
|
360 |
+
default=True,
|
361 |
+
help='Whether to build a tf.while_loop inside the training loop on the '
|
362 |
+
'host. Setting it to True is critical to have peak performance on '
|
363 |
+
'TPU.')
|
364 |
+
flags.DEFINE_string(
|
365 |
+
'optimizer', 'SGD',
|
366 |
+
'Name of optimizer preset. (SGD, LARS)')
|
367 |
+
flags.DEFINE_float(
|
368 |
+
'label_smoothing', 0.0,
|
369 |
+
'Apply label smoothing to the loss. This applies to '
|
370 |
+
'categorical_cross_entropy; when label_smoothing > 0, '
|
371 |
+
'one-hot encoding is used for the labels.')
|
372 |
+
flags.DEFINE_integer('eval_offset_epochs', 0,
|
373 |
+
'Epoch number of the first evaluation.')
|
374 |
+
|
375 |
+
if model:
|
376 |
+
flags.DEFINE_string('model', 'resnet50_v1.5',
|
377 |
+
'Name of model preset. (mobilenet, resnet50_v1.5)')
|
378 |
+
if optimizer:
|
379 |
+
# TODO(kimjaehong): Replace as general hyper-params not only for mobilenet.
|
380 |
+
flags.DEFINE_float('initial_learning_rate_per_sample', 0.00007,
|
381 |
+
'Initial value of learning rate per sample for '
|
382 |
+
'mobilenet_default.')
|
383 |
+
flags.DEFINE_float('lr_decay_factor', 0.94,
|
384 |
+
'Learning rate decay factor for mobilenet_default.')
|
385 |
+
flags.DEFINE_float('num_epochs_per_decay', 2.5,
|
386 |
+
'Number of epochs per decay for mobilenet_default.')
|
387 |
+
if pretrained_filepath:
|
388 |
+
flags.DEFINE_string('pretrained_filepath', '',
|
389 |
+
'Pretrained file path.')
|
390 |
+
flags.DEFINE_float('target_accuracy', None,
|
391 |
+
'Target eval accuracy, after which training will stop.')
|
392 |
+
|
393 |
+
|
394 |
+
def get_synth_data(height, width, num_channels, num_classes, dtype):
|
395 |
+
"""Creates a set of synthetic random data.
|
396 |
+
|
397 |
+
Args:
|
398 |
+
height: Integer height that will be used to create a fake image tensor.
|
399 |
+
width: Integer width that will be used to create a fake image tensor.
|
400 |
+
num_channels: Integer depth that will be used to create a fake image tensor.
|
401 |
+
num_classes: Number of classes that should be represented in the fake labels
|
402 |
+
tensor
|
403 |
+
dtype: Data type for features/images.
|
404 |
+
|
405 |
+
Returns:
|
406 |
+
A tuple of tensors representing the inputs and labels.
|
407 |
+
|
408 |
+
"""
|
409 |
+
# Synthetic input should be within [0, 255].
|
410 |
+
inputs = tf.random.truncated_normal([height, width, num_channels],
|
411 |
+
dtype=dtype,
|
412 |
+
mean=127,
|
413 |
+
stddev=60,
|
414 |
+
name='synthetic_inputs')
|
415 |
+
labels = tf.random.uniform([1],
|
416 |
+
minval=0,
|
417 |
+
maxval=num_classes - 1,
|
418 |
+
dtype=tf.int32,
|
419 |
+
name='synthetic_labels')
|
420 |
+
return inputs, labels
|
421 |
+
|
422 |
+
|
423 |
+
def define_pruning_flags():
|
424 |
+
"""Define flags for pruning methods."""
|
425 |
+
flags.DEFINE_string('pruning_method', None,
|
426 |
+
'Pruning method.'
|
427 |
+
'None (no pruning) or polynomial_decay.')
|
428 |
+
flags.DEFINE_float('pruning_initial_sparsity', 0.0,
|
429 |
+
'Initial sparsity for pruning.')
|
430 |
+
flags.DEFINE_float('pruning_final_sparsity', 0.5,
|
431 |
+
'Final sparsity for pruning.')
|
432 |
+
flags.DEFINE_integer('pruning_begin_step', 0,
|
433 |
+
'Begin step for pruning.')
|
434 |
+
flags.DEFINE_integer('pruning_end_step', 100000,
|
435 |
+
'End step for pruning.')
|
436 |
+
flags.DEFINE_integer('pruning_frequency', 100,
|
437 |
+
'Frequency for pruning.')
|
438 |
+
|
439 |
+
|
440 |
+
# Map string to TensorFlow dtype
|
441 |
+
DTYPE_MAP = {
|
442 |
+
"fp16": tf.float16,
|
443 |
+
"fp32": tf.float32,
|
444 |
+
"bf16": tf.bfloat16,
|
445 |
+
}
|
446 |
+
|
447 |
+
|
448 |
+
def get_dl_type(flags_obj):
|
449 |
+
return DTYPE_MAP[flags_obj.data_loader_image_type]
|
450 |
+
|
451 |
+
|
452 |
+
def define_habana_flags():
|
453 |
+
"""Define HABANA specific flags."""
|
454 |
+
flags.DEFINE_enum(name="data_loader_image_type", short_name="dlit", default="fp32",
|
455 |
+
enum_values=DTYPE_MAP.keys(),
|
456 |
+
help="data loader images output type")
|
457 |
+
flags.DEFINE_boolean(name='experimental_preloading', default=False,
|
458 |
+
help=help_wrap("Support for data.experimental.prefetch_to_device TensorFlow operator."
|
459 |
+
"This feature is experimental and works only with single node."
|
460 |
+
"See `-x` switch for `demo_resnet50` script."))
|
461 |
+
flags.DEFINE_boolean("use_horovod", default=False, help="Use horovod")
|
462 |
+
flags.DEFINE_boolean("modeling", default=False, help="Write graph to graph.pbtxt in model dir and export meta graph when enabled.")
|
463 |
+
|
464 |
+
|
465 |
+
def get_synth_input_fn(height, width, num_channels, num_classes,
|
466 |
+
dtype=tf.float32, drop_remainder=True,
|
467 |
+
experimental_preloading=False):
|
468 |
+
"""Returns an input function that returns a dataset with random data.
|
469 |
+
|
470 |
+
This input_fn returns a data set that iterates over a set of random data and
|
471 |
+
bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
|
472 |
+
copy is still included. This used to find the upper throughput bound when
|
473 |
+
tuning the full input pipeline.
|
474 |
+
|
475 |
+
Args:
|
476 |
+
height: Integer height that will be used to create a fake image tensor.
|
477 |
+
width: Integer width that will be used to create a fake image tensor.
|
478 |
+
num_channels: Integer depth that will be used to create a fake image tensor.
|
479 |
+
num_classes: Number of classes that should be represented in the fake labels
|
480 |
+
tensor
|
481 |
+
dtype: Data type for features/images.
|
482 |
+
drop_remainder: A boolean indicates whether to drop the remainder of the
|
483 |
+
batches. If True, the batch dimension will be static.
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
An input_fn that can be used in place of a real one to return a dataset
|
487 |
+
that can be used for iteration.
|
488 |
+
"""
|
489 |
+
# pylint: disable=unused-argument
|
490 |
+
def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
|
491 |
+
"""Returns dataset filled with random data."""
|
492 |
+
inputs, labels = get_synth_data(height=height,
|
493 |
+
width=width,
|
494 |
+
num_channels=num_channels,
|
495 |
+
num_classes=num_classes,
|
496 |
+
dtype=dtype)
|
497 |
+
# Cast to float32 for Keras model.
|
498 |
+
labels = tf.cast(labels, dtype=tf.float32)
|
499 |
+
data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
|
500 |
+
|
501 |
+
# `drop_remainder` will make dataset produce outputs with known shapes.
|
502 |
+
data = data.batch(batch_size, drop_remainder=drop_remainder)
|
503 |
+
if experimental_preloading:
|
504 |
+
device = "/device:HPU:0"
|
505 |
+
with tf.device(device):
|
506 |
+
data = data.apply(tf.data.experimental.prefetch_to_device(device))
|
507 |
+
else:
|
508 |
+
data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
|
509 |
+
return data
|
510 |
+
|
511 |
+
return input_fn
|
512 |
+
|
513 |
+
|
514 |
+
def set_cudnn_batchnorm_mode():
|
515 |
+
"""Set CuDNN batchnorm mode for better performance.
|
516 |
+
|
517 |
+
Note: Spatial Persistent mode may lead to accuracy losses for certain
|
518 |
+
models.
|
519 |
+
"""
|
520 |
+
if FLAGS.batchnorm_spatial_persistent:
|
521 |
+
os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1'
|
522 |
+
else:
|
523 |
+
os.environ.pop('TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT', None)
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/mlp_log.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 MLBenchmark Group. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Convenience function for logging compliance tags to stdout.
|
16 |
+
"""
|
17 |
+
|
18 |
+
from __future__ import absolute_import
|
19 |
+
from __future__ import division
|
20 |
+
from __future__ import print_function
|
21 |
+
|
22 |
+
|
23 |
+
import inspect
|
24 |
+
import json
|
25 |
+
import logging
|
26 |
+
import os
|
27 |
+
import re
|
28 |
+
import sys
|
29 |
+
import time
|
30 |
+
|
31 |
+
try:
|
32 |
+
import horovod.tensorflow as hvd
|
33 |
+
except ImportError:
|
34 |
+
hvd = None
|
35 |
+
|
36 |
+
def get_mllog_mlloger(output_dir=None):
|
37 |
+
from mlperf_logging import mllog
|
38 |
+
|
39 |
+
if hvd is not None and hvd.is_initialized():
|
40 |
+
str_hvd_rank = str(hvd.rank())
|
41 |
+
else:
|
42 |
+
str_hvd_rank = "0"
|
43 |
+
mllogger = mllog.get_mllogger()
|
44 |
+
mllogger.propagate = False
|
45 |
+
mllog.propagate=False
|
46 |
+
if output_dir is None: output_dir='./log'
|
47 |
+
filenames = os.path.normpath(output_dir) + "/result_rank_" + str_hvd_rank + ".txt"
|
48 |
+
mllog.config(filename=filenames)
|
49 |
+
workername = "worker" + str_hvd_rank
|
50 |
+
mllog.config(
|
51 |
+
default_namespace = workername,
|
52 |
+
default_stack_offset = 1,
|
53 |
+
default_clear_line = False,
|
54 |
+
root_dir = os.path.normpath(
|
55 |
+
os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "..")))
