applied-ai-018 commited on
Commit
ae8826c
·
verified ·
1 Parent(s): 833c6bc

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. docker/intel_code/llama13b/Model-References/PyTorch/examples/computer_vision/data/MNIST/raw/t10k-images-idx3-ubyte.gz +3 -0
  2. docker/intel_code/llama13b/Model-References/PyTorch/examples/computer_vision/data/MNIST/raw/train-labels-idx1-ubyte.gz +3 -0
  3. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/CODEOWNERS +1 -0
  4. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/LICENSE +265 -0
  5. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/MANIFEST.in +2 -0
  6. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/README.md +110 -0
  7. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/SECURITY.md +41 -0
  8. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/examples/pretrain_gpt_distributed.sh +48 -0
  9. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/examples/pretrain_t5_distributed_with_mp.sh +48 -0
  10. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/pretrain_bert.py +147 -0
  11. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/pretrain_gpt.py +294 -0
  12. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/pretrain_ict.py +167 -0
  13. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/pretrain_t5.py +134 -0
  14. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/pretrain_vit.py +91 -0
  15. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/requirements.txt +5 -0
  16. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/setup.py +91 -0
  17. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/LICENSE +204 -0
  18. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/bert_config.json +13 -0
  19. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/checkpoints/.keep +0 -0
  20. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/BooksDownloader.py +26 -0
  21. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/BookscorpusTextFormatting.py +32 -0
  22. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/Downloader.py +86 -0
  23. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/GLUEDownloader.py +46 -0
  24. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/GooglePretrainedWeightDownloader.py +158 -0
  25. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/NVIDIAPretrainedWeightDownloader.py +27 -0
  26. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/SquadDownloader.py +54 -0
  27. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/TextSharding.py +327 -0
  28. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/WikiDownloader.py +55 -0
  29. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/WikicorpusTextFormatting.py +46 -0
  30. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/__init__.py +12 -0
  31. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/bertPrep.py +363 -0
  32. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/create_datasets_from_start.sh +51 -0
  33. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/squad/squad_download.sh +73 -0
  34. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/file_utils.py +263 -0
  35. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/gpu_migration_logs/gpu_migration_5494.log +84 -0
  36. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/inference.py +349 -0
  37. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/patches/minimal_changes.diff +28 -0
  38. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/patches/performance_improvements.diff +108 -0
  39. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/patches/use_packed_dataset.diff +430 -0
  40. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/processors/__init__.py +0 -0
  41. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/processors/glue.py +325 -0
  42. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/requirements.txt +16 -0
  43. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/results/.keep +0 -0
  44. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/results/checkpoints/lddl_log/node-0.txt +0 -0
  45. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/results/checkpoints/lddl_log/node-0_local-0.txt +0 -0
  46. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/results/dllogger.json +0 -0
  47. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/run.sub +76 -0
  48. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/run_pretraining.py +818 -0
  49. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/run_squad.py +1200 -0
  50. docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/run_swag.py +570 -0
docker/intel_code/llama13b/Model-References/PyTorch/examples/computer_vision/data/MNIST/raw/t10k-images-idx3-ubyte.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d422c7b0a1c1c79245a5bcf07fe86e33eeafee792b84584aec276f5a2dbc4e6
3
+ size 1648877
docker/intel_code/llama13b/Model-References/PyTorch/examples/computer_vision/data/MNIST/raw/train-labels-idx1-ubyte.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3552534a0a558bbed6aed32b30c495cca23d567ec52cac8be1a0730e8010255c
3
+ size 28881
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/CODEOWNERS ADDED
@@ -0,0 +1 @@
 
 
1
+ * @jeffra @samyam @tjruwase @ShadenSmith @conglongli @awan-10 @cli99 @eltonzheng @minjiaz @RezaYazdaniAminabadi @duli2012 @mrwyattii @yaozhewei @arashb @xiaoxiawu-microsoft @guanhuawang
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/LICENSE ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The following applies to all files unless otherwise noted:
2
+
3
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Redistribution and use in source and binary forms, with or without
6
+ # modification, are permitted provided that the following conditions
7
+ # are met:
8
+ # * Redistributions of source code must retain the above copyright
9
+ # notice, this list of conditions and the following disclaimer.