|
56 |
+
|
57 |
+
return mllogger, mllog
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/mlperf_variable_map.json
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"conv1/kernel": "conv0_weight",
|
3 |
+
"bn_conv1/gamma": "bn0_gamma",
|
4 |
+
"bn_conv1/beta": "bn0_beta",
|
5 |
+
"res2a_branch2a/kernel": "stage1_unit1_conv1_weight",
|
6 |
+
"bn2a_branch2a/gamma": "stage1_unit1_bn1_gamma",
|
7 |
+
"bn2a_branch2a/beta": "stage1_unit1_bn1_beta",
|
8 |
+
"res2a_branch2b/kernel": "stage1_unit1_conv2_weight",
|
9 |
+
"bn2a_branch2b/gamma": "stage1_unit1_bn2_gamma",
|
10 |
+
"bn2a_branch2b/beta": "stage1_unit1_bn2_beta",
|
11 |
+
"res2a_branch2c/kernel": "stage1_unit1_conv3_weight",
|
12 |
+
"bn2a_branch2c/gamma": "stage1_unit1_bn3_gamma",
|
13 |
+
"bn2a_branch2c/beta": "stage1_unit1_bn3_beta",
|
14 |
+
"res2a_branch1/kernel": "stage1_unit1_conv1sc_weight",
|
15 |
+
"bn2a_branch1/gamma": "stage1_unit1_bnsc_gamma",
|
16 |
+
"bn2a_branch1/beta": "stage1_unit1_bnsc_beta",
|
17 |
+
"res2b_branch2a/kernel": "stage1_unit2_conv1_weight",
|
18 |
+
"bn2b_branch2a/gamma": "stage1_unit2_bn1_gamma",
|
19 |
+
"bn2b_branch2a/beta": "stage1_unit2_bn1_beta",
|
20 |
+
"res2b_branch2b/kernel": "stage1_unit2_conv2_weight",
|
21 |
+
"bn2b_branch2b/gamma": "stage1_unit2_bn2_gamma",
|
22 |
+
"bn2b_branch2b/beta": "stage1_unit2_bn2_beta",
|
23 |
+
"res2b_branch2c/kernel": "stage1_unit2_conv3_weight",
|
24 |
+
"bn2b_branch2c/gamma": "stage1_unit2_bn3_gamma",
|
25 |
+
"bn2b_branch2c/beta": "stage1_unit2_bn3_beta",
|
26 |
+
"res2c_branch2a/kernel": "stage1_unit3_conv1_weight",
|
27 |
+
"bn2c_branch2a/gamma": "stage1_unit3_bn1_gamma",
|
28 |
+
"bn2c_branch2a/beta": "stage1_unit3_bn1_beta",
|
29 |
+
"res2c_branch2b/kernel": "stage1_unit3_conv2_weight",
|
30 |
+
"bn2c_branch2b/gamma": "stage1_unit3_bn2_gamma",
|
31 |
+
"bn2c_branch2b/beta": "stage1_unit3_bn2_beta",
|
32 |
+
"res2c_branch2c/kernel": "stage1_unit3_conv3_weight",
|
33 |
+
"bn2c_branch2c/gamma": "stage1_unit3_bn3_gamma",
|
34 |
+
"bn2c_branch2c/beta": "stage1_unit3_bn3_beta",
|
35 |
+
"res3a_branch2a/kernel": "stage2_unit1_conv1_weight",
|
36 |
+
"bn3a_branch2a/gamma": "stage2_unit1_bn1_gamma",
|
37 |
+
"bn3a_branch2a/beta": "stage2_unit1_bn1_beta",
|
38 |
+
"res3a_branch2b/kernel": "stage2_unit1_conv2_weight",
|
39 |
+
"bn3a_branch2b/gamma": "stage2_unit1_bn2_gamma",
|
40 |
+
"bn3a_branch2b/beta": "stage2_unit1_bn2_beta",
|
41 |
+
"res3a_branch2c/kernel": "stage2_unit1_conv3_weight",
|
42 |
+
"bn3a_branch2c/gamma": "stage2_unit1_bn3_gamma",
|
43 |
+
"bn3a_branch2c/beta": "stage2_unit1_bn3_beta",
|
44 |
+
"res3a_branch1/kernel": "stage2_unit1_conv1sc_weight",
|
45 |
+
"bn3a_branch1/gamma": "stage2_unit1_bnsc_gamma",
|
46 |
+
"bn3a_branch1/beta": "stage2_unit1_bnsc_beta",
|
47 |
+
"res3b_branch2a/kernel": "stage2_unit2_conv1_weight",
|
48 |
+
"bn3b_branch2a/gamma": "stage2_unit2_bn1_gamma",
|
49 |
+
"bn3b_branch2a/beta": "stage2_unit2_bn1_beta",
|
50 |
+
"res3b_branch2b/kernel": "stage2_unit2_conv2_weight",
|
51 |
+
"bn3b_branch2b/gamma": "stage2_unit2_bn2_gamma",
|
52 |
+
"bn3b_branch2b/beta": "stage2_unit2_bn2_beta",
|
53 |
+
"res3b_branch2c/kernel": "stage2_unit2_conv3_weight",
|
54 |
+
"bn3b_branch2c/gamma": "stage2_unit2_bn3_gamma",
|
55 |
+
"bn3b_branch2c/beta": "stage2_unit2_bn3_beta",
|
56 |
+
"res3c_branch2a/kernel": "stage2_unit3_conv1_weight",
|
57 |
+
"bn3c_branch2a/gamma": "stage2_unit3_bn1_gamma",
|
58 |
+
"bn3c_branch2a/beta": "stage2_unit3_bn1_beta",
|
59 |
+
"res3c_branch2b/kernel": "stage2_unit3_conv2_weight",
|
60 |
+
"bn3c_branch2b/gamma": "stage2_unit3_bn2_gamma",
|
61 |
+
"bn3c_branch2b/beta": "stage2_unit3_bn2_beta",
|
62 |
+
"res3c_branch2c/kernel": "stage2_unit3_conv3_weight",
|
63 |
+
"bn3c_branch2c/gamma": "stage2_unit3_bn3_gamma",
|
64 |
+
"bn3c_branch2c/beta": "stage2_unit3_bn3_beta",
|
65 |
+
"res3d_branch2a/kernel": "stage2_unit4_conv1_weight",
|
66 |
+
"bn3d_branch2a/gamma": "stage2_unit4_bn1_gamma",
|
67 |
+
"bn3d_branch2a/beta": "stage2_unit4_bn1_beta",
|
68 |
+
"res3d_branch2b/kernel": "stage2_unit4_conv2_weight",
|
69 |
+
"bn3d_branch2b/gamma": "stage2_unit4_bn2_gamma",
|
70 |
+
"bn3d_branch2b/beta": "stage2_unit4_bn2_beta",
|
71 |
+
"res3d_branch2c/kernel": "stage2_unit4_conv3_weight",
|
72 |
+
"bn3d_branch2c/gamma": "stage2_unit4_bn3_gamma",
|
73 |
+
"bn3d_branch2c/beta": "stage2_unit4_bn3_beta",
|
74 |
+
"res4a_branch2a/kernel": "stage3_unit1_conv1_weight",
|
75 |
+
"bn4a_branch2a/gamma": "stage3_unit1_bn1_gamma",
|
76 |
+
"bn4a_branch2a/beta": "stage3_unit1_bn1_beta",
|
77 |
+
"res4a_branch2b/kernel": "stage3_unit1_conv2_weight",
|
78 |
+
"bn4a_branch2b/gamma": "stage3_unit1_bn2_gamma",
|
79 |
+
"bn4a_branch2b/beta": "stage3_unit1_bn2_beta",
|
80 |
+
"res4a_branch2c/kernel": "stage3_unit1_conv3_weight",
|
81 |
+
"bn4a_branch2c/gamma": "stage3_unit1_bn3_gamma",
|
82 |
+
"bn4a_branch2c/beta": "stage3_unit1_bn3_beta",
|
83 |
+
"res4a_branch1/kernel": "stage3_unit1_conv1sc_weight",
|
84 |
+
"bn4a_branch1/gamma": "stage3_unit1_bnsc_gamma",
|
85 |
+
"bn4a_branch1/beta": "stage3_unit1_bnsc_beta",
|
86 |
+
"res4b_branch2a/kernel": "stage3_unit2_conv1_weight",
|
87 |
+
"bn4b_branch2a/gamma": "stage3_unit2_bn1_gamma",
|
88 |
+
"bn4b_branch2a/beta": "stage3_unit2_bn1_beta",
|
89 |
+
"res4b_branch2b/kernel": "stage3_unit2_conv2_weight",
|
90 |
+
"bn4b_branch2b/gamma": "stage3_unit2_bn2_gamma",
|
91 |
+
"bn4b_branch2b/beta": "stage3_unit2_bn2_beta",
|
92 |
+
"res4b_branch2c/kernel": "stage3_unit2_conv3_weight",
|
93 |
+
"bn4b_branch2c/gamma": "stage3_unit2_bn3_gamma",
|
94 |
+
"bn4b_branch2c/beta": "stage3_unit2_bn3_beta",
|
95 |
+
"res4c_branch2a/kernel": "stage3_unit3_conv1_weight",
|
96 |
+
"bn4c_branch2a/gamma": "stage3_unit3_bn1_gamma",
|
97 |
+
"bn4c_branch2a/beta": "stage3_unit3_bn1_beta",
|
98 |
+
"res4c_branch2b/kernel": "stage3_unit3_conv2_weight",
|
99 |
+
"bn4c_branch2b/gamma": "stage3_unit3_bn2_gamma",
|
100 |
+
"bn4c_branch2b/beta": "stage3_unit3_bn2_beta",
|
101 |
+
"res4c_branch2c/kernel": "stage3_unit3_conv3_weight",
|
102 |
+
"bn4c_branch2c/gamma": "stage3_unit3_bn3_gamma",
|
103 |
+
"bn4c_branch2c/beta": "stage3_unit3_bn3_beta",
|
104 |
+
"res4d_branch2a/kernel": "stage3_unit4_conv1_weight",
|
105 |
+
"bn4d_branch2a/gamma": "stage3_unit4_bn1_gamma",
|
106 |
+
"bn4d_branch2a/beta": "stage3_unit4_bn1_beta",
|
107 |
+
"res4d_branch2b/kernel": "stage3_unit4_conv2_weight",
|
108 |
+
"bn4d_branch2b/gamma": "stage3_unit4_bn2_gamma",
|
109 |
+
"bn4d_branch2b/beta": "stage3_unit4_bn2_beta",
|
110 |
+
"res4d_branch2c/kernel": "stage3_unit4_conv3_weight",
|
111 |
+
"bn4d_branch2c/gamma": "stage3_unit4_bn3_gamma",
|
112 |
+
"bn4d_branch2c/beta": "stage3_unit4_bn3_beta",
|
113 |
+
"res4e_branch2a/kernel": "stage3_unit5_conv1_weight",
|
114 |
+
"bn4e_branch2a/gamma": "stage3_unit5_bn1_gamma",
|
115 |
+
"bn4e_branch2a/beta": "stage3_unit5_bn1_beta",
|
116 |
+
"res4e_branch2b/kernel": "stage3_unit5_conv2_weight",
|
117 |
+
"bn4e_branch2b/gamma": "stage3_unit5_bn2_gamma",
|
118 |
+
"bn4e_branch2b/beta": "stage3_unit5_bn2_beta",
|
119 |
+
"res4e_branch2c/kernel": "stage3_unit5_conv3_weight",
|
120 |
+
"bn4e_branch2c/gamma": "stage3_unit5_bn3_gamma",
|
121 |
+
"bn4e_branch2c/beta": "stage3_unit5_bn3_beta",
|
122 |
+
"res4f_branch2a/kernel": "stage3_unit6_conv1_weight",
|
123 |
+
"bn4f_branch2a/gamma": "stage3_unit6_bn1_gamma",
|
124 |
+
"bn4f_branch2a/beta": "stage3_unit6_bn1_beta",
|
125 |
+
"res4f_branch2b/kernel": "stage3_unit6_conv2_weight",
|
126 |
+
"bn4f_branch2b/gamma": "stage3_unit6_bn2_gamma",
|
127 |
+
"bn4f_branch2b/beta": "stage3_unit6_bn2_beta",
|
128 |
+
"res4f_branch2c/kernel": "stage3_unit6_conv3_weight",
|
129 |
+
"bn4f_branch2c/gamma": "stage3_unit6_bn3_gamma",
|
130 |
+
"bn4f_branch2c/beta": "stage3_unit6_bn3_beta",
|
131 |
+
"res5a_branch2a/kernel": "stage4_unit1_conv1_weight",
|
132 |
+
"bn5a_branch2a/gamma": "stage4_unit1_bn1_gamma",
|
133 |
+
"bn5a_branch2a/beta": "stage4_unit1_bn1_beta",
|
134 |
+
"res5a_branch2b/kernel": "stage4_unit1_conv2_weight",
|
135 |
+
"bn5a_branch2b/gamma": "stage4_unit1_bn2_gamma",
|
136 |
+
"bn5a_branch2b/beta": "stage4_unit1_bn2_beta",
|
137 |
+
"res5a_branch2c/kernel": "stage4_unit1_conv3_weight",
|
138 |
+
"bn5a_branch2c/gamma": "stage4_unit1_bn3_gamma",
|
139 |
+
"bn5a_branch2c/beta": "stage4_unit1_bn3_beta",
|
140 |
+
"res5a_branch1/kernel": "stage4_unit1_conv1sc_weight",
|
141 |
+
"bn5a_branch1/gamma": "stage4_unit1_bnsc_gamma",
|
142 |
+
"bn5a_branch1/beta": "stage4_unit1_bnsc_beta",
|
143 |
+
"res5b_branch2a/kernel": "stage4_unit2_conv1_weight",
|
144 |
+
"bn5b_branch2a/gamma": "stage4_unit2_bn1_gamma",
|
145 |
+
"bn5b_branch2a/beta": "stage4_unit2_bn1_beta",
|
146 |
+
"res5b_branch2b/kernel": "stage4_unit2_conv2_weight",
|
147 |
+
"bn5b_branch2b/gamma": "stage4_unit2_bn2_gamma",
|
148 |
+
"bn5b_branch2b/beta": "stage4_unit2_bn2_beta",
|
149 |
+
"res5b_branch2c/kernel": "stage4_unit2_conv3_weight",
|
150 |
+
"bn5b_branch2c/gamma": "stage4_unit2_bn3_gamma",
|
151 |
+
"bn5b_branch2c/beta": "stage4_unit2_bn3_beta",
|
152 |
+
"res5c_branch2a/kernel": "stage4_unit3_conv1_weight",
|
153 |
+
"bn5c_branch2a/gamma": "stage4_unit3_bn1_gamma",
|
154 |
+
"bn5c_branch2a/beta": "stage4_unit3_bn1_beta",
|
155 |
+
"res5c_branch2b/kernel": "stage4_unit3_conv2_weight",
|
156 |
+
"bn5c_branch2b/gamma": "stage4_unit3_bn2_gamma",
|
157 |
+
"bn5c_branch2b/beta": "stage4_unit3_bn2_beta",
|
158 |
+
"res5c_branch2c/kernel": "stage4_unit3_conv3_weight",
|
159 |
+
"bn5c_branch2c/gamma": "stage4_unit3_bn3_gamma",
|
160 |
+
"bn5c_branch2c/beta": "stage4_unit3_bn3_beta",
|
161 |
+
"fc1000/kernel": "fc1_weight",
|
162 |
+
"fc1000/bias": "fc1_bias"
|
163 |
+
}
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl_py==1.0.0
|
2 |
+
cloudpickle==1.6.0
|
3 |
+
psutil==5.8.0
|
4 |
+
PyYAML==6.0.0
|
5 |
+
requests==2.25.1
|
6 |
+
tensorflow_model_optimization==0.7.2
|
7 |
+
git+https://github.com/mlperf/[email protected]
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/resnet_ctl_imagenet_main.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
# List of changes:
|
16 |
+
# - loading habana module
|
17 |
+
# - added support for prefetching to HPU
|
18 |
+
# - added profiling callbacks support
|
19 |
+
# - changed include paths of modules
|
20 |
+
# - include mechanism for dumping tensors
|
21 |
+
|
22 |
+
# Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
|
23 |
+
|
24 |
+
"""Runs a ResNet model on the ImageNet dataset using custom training loops."""
|
25 |
+
|
26 |
+
from __future__ import absolute_import
|
27 |
+
from __future__ import division
|
28 |
+
from __future__ import print_function
|
29 |
+
import shutil
|
30 |
+
|
31 |
+
from absl import app
|
32 |
+
from absl import flags
|
33 |
+
from absl import logging
|
34 |
+
import tensorflow as tf
|
35 |
+
import os
|
36 |
+
import math
|
37 |
+
|
38 |
+
from TensorFlow.common.modeling import performance
|
39 |
+
from TensorFlow.common.training import controller
|
40 |
+
from TensorFlow.utils.flags import core as flags_core
|
41 |
+
from TensorFlow.utils.logs import logger
|
42 |
+
from TensorFlow.utils.misc import distribution_utils
|
43 |
+
from TensorFlow.utils.misc import keras_utils
|
44 |
+
from TensorFlow.utils.misc import model_helpers
|
45 |
+
from TensorFlow.computer_vision.common import imagenet_preprocessing
|
46 |
+
from TensorFlow.computer_vision.Resnets.utils.optimizers.keras import lars_util
|
47 |
+
from TensorFlow.computer_vision.Resnets.resnet_keras import common
|
48 |
+
from TensorFlow.computer_vision.Resnets.resnet_keras import resnet_runnable
|
49 |
+
from TensorFlow.computer_vision.Resnets.resnet_keras.common import get_global_batch_size
|
50 |
+
from habana_frameworks.tensorflow import load_habana_module
|
51 |
+
from TensorFlow.common.debug import dump_callback
|
52 |
+
from TensorFlow.common.tb_utils import write_hparams_v2
|
53 |
+
from habana_frameworks.tensorflow.synapse_logger_helpers import synapse_logger_init
|
54 |
+
from TensorFlow.computer_vision.Resnets.resnet_keras.mlp_log import get_mllog_mlloger
|
55 |
+
|
56 |
+
try:
|
57 |
+
import horovod.tensorflow as hvd
|
58 |
+
except ImportError as e:
|
59 |
+
_hvd_exc = e
|
60 |
+
hvd = None
|
61 |
+
|
62 |
+
flags.DEFINE_boolean(name='use_tf_function', default=True,
|
63 |
+
help='Wrap the train and test step inside a '
|
64 |
+
'tf.function.')
|
65 |
+
flags.DEFINE_boolean(name='single_l2_loss_op', default=False,
|
66 |
+
help='Calculate L2_loss on concatenated weights, '
|
67 |
+
'instead of using Keras per-layer L2 loss.')
|
68 |
+
flags.DEFINE_boolean(name='cache_decoded_image',
|
69 |
+
default=False,
|
70 |
+
help='Whether or not to cache decoded images in the '
|
71 |
+
'input pipeline. If this flag and `cache` is enabled, '
|
72 |
+
'then TFExample protos will be parsed and then cached '
|
73 |
+
'which reduces the load on hosts.')
|
74 |
+
flags.DEFINE_boolean(name='dist_eval', default=True,
|
75 |
+
help='Partial eval in each rank and allreduce the partial result')
|
76 |
+
flags.DEFINE_boolean(name='enable_device_warmup',
|
77 |
+
default=False,
|
78 |
+
help='Whether or not to enable device warmup. This '
|
79 |
+
'includes training on dummy data and enabling graph/XLA '
|
80 |
+
'compilation before run_start.')
|
81 |
+
flags.DEFINE_integer(name='device_warmup_steps',
|
82 |
+
default=2,
|
83 |
+
help='The number of steps to apply for device warmup.')
|
84 |
+
flags.DEFINE_float('base_learning_rate', 0.1,
|
85 |
+
'Base learning rate. '
|
86 |
+
'This is the learning rate when using batch size 256; when using other '
|
87 |
+
'batch sizes, the learning rate will be scaled linearly.')
|
88 |
+
flags.DEFINE_boolean(name='profile', default=False,
|
89 |
+
help='Running RN50 with profiling')
|
90 |
+
flags.DEFINE_integer(name='num_train_files',
|
91 |
+
default=1024,
|
92 |
+
help='The number of training tf records.')
|
93 |
+
flags.DEFINE_integer(name='num_eval_files',
|
94 |
+
default=128,
|
95 |
+
help='The number of evaluation tf records.')
|
96 |
+
flags.DEFINE_integer(name='num_acc_steps', default=1, help='Number of gradient accumulation steps.')
|
97 |
+
|
98 |
+
|
99 |
+
def build_stats(runnable, time_callback):
|
100 |
+
"""Normalizes and returns dictionary of stats.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
runnable: The module containing all the training and evaluation metrics.
|
104 |
+
time_callback: Time tracking callback instance.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
Dictionary of normalized results.
|
108 |
+
"""
|
109 |
+
stats = {}
|
110 |
+
|
111 |
+
if not runnable.flags_obj.skip_eval:
|
112 |
+
if runnable.test_loss:
|
113 |
+
stats['eval_loss'] = runnable.test_loss.result().numpy()
|
114 |
+
if runnable.test_accuracy:
|
115 |
+
stats['eval_acc'] = runnable.eval_accuracy
|
116 |
+
|
117 |
+
if runnable.train_loss:
|
118 |
+
stats['train_loss'] = runnable.train_loss.result().numpy()
|
119 |
+
if runnable.train_accuracy:
|
120 |
+
stats['train_acc'] = runnable.train_accuracy.result().numpy()
|
121 |
+
|
122 |
+
if time_callback:
|
123 |
+
timestamp_log = time_callback.timestamp_log
|
124 |
+
stats['step_timestamp_log'] = timestamp_log
|
125 |
+
stats['train_finish_time'] = time_callback.train_finish_time
|
126 |
+
if time_callback.epoch_runtime_log:
|
127 |
+
stats['avg_exp_per_second'] = time_callback.average_examples_per_second
|
128 |
+
|
129 |
+
return stats
|
130 |
+
|
131 |
+
|
132 |
+
def get_num_train_iterations(flags_obj):
|
133 |
+
"""Returns the number of training steps, train and test epochs."""
|
134 |
+
global_batch_size = get_global_batch_size(flags_obj.batch_size, flags_obj.num_acc_steps)
|
135 |
+
steps_per_epoch = math.ceil(imagenet_preprocessing.NUM_IMAGES['train'] / global_batch_size)
|
136 |
+
train_epochs = flags_obj.train_epochs
|
137 |
+
|
138 |
+
if train_epochs == 0 and flags_obj.train_steps > 0:
|
139 |
+
steps_per_epoch = flags_obj.train_steps
|
140 |
+
train_epochs = 1
|
141 |
+
|
142 |
+
eval_batch_size = flags_obj.batch_size
|
143 |
+
if flags_obj.dist_eval:
|
144 |
+
eval_batch_size = global_batch_size
|
145 |
+
eval_steps = (
|
146 |
+
math.ceil(imagenet_preprocessing.NUM_IMAGES['validation'] / eval_batch_size))
|
147 |
+
|
148 |
+
return steps_per_epoch, train_epochs, eval_steps
|
149 |
+
|
150 |
+
|
151 |
+
def _steps_to_run(steps_in_current_epoch, steps_per_epoch, steps_per_loop):
|
152 |
+
"""Calculates steps to run on device."""
|
153 |
+
if steps_per_loop <= 0:
|
154 |
+
raise ValueError('steps_per_loop should be positive integer.')
|
155 |
+
if steps_per_loop == 1:
|
156 |
+
return steps_per_loop
|
157 |
+
return min(steps_per_loop, steps_per_epoch - steps_in_current_epoch)
|
158 |
+
|
159 |
+
|
160 |
+
def run(flags_obj):
|
161 |
+
"""Run ResNet ImageNet training and eval loop using custom training loops.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
flags_obj: An object containing parsed flag values.
|
165 |
+
|
166 |
+
Raises:
|
167 |
+
ValueError: If fp16 is passed as it is not currently supported.
|
168 |
+
|
169 |
+
Returns:
|
170 |
+
Dictionary of training and eval stats.
|
171 |
+
"""
|
172 |
+
tf.get_logger().propagate = False
|
173 |
+
output_dir = None
|
174 |
+
if "LOG_DIR" in os.environ:
|
175 |
+
output_dir = os.environ["LOG_DIR"]
|
176 |
+
mlperf_mlloger, mlperf_mllog = get_mllog_mlloger(output_dir)
|
177 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.CACHE_CLEAR, value=True)
|
178 |
+
mlperf_mlloger.start(key=mlperf_mllog.constants.INIT_START, value=None)
|
179 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.SUBMISSION_BENCHMARK, value=mlperf_mllog.constants.RESNET)
|
180 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.SUBMISSION_ORG, value='Habana')
|
181 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.SUBMISSION_DIVISION, value='closed')
|
182 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.SUBMISSION_PLATFORM, value='gaudi-{}'.format(flags_obj.num_gpus))
|
183 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.SUBMISSION_STATUS, value='onprem')
|
184 |
+
|
185 |
+
keras_utils.set_session_config(
|
186 |
+
enable_eager=flags_obj.enable_eager,
|
187 |
+
enable_xla=flags_obj.enable_xla)
|
188 |
+
performance.set_mixed_precision_policy(flags_core.get_tf_dtype(flags_obj))
|
189 |
+
|
190 |
+
# This only affects GPU.
|
191 |
+
common.set_cudnn_batchnorm_mode()
|
192 |
+
|
193 |
+
# TODO(anj-s): Set data_format without using Keras.
|
194 |
+
data_format = flags_obj.data_format
|
195 |
+
if data_format is None:
|
196 |
+
data_format = ('channels_first'
|
197 |
+
if tf.test.is_built_with_cuda() else 'channels_last')
|
198 |
+
tf.keras.backend.set_image_data_format(data_format)
|
199 |
+
|
200 |
+
if hvd is not None and hvd.is_initialized():
|
201 |
+
model_dir = os.path.join(
|
202 |
+
flags_obj.model_dir, "worker_" + str(hvd.rank()))
|
203 |
+
else:
|
204 |
+
model_dir = flags_obj.model_dir
|
205 |
+
|
206 |
+
global_batch_size = get_global_batch_size(flags_obj.batch_size, flags_obj.num_acc_steps)
|
207 |
+
|
208 |
+
strategy = distribution_utils.get_distribution_strategy(
|
209 |
+
distribution_strategy=flags_obj.distribution_strategy,
|
210 |
+
num_gpus=flags_obj.num_gpus,
|
211 |
+
all_reduce_alg=flags_obj.all_reduce_alg,
|
212 |
+
num_packs=flags_obj.num_packs,
|
213 |
+
tpu_address=flags_obj.tpu)
|
214 |
+
|
215 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.GLOBAL_BATCH_SIZE, value=global_batch_size)
|
216 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.TRAIN_SAMPLES, value=imagenet_preprocessing.NUM_IMAGES['train'])
|
217 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.EVAL_SAMPLES, value=imagenet_preprocessing.NUM_IMAGES['validation'])
|
218 |
+
group_batch_norm = 1
|
219 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.MODEL_BN_SPAN, value= flags_obj.batch_size * group_batch_norm)
|
220 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.GRADIENT_ACCUMULATION_STEPS, value= flags_obj.num_acc_steps)
|
221 |
+
|
222 |
+
train_writer, eval_writer = None, None
|
223 |
+
if flags_obj.enable_tensorboard:
|
224 |
+
train_writer = tf.summary.create_file_writer(model_dir)
|
225 |
+
eval_writer = tf.summary.create_file_writer(os.path.join(model_dir, 'eval'))
|
226 |
+
hparams = flags_obj.flag_values_dict()
|
227 |
+
write_hparams_v2(train_writer, hparams)
|
228 |
+
|
229 |
+
per_epoch_steps, train_epochs, eval_steps = get_num_train_iterations(
|
230 |
+
flags_obj)
|
231 |
+
steps_per_loop = min(flags_obj.steps_per_loop, per_epoch_steps)
|
232 |
+
train_steps = train_epochs * per_epoch_steps
|
233 |
+
|
234 |
+
logging.info(
|
235 |
+
'Training %d epochs, each epoch has %d steps, '
|
236 |
+
'total steps: %d; Eval %d steps', train_epochs, per_epoch_steps,
|
237 |
+
train_steps, eval_steps)
|
238 |
+
|
239 |
+
time_callback = keras_utils.TimeHistory(
|
240 |
+
global_batch_size,
|
241 |
+
flags_obj.log_steps,
|
242 |
+
summary_writer=train_writer,
|
243 |
+
batch_size_per_node=flags_obj.batch_size)
|
244 |
+
profiler_callback = None
|
245 |
+
if flags_obj.profile_steps is not None:
|
246 |
+
profiler_callback = keras_utils.get_profiler_callback(
|
247 |
+
model_dir,
|
248 |
+
flags_obj.profile_steps,
|
249 |
+
flags_obj.enable_tensorboard,
|
250 |
+
per_epoch_steps)
|
251 |
+
with distribution_utils.get_strategy_scope(strategy):
|
252 |
+
runnable = resnet_runnable.ResnetRunnable(flags_obj, time_callback,
|
253 |
+
train_steps,
|
254 |
+
per_epoch_steps,
|
255 |
+
profiler_callback,mlperf_mlloger,mlperf_mllog)
|
256 |
+
|
257 |
+
eval_interval = flags_obj.epochs_between_evals * per_epoch_steps
|
258 |
+
eval_offset = flags_obj.eval_offset_epochs * per_epoch_steps
|
259 |
+
if eval_offset != 0:
|
260 |
+
eval_offset -= eval_interval
|
261 |
+
checkpoint_interval = (
|
262 |
+
per_epoch_steps if flags_obj.enable_checkpoint_and_export else None)
|
263 |
+
summary_interval = per_epoch_steps if flags_obj.enable_tensorboard else None
|
264 |
+
|
265 |
+
checkpoint_manager = tf.train.CheckpointManager(
|
266 |
+
runnable.checkpoint,
|
267 |
+
directory=model_dir,
|
268 |
+
max_to_keep=10,
|
269 |
+
step_counter=runnable.global_step,
|
270 |
+
checkpoint_interval=checkpoint_interval)
|
271 |
+
|
272 |
+
device_warmup_steps = (
|
273 |
+
flags_obj.device_warmup_steps if flags_obj.enable_device_warmup else 0)
|
274 |
+
|
275 |
+
if flags_obj.enable_device_warmup:
|
276 |
+
logging.info('Warmup for %d steps.', device_warmup_steps)
|
277 |
+
|
278 |
+
train_steps=per_epoch_steps * train_epochs
|
279 |
+
|
280 |
+
resnet_controller = controller.Controller(
|
281 |
+
strategy,
|
282 |
+
runnable.train,
|
283 |
+
runnable.evaluate,
|
284 |
+
runnable.warmup,
|
285 |
+
global_step=runnable.global_step,
|
286 |
+
steps_per_loop=steps_per_loop,
|
287 |
+
train_steps=train_steps,
|
288 |
+
checkpoint_manager=checkpoint_manager,
|
289 |
+
summary_interval=summary_interval,
|
290 |
+
eval_steps=eval_steps,
|
291 |
+
eval_interval=eval_interval,
|
292 |
+
eval_offset=eval_offset,
|
293 |
+
device_warmup_steps=device_warmup_steps,
|
294 |
+
train_summary_writer=train_writer,
|
295 |
+
eval_summary_writer=eval_writer)
|
296 |
+
|
297 |
+
if flags_obj.enable_device_warmup:
|
298 |
+
resnet_controller.warmup()
|
299 |
+
del runnable.warmup_train_iter
|
300 |
+
del runnable.warmup_train_dataset
|
301 |
+
del runnable.warmup_eval_iter
|
302 |
+
del runnable.warmup_eval_dataset
|
303 |
+
try:
|
304 |
+
synth_data_dir = f'{model_dir}/resnet_synth_data'
|
305 |
+
shutil.rmtree(synth_data_dir)
|
306 |
+
except:
|
307 |
+
pass
|
308 |
+
|
309 |
+
manifest_path = prepare_dataset_manifest(flags_obj)
|
310 |
+
|
311 |
+
mlperf_mlloger.end(key=mlperf_mllog.constants.INIT_STOP)
|
312 |
+
|
313 |
+
if flags.FLAGS.use_horovod:
|
314 |
+
hvd.broadcast(0, 0)
|
315 |
+