10
+ # * Redistributions in binary form must reproduce the above copyright
11
+ # notice, this list of conditions and the following disclaimer in the
12
+ # documentation and/or other materials provided with the distribution.
13
+ # * Neither the name of NVIDIA CORPORATION nor the names of its
14
+ # contributors may be used to endorse or promote products derived
15
+ # from this software without specific prior written permission.
16
+ #
17
+ # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
18
+ # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
+ # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20
+ # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21
+ # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22
+ # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23
+ # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24
+ # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
25
+ # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
+ # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
+ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
+
29
+ --
30
+
31
+ This repository also contains code from Hugging Face Inc., Google Research,
32
+ Facebook (from their Fairseq project), and Philip Popien. Files from these
33
+ organizations have notices at the top of each file. Below are licenses
34
+ used in those files, as indicated.
35
+
36
+
37
+ ------------- LICENSE FOR huggingface and Google Research code --------------
38
+
39
+
40
+ Apache License
41
+ Version 2.0, January 2004
42
+ http://www.apache.org/licenses/
43
+
44
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
45
+
46
+ 1. Definitions.
47
+
48
+ "License" shall mean the terms and conditions for use, reproduction,
49
+ and distribution as defined by Sections 1 through 9 of this document.
50
+
51
+ "Licensor" shall mean the copyright owner or entity authorized by
52
+ the copyright owner that is granting the License.
53
+
54
+ "Legal Entity" shall mean the union of the acting entity and all
55
+ other entities that control, are controlled by, or are under common
56
+ control with that entity. For the purposes of this definition,
57
+ "control" means (i) the power, direct or indirect, to cause the
58
+ direction or management of such entity, whether by contract or
59
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
60
+ outstanding shares, or (iii) beneficial ownership of such entity.
61
+
62
+ "You" (or "Your") shall mean an individual or Legal Entity
63
+ exercising permissions granted by this License.
64
+
65
+ "Source" form shall mean the preferred form for making modifications,
66
+ including but not limited to software source code, documentation
67
+ source, and configuration files.
68
+
69
+ "Object" form shall mean any form resulting from mechanical
70
+ transformation or translation of a Source form, including but
71
+ not limited to compiled object code, generated documentation,
72
+ and conversions to other media types.
73
+
74
+ "Work" shall mean the work of authorship, whether in Source or
75
+ Object form, made available under the License, as indicated by a
76
+ copyright notice that is included in or attached to the work
77
+ (an example is provided in the Appendix below).
78
+
79
+ "Derivative Works" shall mean any work, whether in Source or Object
80
+ form, that is based on (or derived from) the Work and for which the
81
+ editorial revisions, annotations, elaborations, or other modifications
82
+ represent, as a whole, an original work of authorship. For the purposes
83
+ of this License, Derivative Works shall not include works that remain
84
+ separable from, or merely link (or bind by name) to the interfaces of,
85
+ the Work and Derivative Works thereof.
86
+
87
+ "Contribution" shall mean any work of authorship, including
88
+ the original version of the Work and any modifications or additions
89
+ to that Work or Derivative Works thereof, that is intentionally
90
+ submitted to Licensor for inclusion in the Work by the copyright owner
91
+ or by an individual or Legal Entity authorized to submit on behalf of
92
+ the copyright owner. For the purposes of this definition, "submitted"
93
+ means any form of electronic, verbal, or written communication sent
94
+ to the Licensor or its representatives, including but not limited to
95
+ communication on electronic mailing lists, source code control systems,
96
+ and issue tracking systems that are managed by, or on behalf of, the
97
+ Licensor for the purpose of discussing and improving the Work, but
98
+ excluding communication that is conspicuously marked or otherwise
99
+ designated in writing by the copyright owner as "Not a Contribution."