time_callback.on_train_begin()
|
316 |
+
mlperf_mlloger.start(key=mlperf_mllog.constants.RUN_START)
|
317 |
+
mlperf_mlloger.start(
|
318 |
+
key=mlperf_mllog.constants.BLOCK_START, value=None,
|
319 |
+
metadata={
|
320 |
+
'first_epoch_num': 1,
|
321 |
+
'epoch_count':
|
322 |
+
(flags_obj.eval_offset_epochs if flags_obj.eval_offset_epochs > 0
|
323 |
+
else flags_obj.epochs_between_evals)
|
324 |
+
})
|
325 |
+
resnet_controller.train(evaluate=not flags_obj.skip_eval, num_acc_steps=flags_obj.num_acc_steps, manifest_path=manifest_path)
|
326 |
+
if not flags_obj.skip_eval:
|
327 |
+
eval_accuracy = resnet_controller.last_eval_output['test_accuracy']
|
328 |
+
if eval_accuracy >= flags_obj.target_accuracy:
|
329 |
+
mlperf_mlloger.end(key=mlperf_mllog.constants.RUN_STOP, value=None, metadata={'status': 'success'})
|
330 |
+
else:
|
331 |
+
mlperf_mlloger.end(key=mlperf_mllog.constants.RUN_STOP, value=None, metadata={'status': 'fail'})
|
332 |
+
time_callback.on_train_end()
|
333 |
+
|
334 |
+
|
335 |
+
stats = build_stats(runnable, time_callback)
|
336 |
+
return stats
|
337 |
+
|
338 |
+
|
339 |
+
def prepare_dataset_manifest(flags_obj):
|
340 |
+
import glob
|
341 |
+
import json
|
342 |
+
import pathlib
|
343 |
+
|
344 |
+
from habana_frameworks.tensorflow.multinode_helpers import comm_rank
|
345 |
+
|
346 |
+
manifest_file_name = f"imagenet_jpeg_manifest_rank_{comm_rank()}.json"
|
347 |
+
manifest_path = os.path.join('/tmp', manifest_file_name)
|
348 |
+
|
349 |
+
if flags_obj.jpeg_data_dir is not None:
|
350 |
+
# get files list
|
351 |
+
dataset_dir = os.path.join(flags_obj.jpeg_data_dir, 'train')
|
352 |
+
|
353 |
+
print(f"dataset dir: {dataset_dir}")
|
354 |
+
manifest_data = {}
|
355 |
+
manifest_data["file_list"] = sorted(
|
356 |
+
glob.glob(dataset_dir + "/*/*.{}".format("JPEG")))
|
357 |
+
|
358 |
+
# get class list
|
359 |
+
data_dir = pathlib.Path(dataset_dir)
|
360 |
+
manifest_data["class_list"] = sorted(
|
361 |
+
[item.name for item in data_dir.glob('*') if item.is_dir() == True])
|
362 |
+
|
363 |
+
file_sizes = {}
|
364 |
+
file_classes = []
|
365 |
+
|
366 |
+
for filename in manifest_data["file_list"]:
|
367 |
+
#Everything is in order as file_list is sorted
|
368 |
+
file_sizes[filename] = os.stat(filename).st_size
|
369 |
+
file_classes.append(os.path.basename(os.path.dirname(filename)))
|
370 |
+
|
371 |
+
manifest_data['file_sizes'] = file_sizes
|
372 |
+
manifest_data['file_classes'] = file_classes
|
373 |
+
|
374 |
+
with open(manifest_path, "w") as f:
|
375 |
+
json.dump(manifest_data, f)
|
376 |
+
|
377 |
+
return manifest_path
|
378 |
+
|
379 |
+
|
380 |
+
def main(_):
|
381 |
+
if flags.FLAGS.use_horovod:
|
382 |
+
if hvd is None:
|
383 |
+
logging.error("Problem encountered during Horovod import. Please make sure that habana-horovod package is installed.")
|
384 |
+
raise _hvd_exc
|
385 |
+
hvd.init()
|
386 |
+
else:
|
387 |
+
synapse_logger_init()
|
388 |
+
|
389 |
+
os.environ['TF_EXPERIMENTAL_BATCH_VARIABLES'] = '1'
|
390 |
+
os.environ['TF_CLUSTER_VARIABLES'] = '1'
|
391 |
+
load_habana_module()
|
392 |
+
|
393 |
+
with dump_callback():
|
394 |
+
model_helpers.apply_clean(flags.FLAGS)
|
395 |
+
with logger.benchmark_context(flags.FLAGS):
|
396 |
+
stats =run (flags.FLAGS)
|
397 |
+
logging.info('Run stats:\n%s', stats)
|
398 |
+
|
399 |
+
|
400 |
+
if __name__ == '__main__':
|
401 |
+
logging.set_verbosity(logging.INFO)
|
402 |
+
common.define_keras_flags()
|
403 |
+
common.define_habana_flags()
|
404 |
+
lars_util.define_lars_flags()
|
405 |
+
app.run(main)
|
406 |
+
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/resnet_model.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""ResNet50 model for Keras.
|
16 |
+
Adapted from tf.keras.applications.resnet50.ResNet50().
|
17 |
+
This is ResNet model version 1.5.
|
18 |
+
Related papers/blogs:
|
19 |
+
- https://arxiv.org/abs/1512.03385
|
20 |
+
- https://arxiv.org/pdf/1603.05027v2.pdf
|
21 |
+
- http://torch.ch/blog/2016/02/04/resnets.html
|
22 |
+
"""
|
23 |
+
from __future__ import absolute_import
|
24 |
+
from __future__ import division
|
25 |
+
from __future__ import print_function
|
26 |
+
|
27 |
+
from absl import flags
|
28 |
+
import tensorflow as tf
|
29 |
+
from TensorFlow.computer_vision.common import imagenet_preprocessing
|
30 |
+
|
31 |
+
FLAGS = flags.FLAGS
|
32 |
+
flags.DEFINE_float(
|
33 |
+
'weight_decay',
|
34 |
+
default=1e-4,
|
35 |
+
help=('Weight decay coefficiant for l2 regularization.'))
|
36 |
+
|
37 |
+
layers = tf.keras.layers
|
38 |
+
|
39 |
+
|
40 |
+
def _gen_l2_regularizer(use_l2_regularizer=True):
|
41 |
+
return tf.keras.regularizers.L2(
|
42 |
+
FLAGS.weight_decay) if use_l2_regularizer else None
|
43 |
+
|
44 |
+
|
45 |
+
def identity_block(input_tensor,
|
46 |
+
kernel_size,
|
47 |
+
filters,
|
48 |
+
stage,
|
49 |
+
block,
|
50 |
+
use_l2_regularizer=True,
|
51 |
+
batch_norm_decay=0.9,
|
52 |
+
batch_norm_epsilon=1e-5):
|
53 |
+
"""The identity block is the block that has no conv layer at shortcut.
|
54 |
+
Args:
|
55 |
+
input_tensor: input tensor
|
56 |
+
kernel_size: default 3, the kernel size of middle conv layer at main path
|
57 |
+
filters: list of integers, the filters of 3 conv layer at main path
|
58 |
+
stage: integer, current stage label, used for generating layer names
|
59 |
+
block: 'a','b'..., current block label, used for generating layer names
|
60 |
+
use_l2_regularizer: whether to use L2 regularizer on Conv layer.
|
61 |
+
batch_norm_decay: Moment of batch norm layers.
|
62 |
+
batch_norm_epsilon: Epsilon of batch borm layers.
|
63 |
+
Returns:
|
64 |
+
Output tensor for the block.
|
65 |
+
"""
|
66 |
+
filters1, filters2, filters3 = filters
|
67 |
+
if tf.keras.backend.image_data_format() == 'channels_last':
|
68 |
+
bn_axis = 3
|
69 |
+
else:
|
70 |
+
bn_axis = 1
|
71 |
+
conv_name_base = 'res' + str(stage) + block + '_branch'
|
72 |
+
bn_name_base = 'bn' + str(stage) + block + '_branch'
|
73 |
+
|
74 |
+
x = layers.Conv2D(
|
75 |
+
filters1, (1, 1),
|
76 |
+
use_bias=False,
|
77 |
+
kernel_initializer='he_normal',
|
78 |
+
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
|
79 |
+
name=conv_name_base + '2a')(
|
80 |
+
input_tensor)
|
81 |
+
x = layers.BatchNormalization(
|
82 |
+
axis=bn_axis,
|
83 |
+
momentum=batch_norm_decay,
|
84 |
+
epsilon=batch_norm_epsilon,
|
85 |
+
name=bn_name_base + '2a')(
|
86 |
+
x)
|
87 |
+
x = layers.Activation('relu')(x)
|
88 |
+
|
89 |
+
x = layers.Conv2D(
|
90 |
+
filters2,
|
91 |
+
kernel_size,
|
92 |
+
padding='same',
|
93 |
+
use_bias=False,
|
94 |
+
kernel_initializer='he_normal',
|
95 |
+
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
|
96 |
+
name=conv_name_base + '2b')(
|
97 |
+
x)
|
98 |
+
x = layers.BatchNormalization(
|
99 |
+
axis=bn_axis,
|
100 |
+
momentum=batch_norm_decay,
|
101 |
+
epsilon=batch_norm_epsilon,
|
102 |
+
name=bn_name_base + '2b')(
|
103 |
+
x)
|
104 |
+
x = layers.Activation('relu')(x)
|
105 |
+
|
106 |
+
x = layers.Conv2D(
|
107 |
+
filters3, (1, 1),
|
108 |
+
use_bias=False,
|
109 |
+
kernel_initializer='he_normal',
|
110 |
+
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
|
111 |
+
name=conv_name_base + '2c')(
|
112 |
+
x)
|
113 |
+
x = layers.BatchNormalization(
|
114 |
+
axis=bn_axis,
|
115 |
+
momentum=batch_norm_decay,
|
116 |
+
epsilon=batch_norm_epsilon,
|
117 |
+
name=bn_name_base + '2c')(
|
118 |
+
x)
|
119 |
+
|
120 |
+
x = layers.add([x, input_tensor])
|
121 |
+
x = layers.Activation('relu')(x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
def conv_block(input_tensor,
|
126 |
+
kernel_size,
|
127 |
+
filters,
|
128 |
+
stage,
|
129 |
+
block,
|
130 |
+
strides=(2, 2),
|
131 |
+
use_l2_regularizer=True,
|
132 |
+
batch_norm_decay=0.9,
|
133 |
+
batch_norm_epsilon=1e-5):
|
134 |
+
"""A block that has a conv layer at shortcut.
|
135 |
+
Note that from stage 3,
|
136 |
+
the second conv layer at main path is with strides=(2, 2)
|
137 |
+
And the shortcut should have strides=(2, 2) as well
|
138 |
+
Args:
|
139 |
+
input_tensor: input tensor
|
140 |
+
kernel_size: default 3, the kernel size of middle conv layer at main path
|
141 |
+
filters: list of integers, the filters of 3 conv layer at main path
|
142 |
+
stage: integer, current stage label, used for generating layer names
|
143 |
+
block: 'a','b'..., current block label, used for generating layer names
|
144 |
+
strides: Strides for the second conv layer in the block.
|
145 |
+
use_l2_regularizer: whether to use L2 regularizer on Conv layer.
|
146 |
+
batch_norm_decay: Moment of batch norm layers.
|
147 |
+
batch_norm_epsilon: Epsilon of batch borm layers.
|
148 |
+
Returns:
|
149 |
+
Output tensor for the block.
|
150 |
+
"""
|
151 |
+
filters1, filters2, filters3 = filters
|
152 |
+
if tf.keras.backend.image_data_format() == 'channels_last':
|
153 |
+
bn_axis = 3
|
154 |
+
else:
|
155 |
+
bn_axis = 1
|
156 |
+
conv_name_base = 'res' + str(stage) + block + '_branch'
|
157 |
+
bn_name_base = 'bn' + str(stage) + block + '_branch'
|
158 |
+
|
159 |
+
x = layers.Conv2D(
|
160 |
+
filters1, (1, 1),
|
161 |
+
use_bias=False,
|
162 |
+
kernel_initializer='he_normal',
|
163 |
+
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
|
164 |
+
name=conv_name_base + '2a')(
|
165 |
+
input_tensor)
|
166 |
+
x = layers.BatchNormalization(
|
167 |
+
axis=bn_axis,
|
168 |
+
momentum=batch_norm_decay,
|
169 |
+
epsilon=batch_norm_epsilon,
|
170 |
+
name=bn_name_base + '2a')(
|
171 |
+
x)
|
172 |
+
x = layers.Activation('relu')(x)
|
173 |
+
|
174 |
+
x = layers.Conv2D(
|
175 |
+
filters2,
|
176 |
+
kernel_size,
|
177 |
+
strides=strides,
|
178 |
+
padding='same',
|
179 |
+
use_bias=False,
|
180 |
+
kernel_initializer='he_normal',
|
181 |
+
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
|
182 |
+
name=conv_name_base + '2b')(
|
183 |
+
x)
|
184 |
+
x = layers.BatchNormalization(
|
185 |
+
axis=bn_axis,
|
186 |
+
momentum=batch_norm_decay,
|
187 |
+
epsilon=batch_norm_epsilon,
|
188 |
+
name=bn_name_base + '2b')(
|
189 |
+
x)
|
190 |
+
x = layers.Activation('relu')(x)
|
191 |
+
|
192 |
+
x = layers.Conv2D(
|
193 |
+
filters3, (1, 1),
|
194 |
+
use_bias=False,
|
195 |
+
kernel_initializer='he_normal',
|
196 |
+
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
|
197 |
+
name=conv_name_base + '2c')(
|
198 |
+
x)
|
199 |
+
x = layers.BatchNormalization(
|
200 |
+
axis=bn_axis,
|
201 |
+
momentum=batch_norm_decay,
|
202 |
+
epsilon=batch_norm_epsilon,
|
203 |
+
name=bn_name_base + '2c')(
|
204 |
+
x)
|
205 |
+
|
206 |
+
shortcut = layers.Conv2D(
|
207 |
+
filters3, (1, 1),
|
208 |
+
strides=strides,
|
209 |
+
use_bias=False,
|
210 |
+
kernel_initializer='he_normal',
|
211 |
+
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
|
212 |
+
name=conv_name_base + '1')(
|
213 |
+
input_tensor)
|
214 |
+
shortcut = layers.BatchNormalization(
|
215 |
+
axis=bn_axis,
|
216 |
+
momentum=batch_norm_decay,
|
217 |
+
epsilon=batch_norm_epsilon,
|
218 |
+
name=bn_name_base + '1')(
|
219 |
+
shortcut)
|
220 |
+
|
221 |
+
x = layers.add([x, shortcut])
|
222 |
+
x = layers.Activation('relu')(x)
|
223 |
+
return x
|
224 |
+
|
225 |
+
|
226 |
+
def resnet50(num_classes,
|
227 |
+
batch_size=None,
|
228 |
+
use_l2_regularizer=True,
|
229 |
+
rescale_inputs=False,
|
230 |
+
batch_norm_decay=0.9,
|
231 |
+
batch_norm_epsilon=1e-5):
|
232 |
+
"""Instantiates the ResNet50 architecture.