100
+
101
+ "Contributor" shall mean Licensor and any individual or Legal Entity
102
+ on behalf of whom a Contribution has been received by Licensor and
103
+ subsequently incorporated within the Work.
104
+
105
+ 2. Grant of Copyright License. Subject to the terms and conditions of
106
+ this License, each Contributor hereby grants to You a perpetual,
107
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
108
+ copyright license to reproduce, prepare Derivative Works of,
109
+ publicly display, publicly perform, sublicense, and distribute the
110
+ Work and such Derivative Works in Source or Object form.
111
+
112
+ 3. Grant of Patent License. Subject to the terms and conditions of
113
+ this License, each Contributor hereby grants to You a perpetual,
114
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
115
+ (except as stated in this section) patent license to make, have made,
116
+ use, offer to sell, sell, import, and otherwise transfer the Work,
117
+ where such license applies only to those patent claims licensable
118
+ by such Contributor that are necessarily infringed by their
119
+ Contribution(s) alone or by combination of their Contribution(s)
120
+ with the Work to which such Contribution(s) was submitted. If You
121
+ institute patent litigation against any entity (including a
122
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
123
+ or a Contribution incorporated within the Work constitutes direct
124
+ or contributory patent infringement, then any patent licenses
125
+ granted to You under this License for that Work shall terminate
126
+ as of the date such litigation is filed.
127
+
128
+ 4. Redistribution. You may reproduce and distribute copies of the
129
+ Work or Derivative Works thereof in any medium, with or without
130
+ modifications, and in Source or Object form, provided that You
131
+ meet the following conditions:
132
+
133
+ (a) You must give any other recipients of the Work or
134
+ Derivative Works a copy of this License; and
135
+
136
+ (b) You must cause any modified files to carry prominent notices
137
+ stating that You changed the files; and
138
+
139
+ (c) You must retain, in the Source form of any Derivative Works
140
+ that You distribute, all copyright, patent, trademark, and
141
+ attribution notices from the Source form of the Work,
142
+ excluding those notices that do not pertain to any part of
143
+ the Derivative Works; and
144
+
145
+ (d) If the Work includes a "NOTICE" text file as part of its
146
+ distribution, then any Derivative Works that You distribute must
147
+ include a readable copy of the attribution notices contained
148
+ within such NOTICE file, excluding those notices that do not
149
+ pertain to any part of the Derivative Works, in at least one
150
+ of the following places: within a NOTICE text file distributed
151
+ as part of the Derivative Works; within the Source form or
152
+ documentation, if provided along with the Derivative Works; or,
153
+ within a display generated by the Derivative Works, if and
154
+ wherever such third-party notices normally appear. The contents
155
+ of the NOTICE file are for informational purposes only and
156
+ do not modify the License. You may add Your own attribution
157
+ notices within Derivative Works that You distribute, alongside
158
+ or as an addendum to the NOTICE text from the Work, provided
159
+ that such additional attribution notices cannot be construed
160
+ as modifying the License.
161
+
162
+ You may add Your own copyright statement to Your modifications and
163
+ may provide additional or different license terms and conditions
164
+ for use, reproduction, or distribution of Your modifications, or
165
+ for any such Derivative Works as a whole, provided Your use,
166
+ reproduction, and distribution of the Work otherwise complies with
167
+ the conditions stated in this License.
168
+
169
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
170
+ any Contribution intentionally submitted for inclusion in the Work
171
+ by You to the Licensor shall be under the terms and conditions of
172
+ this License, without any additional terms or conditions.
173
+ Notwithstanding the above, nothing herein shall supersede or modify
174
+ the terms of any separate license agreement you may have executed
175
+ with Licensor regarding such Contributions.
176
+
177
+ 6. Trademarks. This License does not grant permission to use the trade
178
+ names, trademarks, service marks, or product names of the Licensor,
179
+ except as required for reasonable and customary use in describing the
180
+ origin of the Work and reproducing the content of the NOTICE file.
181
+
182
+ 7. Disclaimer of Warranty. Unless required by applicable law or
183
+ agreed to in writing, Licensor provides the Work (and each
184
+ Contributor provides its Contributions) on an "AS IS" BASIS,
185
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
186
+ implied, including, without limitation, any warranties or conditions
187
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
188
+ PARTICULAR PURPOSE. You are solely responsible for determining the
189
+ appropriateness of using or redistributing the Work and assume any
190
+ risks associated with Your exercise of permissions under this License.
191
+
192
+ 8. Limitation of Liability. In no event and under no legal theory,
193
+ whether in tort (including negligence), contract, or otherwise,
194
+ unless required by applicable law (such as deliberate and grossly
195
+ negligent acts) or agreed to in writing, shall any Contributor be
196
+ liable to You for damages, including any direct, indirect, special,
197
+ incidental, or consequential damages of any character arising as a
198
+ result of this License or out of the use or inability to use the
199
+ Work (including but not limited to damages for loss of goodwill,
200
+ work stoppage, computer failure or malfunction, or any and all
201
+ other commercial damages or losses), even if such Contributor
202
+ has been advised of the possibility of such damages.
203
+
204
+ 9. Accepting Warranty or Additional Liability. While redistributing
205
+ the Work or Derivative Works thereof, You may choose to offer,
206
+ and charge a fee for, acceptance of support, warranty, indemnity,
207
+ or other liability obligations and/or rights consistent with this
208
+ License. However, in accepting such obligations, You may act only
209
+ on Your own behalf and on Your sole responsibility, not on behalf
210
+ of any other Contributor, and only if You agree to indemnify,
211
+ defend, and hold each Contributor harmless for any liability
212
+ incurred by, or claims asserted against, such Contributor by reason
213
+ of your accepting any such warranty or additional liability.
214
+
215
+ END OF TERMS AND CONDITIONS
216
+
217
+ APPENDIX: How to apply the Apache License to your work.
218
+
219
+ To apply the Apache License to your work, attach the following
220
+ boilerplate notice, with the fields enclosed by brackets "[]"
221
+ replaced with your own identifying information. (Don't include
222
+ the brackets!) The text should be enclosed in the appropriate
223
+ comment syntax for the file format. We also recommend that a
224
+ file or class name and description of purpose be included on the
225
+ same "printed page" as the copyright notice for easier
226
+ identification within third-party archives.
227
+
228
+ Copyright [yyyy] [name of copyright owner]
229
+
230
+ Licensed under the Apache License, Version 2.0 (the "License");
231
+ you may not use this file except in compliance with the License.
232
+ You may obtain a copy of the License at
233
+
234
+ http://www.apache.org/licenses/LICENSE-2.0
235
+
236
+ Unless required by applicable law or agreed to in writing, software
237
+ distributed under the License is distributed on an "AS IS" BASIS,
238
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
239
+ See the License for the specific language governing permissions and
240
+ limitations under the License.
241
+
242
+ ------------- LICENSE FOR Facebook Fairseq code --------------
243
+
244
+ MIT License
245
+
246
+ Copyright (c) Facebook, Inc. and its affiliates.
247
+
248
+ Permission is hereby granted, free of charge, to any person obtaining a copy
249
+ of this software and associated documentation files (the "Software"), to deal
250
+ in the Software without restriction, including without limitation the rights
251
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
252
+ copies of the Software, and to permit persons to whom the Software is
253
+ furnished to do so, subject to the following conditions:
254
+
255
+ The above copyright notice and this permission notice shall be included in all
256
+ copies or substantial portions of the Software.
257
+
258
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
259
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
260
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
261
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
262
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
263
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
264
+ SOFTWARE.
265
+
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/MANIFEST.in ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ include megatron/data/Makefile
2
+ include megatron/data/helpers.cpp
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Megatron-DeepSpeed BLOOM for GPU Migration Toolkit
2
+ This directory provides scripts for training large transformer language models such as Bloom at scale and is tested and maintained by Habana.