|
233 |
+
Args:
|
234 |
+
num_classes: `int` number of classes for image classification.
|
235 |
+
batch_size: Size of the batches for each step.
|
236 |
+
use_l2_regularizer: whether to use L2 regularizer on Conv/Dense layer.
|
237 |
+
rescale_inputs: whether to rescale inputs from 0 to 1.
|
238 |
+
batch_norm_decay: Moment of batch norm layers.
|
239 |
+
batch_norm_epsilon: Epsilon of batch borm layers.
|
240 |
+
Returns:
|
241 |
+
A Keras model instance.
|
242 |
+
"""
|
243 |
+
input_shape = (224, 224, 3)
|
244 |
+
img_input = layers.Input(shape=input_shape, batch_size=batch_size)
|
245 |
+
if rescale_inputs:
|
246 |
+
# Hub image modules expect inputs in the range [0, 1]. This rescales these
|
247 |
+
# inputs to the range expected by the trained model.
|
248 |
+
x = layers.Lambda(
|
249 |
+
lambda x: x * 255.0 - tf.keras.backend.constant( # pylint: disable=g-long-lambda
|
250 |
+
imagenet_preprocessing.CHANNEL_MEANS,
|
251 |
+
shape=[1, 1, 3],
|
252 |
+
dtype=x.dtype),
|
253 |
+
name='rescale')(
|
254 |
+
img_input)
|
255 |
+
else:
|
256 |
+
x = img_input
|
257 |
+
|
258 |
+
if tf.keras.backend.image_data_format() == 'channels_first':
|
259 |
+
x = layers.Permute((3, 1, 2))(x)
|
260 |
+
bn_axis = 1
|
261 |
+
else: # channels_last
|
262 |
+
bn_axis = 3
|
263 |
+
|
264 |
+
block_config = dict(
|
265 |
+
use_l2_regularizer=use_l2_regularizer,
|
266 |
+
batch_norm_decay=batch_norm_decay,
|
267 |
+
batch_norm_epsilon=batch_norm_epsilon)
|
268 |
+
x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(x)
|
269 |
+
x = layers.Conv2D(
|
270 |
+
64, (7, 7),
|
271 |
+
strides=(2, 2),
|
272 |
+
padding='valid',
|
273 |
+
use_bias=False,
|
274 |
+
kernel_initializer='he_normal',
|
275 |
+
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
|
276 |
+
name='conv1')(
|
277 |
+
x)
|
278 |
+
x = layers.BatchNormalization(
|
279 |
+
axis=bn_axis,
|
280 |
+
momentum=batch_norm_decay,
|
281 |
+
epsilon=batch_norm_epsilon,
|
282 |
+
name='bn_conv1')(
|
283 |
+
x)
|
284 |
+
x = layers.Activation('relu')(x)
|
285 |
+
x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
|
286 |
+
|
287 |
+
x = conv_block(
|
288 |
+
x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), **block_config)
|
289 |
+
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', **block_config)
|
290 |
+
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', **block_config)
|
291 |
+
|
292 |
+
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', **block_config)
|
293 |
+
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', **block_config)
|
294 |
+
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', **block_config)
|
295 |
+
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', **block_config)
|
296 |
+
|
297 |
+
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', **block_config)
|
298 |
+
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b', **block_config)
|
299 |
+
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c', **block_config)
|
300 |
+
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d', **block_config)
|
301 |
+
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e', **block_config)
|
302 |
+
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f', **block_config)
|
303 |
+
|
304 |
+
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', **block_config)
|
305 |
+
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', **block_config)
|
306 |
+
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', **block_config)
|
307 |
+
|
308 |
+
x = layers.GlobalAveragePooling2D()(x)
|
309 |
+
x = layers.Dense(
|
310 |
+
num_classes,
|
311 |
+
kernel_initializer=tf.compat.v1.keras.initializers.random_normal(
|
312 |
+
stddev=0.01),
|
313 |
+
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
|
314 |
+
bias_regularizer=_gen_l2_regularizer(use_l2_regularizer),
|
315 |
+
name='fc1000')(
|
316 |
+
x)
|
317 |
+
|
318 |
+
# A softmax that is followed by the model loss must be done cannot be done
|
319 |
+
# in float16 due to numeric issues. So we pass dtype=float32.
|
320 |
+
x = layers.Activation('softmax', dtype='float32')(x)
|
321 |
+
|
322 |
+
# Create model.
|
323 |
+
return tf.keras.Model(img_input, x, name='resnet50')
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/resnet_keras/resnet_runnable.py
ADDED
@@ -0,0 +1,545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
# List of changes:
|
16 |
+
# - added profiling callbacks support
|
17 |
+
|
18 |
+
# Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
|
19 |
+
|
20 |
+
"""Runs a ResNet model on the ImageNet dataset using custom training loops."""
|
21 |
+
|
22 |
+
from __future__ import absolute_import
|
23 |
+
from __future__ import division
|
24 |
+
from __future__ import print_function
|
25 |
+
|
26 |
+
import json
|
27 |
+
import os
|
28 |
+
from typing import Dict, Optional, Text
|
29 |
+
|
30 |
+
import tensorflow as tf
|
31 |
+
from TensorFlow.common.modeling import performance
|
32 |
+
from TensorFlow.common.training import grad_utils
|
33 |
+
from TensorFlow.common.training import standard_runnable
|
34 |
+
from TensorFlow.common.training import utils
|
35 |
+
from TensorFlow.utils.flags import core as flags_core
|
36 |
+
from TensorFlow.computer_vision.common import imagenet_preprocessing
|
37 |
+
from TensorFlow.computer_vision.Resnets.resnet_keras import common
|
38 |
+
from TensorFlow.computer_vision.Resnets.resnet_keras import resnet_model
|
39 |
+
from TensorFlow.computer_vision.Resnets.resnet_keras.common import get_global_batch_size
|
40 |
+
|
41 |
+
|
42 |
+
try:
|
43 |
+
import horovod.tensorflow as hvd
|
44 |
+
except ImportError:
|
45 |
+
hvd = None
|
46 |
+
class ResnetRunnable(standard_runnable.StandardTrainable,
|
47 |
+
standard_runnable.StandardEvaluable):
|
48 |
+
"""Implements the training and evaluation APIs for Resnet model."""
|
49 |
+
|
50 |
+
def __init__(self, flags_obj, time_callback, train_steps, epoch_steps, profiler_callback,mlperf_mlloger,mlperf_mllog):
|
51 |
+
standard_runnable.StandardTrainable.__init__(self,
|
52 |
+
flags_obj.use_tf_while_loop,
|
53 |
+
flags_obj.use_tf_function)
|
54 |
+
standard_runnable.StandardEvaluable.__init__(self,
|
55 |
+
flags_obj.use_tf_function)
|
56 |
+
|
57 |
+
self.strategy = tf.distribute.get_strategy()
|
58 |
+
self.flags_obj = flags_obj
|
59 |
+
self.dtype = flags_core.get_tf_dtype(flags_obj)
|
60 |
+
self.time_callback = time_callback
|
61 |
+
self.profiler_callback = profiler_callback
|
62 |
+
self.first_step = True
|
63 |
+
self.warmup_train_dataset = None
|
64 |
+
self.warmup_train_iter = None
|
65 |
+
self.warmup_eval_dataset = None
|
66 |
+
self.warmup_eval_iter = None
|
67 |
+
|
68 |
+
self.mlperf_mlloger, self.mlperf_mllog = mlperf_mlloger, mlperf_mllog
|
69 |
+
# Input pipeline related
|
70 |
+
batch_size = flags_obj.batch_size
|
71 |
+
if batch_size % self.strategy.num_replicas_in_sync != 0:
|
72 |
+
raise ValueError(
|
73 |
+
'Batch size must be divisible by number of replicas : {}'.format(
|
74 |
+
self.strategy.num_replicas_in_sync))
|
75 |
+
|
76 |
+
# As auto rebatching is not supported in
|
77 |
+
# `experimental_distribute_datasets_from_function()` API, which is
|
78 |
+
# required when cloning dataset to multiple workers in eager mode,
|
79 |
+
# we use per-replica batch size.
|
80 |
+
self.batch_size = int(batch_size / self.strategy.num_replicas_in_sync)
|
81 |
+
|
82 |
+
if self.flags_obj.use_synthetic_data:
|
83 |
+
self.input_fn = self.get_synth_input_fn(True)
|
84 |
+
else:
|
85 |
+
self.input_fn = imagenet_preprocessing.input_fn
|
86 |
+
|
87 |
+
self.model = resnet_model.resnet50(
|
88 |
+
num_classes=imagenet_preprocessing.NUM_CLASSES,
|
89 |
+
batch_size=flags_obj.batch_size,
|
90 |
+
use_l2_regularizer=not flags_obj.single_l2_loss_op)
|
91 |
+
|
92 |
+
mlperf_variable_map = self.get_mlperf_variable_map()
|
93 |
+
for weight in self.model.weights:
|
94 |
+
if ('moving_mean' not in weight.name) and ('moving_variance' not in weight.name):
|
95 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.WEIGHTS_INITIALIZATION, metadata={'tensor': mlperf_variable_map[weight.name.split(':')[0]]})
|
96 |
+
|
97 |
+
self.use_lars_optimizer = self.flags_obj.optimizer == 'LARS'
|
98 |
+
|
99 |
+
self.optimizer = common.get_optimizer(flags_obj,
|
100 |
+
get_global_batch_size(flags_obj.batch_size),
|
101 |
+
train_steps,mlperf_mlloger,mlperf_mllog)
|
102 |
+
# Make sure iterations variable is created inside scope.
|
103 |
+
self.global_step = self.optimizer.iterations
|
104 |
+
self.train_steps = train_steps
|
105 |
+
|
106 |
+
self.one_hot = False
|
107 |
+
self.label_smoothing = flags_obj.label_smoothing
|
108 |
+
if self.label_smoothing and self.label_smoothing > 0:
|
109 |
+
self.one_hot = True
|
110 |
+
|
111 |
+
use_graph_rewrite = flags_obj.fp16_implementation == 'graph_rewrite'
|
112 |
+
if use_graph_rewrite and not flags_obj.use_tf_function:
|
113 |
+
raise ValueError('--fp16_implementation=graph_rewrite requires '
|
114 |
+
'--use_tf_function to be true')
|
115 |
+
self.optimizer = performance.configure_optimizer(
|
116 |
+
self.optimizer,
|
117 |
+
use_float16=self.dtype == tf.float16,
|
118 |
+
use_graph_rewrite=use_graph_rewrite,
|
119 |
+
loss_scale=flags_core.get_loss_scale(flags_obj, default_for_fp16=128))
|
120 |
+
|
121 |
+
if self.flags_obj.report_accuracy_metrics:
|
122 |
+
self.train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32)
|
123 |
+
if self.one_hot:
|
124 |
+
self.train_accuracy = tf.keras.metrics.CategoricalAccuracy(
|
125 |
+
'train_accuracy', dtype=tf.float32)
|
126 |
+
else:
|
127 |
+
self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
|
128 |
+
'train_accuracy', dtype=tf.float32)
|
129 |
+
self.test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32)
|
130 |
+
else:
|
131 |
+
self.train_loss = None
|
132 |
+
self.train_accuracy = None
|
133 |
+
self.test_loss = None
|
134 |
+
|
135 |
+
self.dist_eval = flags_obj.dist_eval
|
136 |
+
self.profile = flags_obj.profile
|
137 |
+
|
138 |
+
if self.one_hot:
|
139 |
+
self.test_accuracy = tf.keras.metrics.CategoricalAccuracy(
|
140 |
+
'test_accuracy', dtype=tf.float32)
|
141 |
+
else:
|
142 |
+
self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
|
143 |
+
'test_accuracy', dtype=tf.float32)
|
144 |
+
self.eval_accuracy = 0
|
145 |
+
|
146 |
+
self.checkpoint = tf.train.Checkpoint(
|
147 |
+
model=self.model, optimizer=self.optimizer)
|
148 |
+
|
149 |
+
self.local_loss_mean = tf.keras.metrics.Mean("local_loss_min", dtype=tf.float32)