3
+
4
+ The model has been enabled using an experimental feature called GPU Migration Toolkit. For more details, refer to [GPU Migration Toolkit documentation](https://docs.habana.ai/en/latest/PyTorch/PyTorch_Model_Porting/GPU_Migration_Toolkit/GPU_Migration_Toolkit.html). NOTE: You can review the [BLOOM model](https://github.com/HabanaAI/Model-References/tree/master/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed) enabled with a more traditional approach.
5
+
6
+ For more information on training and inference of deep learning models using Gaudi, refer to [developer.habana.ai](https://developer.habana.ai/resources/). To obtain model performance data, refer to the [Habana Model Performance Data page](https://developer.habana.ai/resources/habana-models-performance/#performance).
7
+
8
+ ## Table of Contents
9
+ * [Model References](https://github.com/HabanaAI/Model-References/blob/master/README.md)
10
+ * [Model Overview](#model-overview)
11
+ * [Setup](#setup)
12
+ * [Training and Examples](#training-and-examples)
13
+ * [Enabling the Model from scratch](#enabling-the-model-from-scratch)
14
+ * [GPU Migration Toolkit Logs](#gpu-migration-logs)
15
+
16
+ ## Model Overview
17
+ This implementation is based on https://github.com/microsoft/Megatron-DeepSpeed at 0c58dbb. Megatron ([1](https://arxiv.org/pdf/1909.08053.pdf) and [2](https://arxiv.org/pdf/2104.04473.pdf) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. Codebase is capable of efficiently training very large (hundreds of billions of parameters) language models with both model and data parallelism.
18
+
19
+ Enabling model functionality is made easy by GPU Migration Toolkit. While some performance optimizations are usually still required, GPU Migration Toolkit handles several steps required.
20
+
21
+ The following is a list of the different advantages of using GPU Migration Toolkit:
22
+ - Re-checking the device type in multiple places is not required.
23
+ - Passing additional ‘device’ parameters to scripts and objects is not required.
24
+
25
+ For further details, refer to [Enabling the Model from Scratch](#enabling-the-model-from-scratch).
26
+
27
+ ### How to use
28
+ Users acknowledge and understand that the models referenced by Habana are mere examples for models that can be run on Gaudi. Users bear sole liability and responsibility to follow and comply with any third party licenses pertaining to such models, and Habana Labs disclaims and will bear no any warranty or liability with respect to users' use or compliance with such third party licenses.
29
+
30
+ ## Setup
31
+ Please follow the instructions provided in the [Gaudi Installation Guide](https://docs.habana.ai/en/latest/Installation_Guide/index.html) to set up the environment including the $PYTHON environment variable.
32
+ To achieve the best performance, please follow the methods outlined in the Optimizing Training Platform guide. The guides will walk you through the process of setting up your system to run the model on Gaudi2.
33
+
34
+ ### Clone Habana Model-References
35
+ In the docker container, clone this repository and switch to the branch that matches your SynapseAI version.
36
+ You can run the [`hl-smi`](https://docs.habana.ai/en/latest/System_Management_Tools_Guide/System_Management_Tools.html#hl-smi-utility-options) utility to determine the SynapseAI version.
37
+
38
+ ```bash
39
+ git clone -b [SynapseAI version] https://github.com/HabanaAI/Model-References
40
+ ```
41
+
42
+ For convenience, export a MODEL_REFERENCES_PATH & PYTHONPATH environment variable:
43
+ ```bash
44
+ export MODEL_REFERENCES_ROOT=/path/to/Model-References
45
+ ```
46
+
47
+ ### Install Model Requirements
48
+ - In the docker container, go to the model directory:
49
+ ```bash
50
+ cd Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed
51
+ ```
52
+
53
+ - Install the required packages using pip:
54
+ ```bash
55
+ pip install -r requirements.txt
56
+ ```
57
+ ### Install Habana DeepSpeed-fork
58
+ Please follow the instructions provided in the [DeepSpeed Installation Guide](https://docs.habana.ai/en/latest/PyTorch/DeepSpeed/Getting_Started_with_DeepSpeed/Getting_Started_with_DeepSpeed.html) to install deepspeed-fork.