|
150 |
+
|
151 |
+
# Handling epochs.
|
152 |
+
self.epoch_steps = epoch_steps
|
153 |
+
self.epoch_helper = utils.EpochHelper(epoch_steps, self.global_step)
|
154 |
+
|
155 |
+
self.num_acc_steps = flags_obj.num_acc_steps
|
156 |
+
if self.num_acc_steps > 1:
|
157 |
+
self.init_accumulation_variables()
|
158 |
+
|
159 |
+
self.model_state = None
|
160 |
+
|
161 |
+
def init_accumulation_variables(self):
|
162 |
+
self.cur_acc_step = tf.compat.v1.get_variable(
|
163 |
+
name='cur_acc_step',
|
164 |
+
shape=(),
|
165 |
+
dtype=tf.int32,
|
166 |
+
trainable=False,
|
167 |
+
initializer=tf.compat.v1.constant_initializer(value=0)
|
168 |
+
)
|
169 |
+
self.accum_vars = [tf.compat.v1.get_variable(
|
170 |
+
name=tvar.name.split(':')[0] + '/accum',
|
171 |
+
shape=tvar.shape.as_list(),
|
172 |
+
dtype=tf.float32,
|
173 |
+
trainable=False,
|
174 |
+
initializer=tf.compat.v1.zeros_initializer()) for tvar in self.model.trainable_variables]
|
175 |
+
self.loss_acc = tf.compat.v1.get_variable(
|
176 |
+
name='loss_acc',
|
177 |
+
shape=(),
|
178 |
+
dtype=tf.float32,
|
179 |
+
trainable=False,
|
180 |
+
initializer=tf.compat.v1.constant_initializer(value=0.0)
|
181 |
+
)
|
182 |
+
|
183 |
+
def get_mlperf_variable_map(self):
|
184 |
+
try:
|
185 |
+
script_path = os.path.realpath(__file__)
|
186 |
+
head_tail = os.path.split(script_path)
|
187 |
+
mlperf_map_file = head_tail[0] + '/mlperf_variable_map.json'
|
188 |
+
with open(mlperf_map_file, mode='r') as file_handle:
|
189 |
+
json_content = file_handle.read()
|
190 |
+
mlperf_map = json.loads(json_content)
|
191 |
+
except IOError:
|
192 |
+
raise IOError(f"MLPerf variable map file: {mlperf_map_file} not accesible")
|
193 |
+
return mlperf_map
|
194 |
+
|
195 |
+
def get_synth_input_fn(self, is_training):
|
196 |
+
return common.get_synth_input_fn(
|
197 |
+
height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
|
198 |
+
width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
|
199 |
+
num_channels=imagenet_preprocessing.NUM_CHANNELS,
|
200 |
+
num_classes=imagenet_preprocessing.NUM_CLASSES,
|
201 |
+
dtype=common.get_dl_type(self.flags_obj),
|
202 |
+
drop_remainder=is_training,
|
203 |
+
experimental_preloading=self.flags_obj.experimental_preloading)
|
204 |
+
|
205 |
+
def build_train_dataset(self, synthetic=False, manifest_path=None):
|
206 |
+
"""See base class."""
|
207 |
+
return utils.make_distributed_dataset(
|
208 |
+
self.strategy,
|
209 |
+
self.input_fn,
|
210 |
+
is_training=True,
|
211 |
+
data_dir=self.flags_obj.data_dir,
|
212 |
+
jpeg_data_dir=self.flags_obj.jpeg_data_dir,
|
213 |
+
batch_size=self.batch_size,
|
214 |
+
model_dir=self.flags_obj.model_dir,
|
215 |
+
parse_record_fn=imagenet_preprocessing.parse_record,
|
216 |
+
datasets_num_private_threads=self.flags_obj
|
217 |
+
.datasets_num_private_threads,
|
218 |
+
dtype=common.get_dl_type(self.flags_obj),
|
219 |
+
drop_remainder=True,
|
220 |
+
dataset_cache=self.flags_obj.dataset_cache,
|
221 |
+
experimental_preloading=self.flags_obj.experimental_preloading,
|
222 |
+
num_train_files=self.flags_obj.num_train_files,
|
223 |
+
num_eval_files=self.flags_obj.num_eval_files,
|
224 |
+
synthetic=synthetic,
|
225 |
+
manifest_path=manifest_path)
|
226 |
+
|
227 |
+
def build_synthetic_train_dataset(self):
|
228 |
+
return self.build_train_dataset(synthetic=True)
|
229 |
+
|
230 |
+
def build_eval_dataset(self, synthetic=False):
|
231 |
+
"""See base class."""
|
232 |
+
return utils.make_distributed_dataset(
|
233 |
+
self.strategy,
|
234 |
+
self.input_fn,
|
235 |
+
is_training=False,
|
236 |
+
data_dir=self.flags_obj.data_dir,
|
237 |
+
jpeg_data_dir=self.flags_obj.jpeg_data_dir,
|
238 |
+
batch_size=self.batch_size,
|
239 |
+
model_dir=self.flags_obj.model_dir,
|
240 |
+
parse_record_fn=imagenet_preprocessing.parse_record,
|
241 |
+
dtype=common.get_dl_type(self.flags_obj),
|
242 |
+
dataset_cache=self.flags_obj.dataset_cache,
|
243 |
+
experimental_preloading=self.flags_obj.experimental_preloading,
|
244 |
+
num_train_files=self.flags_obj.num_train_files,
|
245 |
+
num_eval_files=self.flags_obj.num_eval_files,
|
246 |
+
synthetic=synthetic)
|
247 |
+
|
248 |
+
def build_synthetic_eval_dataset(self):
|
249 |
+
return self.build_eval_dataset(synthetic=True)
|
250 |
+
|
251 |
+
def get_prediction_loss(self, labels, logits, training=True):
|
252 |
+
if self.one_hot:
|
253 |
+
return tf.keras.losses.categorical_crossentropy(
|
254 |
+
labels, logits, label_smoothing=self.label_smoothing)
|
255 |
+
else:
|
256 |
+
return tf.keras.losses.sparse_categorical_crossentropy(labels, logits)
|
257 |
+
|
258 |
+
def train_loop_begin(self):
|
259 |
+
"""See base class."""
|
260 |
+
# Reset all metrics
|
261 |
+
if self.train_loss:
|
262 |
+
self.train_loss.reset_states()
|
263 |
+
if self.train_accuracy:
|
264 |
+
self.train_accuracy.reset_states()
|
265 |
+
|
266 |
+
self._epoch_begin()
|
267 |
+
self.time_callback.on_batch_begin(self.epoch_helper.batch_index)
|
268 |
+
if self.profiler_callback is not None:
|
269 |
+
self.profiler_callback.on_batch_begin(self.epoch_helper.batch_index)
|
270 |
+
|
271 |
+
def train_step(self, iterator):
|
272 |
+
"""See base class."""
|
273 |
+
|
274 |
+
def step_fn_broadcast():
|
275 |
+
if hvd is not None and hvd.is_initialized():
|
276 |
+
tf.cond(self.global_step == 1,
|
277 |
+
lambda: hvd.broadcast_variables(self.model.variables + self.optimizer.variables(), root_rank=0),
|
278 |
+
lambda: tf.constant(True))
|
279 |
+
|
280 |
+
def step_fn_modeling():
|
281 |
+
if self.flags_obj.modeling:
|
282 |
+
sess = tf.compat.v1.Session()
|
283 |
+
# pbtxt generation
|
284 |
+
tf.io.write_graph(sess.graph.as_graph_def(add_shapes=True), self.flags_obj.model_dir, 'graph.pbtxt')
|
285 |
+
# meta graph generation
|
286 |
+
tf.compat.v1.train.export_meta_graph(filename='checkpoint_model.meta', meta_info_def=None, graph_def=None, saver_def=None, collection_list=None, as_text=False, graph=None, export_scope=None, clear_devices=False, clear_extraneous_savers=False, strip_default_attrs=False, save_debug_info=False)
|
287 |
+
|
288 |
+
def step_fn_accumulation_steps_enabled(loss, tape):
|
289 |
+
grads = tape.gradient(loss, self.model.trainable_variables)
|
290 |
+
|
291 |
+
if self.cur_acc_step == 0:
|
292 |
+
for i in range(len(self.accum_vars)):
|
293 |
+
self.accum_vars[i].assign(grads[i])
|
294 |
+
else: # self.cur_acc_step > 0
|
295 |
+
for i in range(len(self.accum_vars)):
|
296 |
+
self.accum_vars[i].assign_add(grads[i])
|
297 |
+
|
298 |
+
self.loss_acc.assign_add(loss)
|
299 |
+
self.cur_acc_step.assign_add(1)
|
300 |
+
|
301 |
+
if self.cur_acc_step == self.num_acc_steps:
|
302 |
+
grads_and_vars = zip(self.accum_vars, self.model.trainable_variables)
|
303 |
+
self.optimizer.apply_gradients(grads_and_vars, experimental_aggregate_gradients=False)
|
304 |
+
|
305 |
+
step_fn_broadcast()
|
306 |
+
step_fn_modeling()
|
307 |
+
|
308 |
+
if self.train_loss:
|
309 |
+
self.train_loss.update_state(self.loss_acc)
|
310 |
+
|
311 |
+
self.cur_acc_step.assign(0)
|
312 |
+
self.loss_acc.assign(0.0)
|
313 |
+
|
314 |
+
def step_fn_accumulation_steps_disabled(loss, tape):
|
315 |
+
if hvd is not None and hvd.is_initialized():
|
316 |
+
grads = tape.gradient(loss, self.model.trainable_variables)
|
317 |
+
grads_and_vars = zip(grads, self.model.trainable_variables)
|
318 |
+
self.optimizer.apply_gradients(grads_and_vars, experimental_aggregate_gradients=False)
|
319 |
+
else:
|
320 |
+
grad_utils.minimize_using_explicit_allreduce(
|
321 |
+
tape, self.optimizer, loss, self.model.trainable_variables)
|
322 |
+
|
323 |
+
step_fn_broadcast()
|
324 |
+
step_fn_modeling()
|
325 |
+
|
326 |
+
if self.train_loss:
|
327 |
+
self.train_loss.update_state(loss)
|
328 |
+
|
329 |
+
def step_fn(inputs):
|
330 |
+
"""Function to run on the device."""
|
331 |
+
images, labels = inputs
|
332 |
+
if self.one_hot:
|
333 |
+
labels = tf.cast(labels, tf.int32)
|
334 |
+
labels = tf.one_hot(labels, 1001)
|
335 |
+
labels = tf.squeeze(labels)
|
336 |
+
|
337 |
+
with tf.GradientTape() as tape:
|
338 |
+
logits = self.model(images, training=True)
|
339 |
+
prediction_loss = self.get_prediction_loss(labels, logits)
|
340 |
+
loss = tf.reduce_sum(prediction_loss) * (1.0 / self.flags_obj.batch_size)
|
341 |
+
|
342 |
+
if not self.use_lars_optimizer:
|
343 |
+
num_replicas = self.strategy.num_replicas_in_sync
|
344 |
+
|
345 |
+
if self.flags_obj.single_l2_loss_op:
|
346 |
+
l2_loss = self.flags_obj.weight_decay * tf.add_n([
|
347 |
+
tf.nn.l2_loss(v)
|
348 |
+
for v in self.model.trainable_variables
|
349 |
+
if ('bn' not in v.name)
|
350 |
+
])
|
351 |
+
|
352 |
+
loss += (l2_loss / num_replicas)
|
353 |
+
else:
|
354 |
+
loss += (tf.reduce_sum(self.model.losses) / num_replicas)
|
355 |
+
|
356 |
+
loss = loss / self.num_acc_steps
|
357 |
+
|
358 |
+
if hvd is not None and hvd.is_initialized():
|
359 |
+
tape = hvd.DistributedGradientTape(tape)
|
360 |
+
|
361 |
+
if self.num_acc_steps > 1:
|
362 |
+
step_fn_accumulation_steps_enabled(loss, tape)
|
363 |
+
else:
|
364 |
+
step_fn_accumulation_steps_disabled(loss, tape)
|
365 |
+
|
366 |
+
if self.train_accuracy:
|
367 |
+
self.train_accuracy.update_state(labels, logits)
|
368 |
+
|
369 |
+
self.strategy.run(step_fn, args=(next(iterator),))
|
370 |
+
|
371 |
+
def train_loop_end(self):
|
372 |
+
"""See base class."""
|
373 |
+
metrics = dict()
|
374 |
+
if self.train_loss:
|
375 |
+
metrics['train_loss'] = self.train_loss.result()
|
376 |
+
if self.train_accuracy:
|
377 |
+
metrics['train_accuracy'] = self.train_accuracy.result()
|
378 |
+
self.time_callback.on_batch_end(self.epoch_helper.batch_index - 1)
|
379 |
+
if self.profiler_callback is not None:
|
380 |
+
self.profiler_callback.on_batch_end(self.epoch_helper.batch_index - 1)
|
381 |
+
self._epoch_end()
|
382 |
+
return metrics
|
383 |
+
|
384 |
+
def eval_begin(self):
|
385 |
+
"""See base class."""
|
386 |
+
if self.test_loss:
|
387 |
+
self.test_loss.reset_states()
|
388 |
+
self.test_accuracy.reset_states()
|
389 |
+
epoch_num = int(self.epoch_helper.current_epoch)
|
390 |
+
self.mlperf_mlloger.start(
|
391 |
+
key=self.mlperf_mllog.constants.EVAL_START, value=None, metadata={'epoch_num': epoch_num + 1})
|
392 |
+
|
393 |
+
def eval_step(self, iterator):
|
394 |
+
"""See base class."""
|
395 |
+
|
396 |
+
def step_fn(inputs):
|
397 |
+
"""Function to run on the device."""
|
398 |
+
images, labels = inputs
|
399 |
+
if self.one_hot:
|
400 |
+
labels = tf.cast(labels, tf.int32)
|
401 |
+
labels = tf.one_hot(labels, 1001)
|
402 |
+
labels = tf.squeeze(labels)
|
403 |
+
|
404 |
+
logits = self.model(images, training=False)
|
405 |
+
loss = self.get_prediction_loss(labels, logits, training=False)
|
406 |
+
loss = tf.reduce_sum(loss) * (1.0 / self.flags_obj.batch_size)
|
407 |
+
if self.test_loss:
|
408 |
+
self.test_loss.update_state(loss)
|
409 |
+
self.test_accuracy.update_state(labels, logits)
|
410 |
+
|
411 |
+
self.strategy.run(step_fn, args=(next(iterator),))
|
412 |
+
|
413 |
+
def eval_end(self):
|
414 |
+
"""See base class."""
|
415 |
+
epoch_num = int(self.epoch_helper.current_epoch)
|
416 |
+
self.mlperf_mlloger.end(
|
417 |
+
key=self.mlperf_mllog.constants.EVAL_STOP, value=None, metadata={'epoch_num': epoch_num + 1})
|
418 |
+
|
419 |
+
local_hit = self.test_accuracy.total
|
420 |
+
local_count = self.test_accuracy.count
|
421 |
+
|
422 |
+
global_hit = local_hit
|
423 |
+
global_count = local_count
|
424 |
+
if hvd is not None and hvd.is_initialized() and self.dist_eval:
|
425 |
+
global_hit = hvd.allreduce(local_hit, op=hvd.Sum)
|
426 |
+
global_count = hvd.allreduce(local_count, op=hvd.Sum)
|
427 |
+
global_accuracy = float(global_hit / global_count)
|
428 |
+
|
429 |
+
# assign to self
|
430 |
+
self.test_accuracy.total.assign(global_hit)
|
431 |
+
self.test_accuracy.count.assign(global_count)
|
432 |
+
|
433 |
+
eval_accuracy = global_accuracy
|
434 |
+
self.eval_accuracy = eval_accuracy
|
435 |
+
self.mlperf_mlloger.event(
|
436 |
+
key=self.mlperf_mllog.constants.EVAL_ACCURACY, value=eval_accuracy, metadata={'epoch_num': epoch_num + 1})
|
437 |
+
|
438 |
+
first_epoch_num = max(epoch_num - self.flags_obj.epochs_between_evals + 1, 0)
|
439 |
+
epoch_count = self.flags_obj.epochs_between_evals
|
440 |
+
if first_epoch_num == 0:
|
441 |
+
epoch_count = self.flags_obj.eval_offset_epochs
|
442 |
+
if epoch_count == 0:
|
443 |
+
epoch_count = self.flags_obj.epochs_between_evals
|
444 |
+
self.mlperf_mlloger.end(
|
445 |
+
key=self.mlperf_mllog.constants.BLOCK_STOP,
|
446 |
+
value=None,
|
447 |
+
metadata={
|
448 |
+
'first_epoch_num': first_epoch_num + 1,
|
449 |
+
'epoch_count': epoch_count
|
450 |
+
})
|
451 |
+
|
452 |
+
past_threshold = False
|
453 |
+
if self.flags_obj.target_accuracy is not None:
|
454 |
+
past_threshold = eval_accuracy >= self.flags_obj.target_accuracy
|
455 |
+
if (hvd is not None and hvd.is_initialized() and (not self.dist_eval) ):
|
456 |
+
past_threshold = hvd.allreduce(tf.cast(past_threshold, tf.float32),
|
457 |
+
op=hvd.Sum) > 0
|
458 |
+
|
459 |
+
continue_training = True
|
460 |
+
if past_threshold:
|
461 |
+
continue_training = False
|
462 |
+
elif ( (not self.profile) and eval_accuracy <= 0.002):
|
463 |
+
continue_training = False
|
464 |
+
elif self.global_step.numpy() < self.train_steps:
|
465 |
+
self.mlperf_mlloger.start(
|
466 |
+
key=self.mlperf_mllog.constants.BLOCK_START,
|
467 |
+
value=None,
|
468 |
+
metadata={
|
469 |
+
'first_epoch_num': epoch_num + 2,
|
470 |
+
'epoch_count': self.flags_obj.epochs_between_evals
|
471 |
+
})
|
472 |
+
|
473 |
+
metrics = {
|
474 |
+
'test_accuracy': eval_accuracy,
|
475 |
+
'continue_training': continue_training,
|
476 |
+
}
|
477 |
+
if self.test_loss:
|
478 |
+
metrics['test_loss'] = self.test_loss.result()
|
479 |
+
return metrics
|
480 |
+
|
481 |
+
def warmup(self, num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]:
|
482 |
+
"""Implements device warmup with multiple steps.
|
483 |
+
|
484 |
+
This loop runs the input pipeline on synthetic data before training, thereby
|
485 |
+
allowing tf.function tracing before the dataset is accessed.
|
486 |
+
|
487 |
+
Args:
|
488 |
+
num_steps: A guideline for how many training steps to run. Note that it is
|
489 |
+
up to the model what constitutes a "step" (this may involve more than
|
490 |
+
one update to model parameters, e.g. if training a GAN).
|
491 |
+
|
492 |
+
Returns:
|
493 |
+
The function may return a dictionary of `Tensors`, which will be
|
494 |
+
written to logs and as TensorBoard summaries.
|
495 |
+
"""
|
496 |
+
self.model_state = [weight.numpy() for weight in self.model.weights]
|
497 |
+
|
498 |
+
if self.warmup_train_dataset is None:
|
499 |
+
self.warmup_train_dataset = self.build_synthetic_train_dataset()
|
500 |
+
self.warmup_train_iter = tf.nest.map_structure(iter, self.warmup_train_dataset)
|
501 |
+
|
502 |
+
if self.train_loop_fn is None:
|
503 |
+
train_fn = self.train_step
|
504 |
+
if self.use_tf_while_loop:
|
505 |
+
self.train_loop_fn = utils.create_tf_while_loop_fn(train_fn)
|
506 |
+
else:
|
507 |
+
if self.use_tf_function:
|
508 |
+
train_fn = tf.function(train_fn)
|
509 |
+
self.train_loop_fn = utils.create_loop_fn(train_fn)
|
510 |
+
|
511 |
+
self.train_loop_fn(self.warmup_train_iter, num_steps)
|
512 |
+
|
513 |
+
if self.warmup_eval_dataset is None:
|
514 |
+
self.warmup_eval_dataset = self.build_synthetic_eval_dataset()
|
515 |
+
self.warmup_eval_iter = tf.nest.map_structure(iter, self.warmup_eval_dataset)
|
516 |
+
|
517 |
+
if self.eval_loop_fn is None:
|
518 |
+
eval_fn = self.eval_step
|
519 |
+
if self.eval_use_tf_function:
|
520 |
+
eval_fn = tf.function(eval_fn)
|
521 |
+
self.eval_loop_fn = utils.create_loop_fn(eval_fn)
|
522 |
+
|
523 |
+
self.eval_loop_fn(self.warmup_eval_iter, num_steps)
|
524 |
+
|
525 |
+
return self.warmup_loop_end()
|
526 |
+
|
527 |
+
def warmup_loop_end(self):
|
528 |
+
"""See base class."""
|
529 |
+
# Reset the state
|
530 |
+
for weight, state in zip(self.model.weights, self.model_state):
|
531 |
+
weight.assign(state)
|
532 |
+
for weight in self.optimizer.weights:
|
533 |
+
weight.assign(tf.zeros(shape=weight.shape, dtype=weight.dtype))
|
534 |
+
|
535 |
+
def _epoch_begin(self):
|
536 |
+
if self.epoch_helper.epoch_begin():
|
537 |
+
self.time_callback.on_epoch_begin(self.epoch_helper.current_epoch)
|
538 |
+
if self.profiler_callback is not None:
|
539 |
+
self.profiler_callback.on_epoch_begin(self.epoch_helper.current_epoch)
|
540 |
+
|
541 |
+
def _epoch_end(self):
|
542 |
+
if self.epoch_helper.epoch_end():
|
543 |
+
self.time_callback.on_epoch_end(self.epoch_helper.current_epoch)
|
544 |
+
if self.profiler_callback is not None:
|
545 |
+
self.profiler_callback.on_epoch_end(self.epoch_helper.current_epoch)
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/utils/__init__.py
ADDED
File without changes
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/utils/optimizers/keras/backward_compatibility.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
|
2 |
+
|
3 |
+
from packaging import version
|
4 |
+
import tensorflow as tf
|
5 |
+
|
6 |
+
if version.parse(tf.__version__) <= version.parse("2.12.0"):
|
7 |
+
from tensorflow.python.framework.ops import convert_to_tensor_v2
|
8 |
+
else:
|
9 |
+
from tensorflow.python.framework.tensor_conversion import convert_to_tensor_v2
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/utils/optimizers/keras/lars_optimizer.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Layer-wise Adaptive Rate Scaling optimizer for large-batch training."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import tensorflow as tf
|
22 |
+
from tensorflow.python.training import training_ops
|
23 |
+
|
24 |
+
|
25 |
+
class LARSOptimizer(tf.keras.optimizers.legacy.Optimizer):
|
26 |
+
"""Layer-wise Adaptive Rate Scaling for large batch training.
|
27 |
+
|
28 |
+
Introduced by "Large Batch Training of Convolutional Networks" by Y. You,
|
29 |
+
I. Gitman, and B. Ginsburg. (https://arxiv.org/abs/1708.03888)
|
30 |
+
|
31 |
+
Implements the LARS learning rate scheme presented in the paper above. This
|
32 |
+
optimizer is useful when scaling the batch size to up to 32K without
|
33 |
+
significant performance degradation. It is recommended to use the optimizer
|
34 |
+
in conjunction with:
|
35 |
+
- Gradual learning rate warm-up
|
36 |
+
- Linear learning rate scaling
|
37 |
+
- Poly rule learning rate decay
|
38 |
+
|
39 |
+
Note, LARS scaling is currently only enabled for dense tensors. Sparse tensors
|
40 |
+
use the default momentum optimizer.
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
learning_rate,
|
46 |
+
momentum=0.9,
|
47 |
+
weight_decay=0.0001,
|
48 |
+
# The LARS coefficient is a hyperparameter
|
49 |
+
eeta=0.001,
|
50 |
+
epsilon=0.0,
|
51 |
+
name="LARSOptimizer",
|
52 |
+
# Enable skipping variables from LARS scaling.
|
53 |
+
# TODO(sameerkm): Enable a direct mechanism to pass a
|
54 |
+
# subset of variables to the optimizer.
|
55 |
+
skip_list=None,
|
56 |
+
use_nesterov=False,
|
57 |
+
**kwargs):
|
58 |
+
"""Construct a new LARS Optimizer.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
learning_rate: A `Tensor`, floating point value, or a schedule that is a
|
62 |
+
`tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable
|
63 |
+
that takes no arguments and returns the actual value to use. The
|
64 |
+
learning rate.
|
65 |
+
momentum: A floating point value. Momentum hyperparameter.
|
66 |
+
weight_decay: A floating point value. Weight decay hyperparameter.
|
67 |
+
eeta: LARS coefficient as used in the paper. Dfault set to LARS
|
68 |
+
coefficient from the paper. (eeta / weight_decay) determines the highest
|
69 |
+
scaling factor in LARS.
|
70 |
+
epsilon: Optional epsilon parameter to be set in models that have very
|
71 |
+
small gradients. Default set to 0.0.
|
72 |
+
name: Optional name prefix for variables and ops created by LARSOptimizer.
|
73 |
+
skip_list: List of strings to enable skipping variables from LARS scaling.
|
74 |
+
If any of the strings in skip_list is a subset of var.name, variable
|
75 |
+
'var' is skipped from LARS scaling. For a typical classification model
|
76 |
+
with batch normalization, the skip_list is ['batch_normalization',
|
77 |
+
'bias']
|
78 |
+
use_nesterov: when set to True, nesterov momentum will be enabled
|
79 |
+
**kwargs: keyword arguments.
|
80 |
+
|
81 |
+
Raises:
|
82 |
+
ValueError: If a hyperparameter is set to a non-sensical value.
|
83 |
+
"""
|
84 |
+
if momentum < 0.0:
|
85 |
+
raise ValueError("momentum should be positive: %s" % momentum)
|
86 |
+
if weight_decay < 0.0:
|
87 |
+
raise ValueError("weight_decay should be positive: %s" % weight_decay)
|
88 |
+
super(LARSOptimizer, self).__init__(name=name, **kwargs)
|
89 |
+
|
90 |
+
self._set_hyper("learning_rate", learning_rate)