59
+
60
+ ### Install Apex
61
+ Please follow the instructions provided [here](https://docs.habana.ai/en/latest/PyTorch/PyTorch_Model_Porting/GPU_Migration_Toolkit/GPU_Migration_Toolkit.html#limitations) to install Apex.
62
+
63
+ ### Dataset Preparation
64
+ Follow the instructions in https://github.com/bigscience-workshop/bigscience/tree/master/data/oscar to download oscar-en full dataset. Note that the dataset takes around 550G of disk space.
65
+
66
+ ## Training and Examples
67
+ Bloom13B model training is based on https://github.com/bigscience-workshop/bigscience/blob/master/train/tr1-13B-base/tr1-13B-round1.slurm.
68
+
69
+ ### Multi-Card Training Examples
70
+ - Update data root directory with a path of your choice:
71
+ ```bash
72
+ export HL_DATA_DIR_ROOT=/data/bigscience/oscar-en
73
+ ```
74
+ - Run BLOOM on 8 HPUs with BF16 precision. Make sure to change the IP addresses in hostsfile according to your setup.
75
+ ```bash
76
+ HL_HOSTSFILE=scripts/hostsfile HL_NUM_NODES=1 HL_PP=2 HL_TP=4 HL_DP=1 scripts/run_bloom13b.sh
77
+ ```
78
+ ## Enabling the Model from scratch
79
+ Habana provides scripts ready-to-use on Gaudi. Listed below are the steps to enable the model from a reference source.
80
+ This section outlines the overall procedure for enabling any given model with GPU Migration Toolkit feature. However, model-specific modifications will be required to enable the functionality and improve performance.
81
+
82
+ 1. Clone the original GitHub repository and reset it to the commit this example is based on.
83
+ ```bash
84
+ git clone https://github.com/microsoft/Megatron-DeepSpeed.git && git checkout 0c58dbb
85
+ ```
86
+
87
+ 2. Navigate to Megatron-Deepspeed subfolder and install requirements:
88
+ ```bash
89
+ pip install -r requirements.txt
90
+ ```
91
+
92
+ 3. Apply a set of patches. You can stop at any patch to see which steps have been performed to reach a particular level of functionality and performance.
93
+ The first patch adds the bare minimum to run the model on HPU. For purely functional changes (without performance optimization), run the following command:
94
+ ```bash
95
+ git apply Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/patches/functional_changes.diff
96
+ ```
97
+ First patch adds:
98
+ - GPU Migration Toolkit package import in main script (pretrain_gpt.py).
99
+ - Since HPU does not support CUDA kernels, there is no requirement to compile the kernels associated with CUDA (`megatron/initialize.py`).
100
+ - Remove call to ds_report() which uses 3rd party calls to nvcc (`pretrain_gpt.py`).
101
+ - HPU does not support fused_layer_norm_cuda (as explained above), therefore LayerNorm from Apex is used instead (It is eventually overwritten to torch.optim.LayerNorm by GPU Migration Toolkit) (`megatron/model/__init__.py`).
102
+ - HPU supports BF16 data type (For this particular topology, mixed precision support directly comes from [Habana's DeepSpeed](https://docs.habana.ai/en/latest/PyTorch/DeepSpeed/DeepSpeed_User_Guide/DeepSpeed_User_Guide.html)). BF16 offers FP32-like dynamic range and loss scaling is not required in [BF16 mixed precision training](https://arxiv.org/pdf/1905.12322.pdf). Hence, cur_scale attribute is not available for BF16 Optimizer (`megatron/training.py`).
103
+ - A script for running the Bloom model. Based on https://github.com/bigscience-workshop/bigscience/blob/master/train/tr1-13B-base/tr1-13B-round1.slurm (`scripts/run_bloom13b.sh`).