|
91 |
+
|
92 |
+
# When directly using class members, instead of
|
93 |
+
# _set_hyper and _get_hyper (such as learning_rate above),
|
94 |
+
# the values are fixed after __init(), and not being
|
95 |
+
# updated during the training process.
|
96 |
+
# This provides better performance but less flexibility.
|
97 |
+
self.momentum = momentum
|
98 |
+
self.weight_decay = weight_decay
|
99 |
+
self.eeta = eeta
|
100 |
+
self.epsilon = epsilon or tf.keras.backend.epsilon()
|
101 |
+
self._skip_list = skip_list
|
102 |
+
self.use_nesterov = use_nesterov
|
103 |
+
|
104 |
+
def _prepare_local(self, var_device, var_dtype, apply_state):
|
105 |
+
lr_t = self._get_hyper("learning_rate", var_dtype)
|
106 |
+
local_step = tf.cast(self.iterations, var_dtype)
|
107 |
+
lr_t = tf.cast(lr_t(local_step), var_dtype)
|
108 |
+
learning_rate_t = tf.identity(lr_t)
|
109 |
+
|
110 |
+
apply_state[(var_device, var_dtype)].update(
|
111 |
+
dict(
|
112 |
+
learning_rate=learning_rate_t,
|
113 |
+
))
|
114 |
+
|
115 |
+
def _create_slots(self, var_list):
|
116 |
+
for v in var_list:
|
117 |
+
self.add_slot(v, "momentum")
|
118 |
+
|
119 |
+
def compute_lr(self, grad, var, coefficients):
|
120 |
+
scaled_lr = coefficients["learning_rate"]
|
121 |
+
if self._skip_list is None or not any(v in var.name
|
122 |
+
for v in self._skip_list):
|
123 |
+
w_norm = tf.norm(var, ord=2)
|
124 |
+
g_norm = tf.norm(grad, ord=2)
|
125 |
+
trust_ratio = tf.where(
|
126 |
+
tf.greater(w_norm, 0),
|
127 |
+
tf.where(
|
128 |
+
tf.greater(g_norm, 0),
|
129 |
+
(self.eeta * w_norm /
|
130 |
+
(g_norm + self.weight_decay * w_norm + self.epsilon)), 1.0), 1.0)
|
131 |
+
|
132 |
+
scaled_lr = coefficients["learning_rate"] * trust_ratio
|
133 |
+
# Add the weight regularization gradient
|
134 |
+
grad = grad + self.weight_decay * var
|
135 |
+
return scaled_lr, grad
|
136 |
+
|
137 |
+
def _apply_dense(self, grad, var, apply_state=None):
|
138 |
+
var_device, var_dtype = var.device, var.dtype.base_dtype
|
139 |
+
coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
140 |
+
or self._fallback_apply_state(var_device, var_dtype))
|
141 |
+
|
142 |
+
scaled_lr, grad = self.compute_lr(grad, var, coefficients)
|
143 |
+
mom = self.get_slot(var, "momentum")
|
144 |
+
return training_ops.apply_momentum(
|
145 |
+
var,
|
146 |
+
mom,
|
147 |
+
tf.cast(1.0, var.dtype.base_dtype),
|
148 |
+
grad * scaled_lr,
|
149 |
+
self.momentum,
|
150 |
+
use_locking=False,
|
151 |
+
use_nesterov=self.use_nesterov)
|
152 |
+
|
153 |
+
def _resource_apply_dense(self, grad, var, apply_state=None):
|
154 |
+
var_device, var_dtype = var.device, var.dtype.base_dtype
|
155 |
+
coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
156 |
+
or self._fallback_apply_state(var_device, var_dtype))
|
157 |
+
|
158 |
+
scaled_lr, grad = self.compute_lr(grad, var, coefficients)
|
159 |
+
mom = self.get_slot(var, "momentum")
|
160 |
+
|
161 |
+
# ============================================================
|
162 |
+
return training_ops.resource_apply_keras_momentum(
|
163 |
+
var.handle,
|
164 |
+
mom.handle,
|
165 |
+
scaled_lr,
|
166 |
+
grad,
|
167 |
+
self.momentum,
|
168 |
+
use_locking=False,
|
169 |
+
use_nesterov=self.use_nesterov)
|
170 |
+
# ============================================================
|
171 |
+
|
172 |
+
# ============================================================
|
173 |
+
# mom_t = mom * self.momentum - grad * scaled_lr
|
174 |
+
# mom_t = state_ops.assign(mom, mom_t, use_locking=False)
|
175 |
+
# if self.use_nesterov:
|
176 |
+
# var_t = var + mom_t * self.momentum - grad * scaled_lr
|
177 |
+
# else:
|
178 |
+
# var_t = var + mom_t
|
179 |
+
# return state_ops.assign(var, var_t, use_locking=False).op
|
180 |
+
# ============================================================
|
181 |
+
|
182 |
+
# Fallback to momentum optimizer for sparse tensors
|
183 |
+
def _apply_sparse(self, grad, var, apply_state=None):
|
184 |
+
var_device, var_dtype = var.device, var.dtype.base_dtype
|
185 |
+
coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
186 |
+
or self._fallback_apply_state(var_device, var_dtype))
|
187 |
+
|
188 |
+
mom = self.get_slot(var, "momentum")
|
189 |
+
return training_ops.sparse_apply_momentum(
|
190 |
+
var,
|
191 |
+
mom,
|
192 |
+
coefficients["learning_rate"],
|
193 |
+
grad.values,
|
194 |
+
grad.indices,
|
195 |
+
self.momentum,
|
196 |
+
use_locking=False,
|
197 |
+
use_nesterov=self.use_nesterov)
|
198 |
+
|
199 |
+
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
|
200 |
+
var_device, var_dtype = var.device, var.dtype.base_dtype
|
201 |
+
coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
202 |
+
or self._fallback_apply_state(var_device, var_dtype))
|
203 |
+
|
204 |
+
mom = self.get_slot(var, "momentum")
|
205 |
+
return training_ops.resource_sparse_apply_keras_momentum(
|
206 |
+
var.handle,
|
207 |
+
mom.handle,
|
208 |
+
coefficients["learning_rate"],
|
209 |
+
grad,
|
210 |
+
indices,
|
211 |
+
self.momentum,
|
212 |
+
use_locking=False,
|
213 |
+
use_nesterov=self.use_nesterov)
|
214 |
+
|
215 |
+
def get_config(self):
|
216 |
+
config = super(LARSOptimizer, self).get_config()
|
217 |
+
config.update({
|
218 |
+
"learning_rate": self._serialize_hyperparameter("learning_rate"),
|
219 |
+
"momentum": self.momentum,
|
220 |
+
"weight_decay": self.weight_decay,
|
221 |
+
"eeta": self.eeta,
|
222 |
+
"epsilon": self.epsilon,
|
223 |
+
"use_nesterov": self.use_nesterov,
|
224 |
+
})
|
225 |
+
return config
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/Resnets/utils/optimizers/keras/lars_util.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
# Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
|
16 |
+
# ==============================================================================
|
17 |
+
"""Enable Layer-wise Adaptive Rate Scaling optimizer in ResNet."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import
|
20 |
+
from __future__ import division
|
21 |
+
from __future__ import print_function
|
22 |
+
|
23 |
+
from absl import flags
|
24 |
+
import tensorflow as tf
|
25 |
+
from TensorFlow.computer_vision.Resnets.utils.optimizers.keras import backward_compatibility
|
26 |
+
|
27 |
+
from tensorflow.python.eager import context
|
28 |
+
from tensorflow.python.framework import ops
|
29 |
+
from tensorflow.python.ops import math_ops
|
30 |
+
FLAGS = flags.FLAGS
|
31 |
+
|
32 |
+
|
33 |
+
def define_lars_flags():
|
34 |
+
"""Defines flags needed by LARS optimizer."""
|
35 |
+
|
36 |
+
flags.DEFINE_float(
|
37 |
+
'end_learning_rate',
|
38 |
+
default=None,
|
39 |
+
help=('Polynomial decay end learning rate.'))
|
40 |
+
|
41 |
+
flags.DEFINE_float(
|
42 |
+
'lars_epsilon', default=0.0, help=('Override autoselected LARS epsilon.'))
|
43 |
+
|
44 |
+
flags.DEFINE_float(
|
45 |
+
'warmup_epochs',
|
46 |
+
default=None,
|
47 |
+
help=('Override autoselected polynomial decay warmup epochs.'))
|
48 |
+
|
49 |
+
flags.DEFINE_float(
|
50 |
+
'momentum',
|
51 |
+
default=0.9,
|
52 |
+
help=('Momentum parameter used in the MomentumOptimizer.'))
|
53 |
+
|
54 |
+
flags.DEFINE_float(
|
55 |
+
'lars_decay_epochs',
|
56 |
+
default=None,
|
57 |
+
help=('Momentum parameter used in the MomentumOptimizer.'))
|
58 |
+
|
59 |
+
|
60 |
+
class PolynomialDecayWithWarmup(
|
61 |
+
tf.keras.optimizers.schedules.LearningRateSchedule):
|
62 |
+
"""A LearningRateSchedule that uses a polynomial decay with warmup."""
|
63 |
+
|
64 |
+
def __init__(self,
|
65 |
+
batch_size,
|
66 |
+
steps_per_epoch,
|
67 |
+
train_steps,
|
68 |
+
initial_learning_rate=None,
|
69 |
+
end_learning_rate=None,
|
70 |
+
warmup_epochs=None,
|
71 |
+
compute_lr_on_cpu=False,
|
72 |
+
name=None,
|
73 |
+
mlperf_mlloger=None,
|
74 |
+
mlperf_mllog=None):
|
75 |
+
"""Applies a polynomial decay to the learning rate with warmup."""
|
76 |
+
super(PolynomialDecayWithWarmup, self).__init__()
|
77 |
+
|
78 |
+
self.batch_size = batch_size
|
79 |
+
self.steps_per_epoch = steps_per_epoch
|
80 |
+
self.train_steps = train_steps
|
81 |
+
self.name = name
|
82 |
+
self.learning_rate_ops_cache = {}
|
83 |
+
self.compute_lr_on_cpu = compute_lr_on_cpu
|
84 |
+
|
85 |
+
if batch_size < 16384:
|
86 |
+
self.initial_learning_rate = 10.0
|
87 |
+
warmup_epochs_ = 5
|
88 |
+
elif batch_size < 32768:
|
89 |
+
self.initial_learning_rate = 25.0
|
90 |
+
warmup_epochs_ = 5
|
91 |
+
else:
|
92 |
+
self.initial_learning_rate = 31.2
|
93 |
+
warmup_epochs_ = 25
|
94 |
+
|
95 |
+
# Override default poly learning rate and warmup epochs
|
96 |
+
if initial_learning_rate:
|
97 |
+
self.initial_learning_rate = initial_learning_rate
|
98 |
+
|
99 |
+
if end_learning_rate:
|
100 |
+
self.end_learning_rate = end_learning_rate
|
101 |
+
else:
|
102 |
+
self.end_learning_rate = 0.0001
|
103 |
+
|
104 |
+
if warmup_epochs is not None:
|
105 |
+
warmup_epochs_ = warmup_epochs
|
106 |
+
self.warmup_epochs = warmup_epochs_
|
107 |
+
|
108 |
+
opt_name = FLAGS.optimizer.lower()
|
109 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.OPT_NAME, value=opt_name)
|
110 |
+
|
111 |
+
warmup_steps = warmup_epochs_ * steps_per_epoch
|
112 |
+
self.warmup_steps = tf.cast(warmup_steps, tf.float32)
|
113 |
+
if (FLAGS.lars_decay_epochs is None):
|
114 |
+
self.decay_steps = train_steps
|
115 |
+
else:
|
116 |
+
self.decay_steps = FLAGS.lars_decay_epochs * steps_per_epoch
|
117 |
+
self.decay_steps = self.decay_steps - warmup_steps + 1
|
118 |
+
|
119 |
+
if opt_name == 'lars':
|
120 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.LARS_EPSILON, value=FLAGS.lars_epsilon)
|
121 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.LARS_OPT_WEIGHT_DECAY, value=FLAGS.weight_decay)
|
122 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.LARS_OPT_END_LR, value=self.end_learning_rate)
|
123 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.LARS_OPT_LR_DECAY_STEPS, value=int(self.decay_steps))
|
124 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.LARS_OPT_LR_DECAY_POLY_POWER, value=2.0)
|
125 |
+
mlperf_mlloger.event(key='lars_opt_momentum', value=FLAGS.momentum)
|
126 |
+
elif opt_name == 'sgd':
|
127 |
+
mlperf_mlloger.event(key=mlperf_mllog.constants.OPT_WEIGHT_DECAY, value=FLAGS.weight_decay)
|
128 |
+
mlperf_mlloger.event(key='opt_momentum', value=FLAGS.momentum)
|
129 |
+
else:
|
130 |
+
print('NOT Supported')
|
131 |
+
mlperf_mlloger.event(key=opt_name+'_'+mlperf_mllog.constants.OPT_LR_WARMUP_EPOCHS, value=warmup_epochs_)
|
132 |
+
mlperf_mlloger.event(key=opt_name+'_'+mlperf_mllog.constants.OPT_BASE_LR, value=self.initial_learning_rate)
|
133 |
+
|
134 |
+
self.poly_rate_scheduler = tf.keras.optimizers.schedules.PolynomialDecay(
|
135 |
+
initial_learning_rate=self.initial_learning_rate,
|
136 |
+
decay_steps=self.decay_steps,
|
137 |
+
end_learning_rate=self.end_learning_rate,
|
138 |
+
power=2.0)
|
139 |
+
|
140 |
+
def __call__(self, step):
|
141 |
+
if tf.executing_eagerly():
|
142 |
+
return self._get_learning_rate(step)
|
143 |
+
|
144 |
+
# In an eager function or graph, the current implementation of optimizer
|
145 |
+
# repeatedly call and thus create ops for the learning rate schedule. To
|
146 |
+
# avoid this, we cache the ops if not executing eagerly.
|
147 |
+
graph = tf.compat.v1.get_default_graph()
|
148 |
+
if graph not in self.learning_rate_ops_cache:
|
149 |
+
if self.compute_lr_on_cpu:
|
150 |
+
with tf.device('/device:CPU:0'):
|
151 |
+
self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
|
152 |
+
else:
|
153 |
+
self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
|
154 |
+
return self.learning_rate_ops_cache[graph]
|
155 |
+
|
156 |
+
def _get_learning_rate(self, step):
|
157 |
+
with ops.name_scope_v2(self.name or 'PolynomialDecayWithWarmup') as name:
|
158 |
+
|
159 |
+
initial_learning_rate = backward_compatibility.convert_to_tensor_v2(
|
160 |
+
self.initial_learning_rate, name='initial_learning_rate')
|
161 |
+
warmup_steps = backward_compatibility.convert_to_tensor_v2(
|
162 |
+
self.warmup_steps, name='warmup_steps')
|
163 |
+
|
164 |
+
warmup_rate = (
|
165 |
+
initial_learning_rate * step / warmup_steps)
|
166 |
+
|
167 |
+
poly_steps = math_ops.maximum(math_ops.subtract(step, warmup_steps), 1)
|
168 |
+
poly_rate = self.poly_rate_scheduler(poly_steps)
|
169 |
+
|
170 |
+
decay_rate = tf.where(step <= warmup_steps,
|
171 |
+
warmup_rate, poly_rate, name=name)
|
172 |
+
return decay_rate
|
173 |
+
|
174 |
+
def get_config(self):
|
175 |
+
return {
|
176 |
+
'batch_size': self.batch_size,
|
177 |
+
'steps_per_epoch': self.steps_per_epoch,
|
178 |
+
'train_steps': self.train_steps,
|
179 |
+
'initial_learning_rate': self.initial_learning_rate,
|
180 |
+
'end_learning_rate': self.end_learning_rate,
|
181 |
+
'warmup_epochs': self.warmup_epochs,
|
182 |
+
'name': self.name,
|
183 |
+
}
|
docker/intel_code/llama13b/Model-References/MLPERF3.1/Training/benchmarks/resnet/implementations/TensorFlow/computer_vision/__init__.py
ADDED
File without changes
|