104
+
105
+ 4. To improve the performance, apply the patch (which sets skip_bias_add argument to False for mpu.ColumnParallelLinear & mpu.RowParallelLinear)
106
+ ```bash
107
+ git apply Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/patches/performance_patch_1.diff
108
+ ```
109
+ ## GPU Migration Toolkit Logs
110
+ You can review GPU Migration Toolkit logs under `gpu_migration_logs/gpu_migration_424488.log`. For further information, refer to [GPU Migration Toolkit documentation](https://docs.habana.ai/en/latest/PyTorch/PyTorch_Model_Porting/GPU_Migration_Toolkit/GPU_Migration_Toolkit.html#enabling-logging-feature).
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/SECURITY.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- BEGIN MICROSOFT SECURITY.MD V0.0.7 BLOCK -->
2
+
3
+ ## Security
4
+
5
+ Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/).
6
+
7
+ If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/opensource/security/definition), please report it to us as described below.
8
+
9
+ ## Reporting Security Issues
10
+
11
+ **Please do not report security vulnerabilities through public GitHub issues.**
12
+
13
+ Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/opensource/security/create-report).
14
+
15
+ If you prefer to submit without logging in, send email to [[email protected]](mailto:[email protected]). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/opensource/security/pgpkey).
16
+
17
+ You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://aka.ms/opensource/security/msrc).
18
+
19
+ Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
20
+
21
+ * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
22
+ * Full paths of source file(s) related to the manifestation of the issue
23
+ * The location of the affected source code (tag/branch/commit or direct URL)
24
+ * Any special configuration required to reproduce the issue
25
+ * Step-by-step instructions to reproduce the issue
26
+ * Proof-of-concept or exploit code (if possible)
27
+ * Impact of the issue, including how an attacker might exploit the issue
28
+
29
+ This information will help us triage your report more quickly.
30
+
31
+ If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/opensource/security/bounty) page for more details about our active programs.
32
+
33
+ ## Preferred Languages
34
+
35
+ We prefer all communications to be in English.
36
+
37
+ ## Policy
38
+
39
+ Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/opensource/security/cvd).
40
+
41
+ <!-- END MICROSOFT SECURITY.MD BLOCK -->
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/examples/pretrain_gpt_distributed.sh ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /bin/bash
2
+
3
+ # Runs the "345M" parameter model
4
+
5
+ GPUS_PER_NODE=8
6
+ # Change for multinode config
7
+ MASTER_ADDR=localhost
8
+ MASTER_PORT=6000
9
+ NNODES=1
10
+ NODE_RANK=0
11
+ WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
12
+
13
+ DATA_PATH=<Specify path and file prefix>_text_document
14
+ CHECKPOINT_PATH=<Specify path>
15
+
16
+ DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
17
+
18
+ python -m torch.distributed.launch $DISTRIBUTED_ARGS \
19
+ pretrain_gpt.py \
20
+ --num-layers 24 \
21
+ --hidden-size 1024 \
22
+ --num-attention-heads 16 \
23
+ --micro-batch-size 8 \
24
+ --global-batch-size 64 \
25
+ --seq-length 1024 \
26
+ --max-position-embeddings 1024 \
27
+ --train-iters 500000 \
28
+ --lr-decay-iters 320000 \
29
+ --save $CHECKPOINT_PATH \
30
+ --load $CHECKPOINT_PATH \
31
+ --data-path $DATA_PATH \
32
+ --vocab-file gpt2-vocab.json \
33
+ --merge-file gpt2-merges.txt \
34
+ --data-impl mmap \
35
+ --split 949,50,1 \
36
+ --distributed-backend nccl \
37
+ --lr 0.00015 \
38
+ --lr-decay-style cosine \
39
+ --min-lr 1.0e-5 \
40
+ --weight-decay 1e-2 \
41
+ --clip-grad 1.0 \
42
+ --lr-warmup-fraction .01 \
43
+ --checkpoint-activations \
44
+ --log-interval 100 \
45
+ --save-interval 10000 \
46
+ --eval-interval 1000 \
47
+ --eval-iters 10 \
48
+ --fp16
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/examples/pretrain_t5_distributed_with_mp.sh ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ GPUS_PER_NODE=8
4
+ # Change for multinode config
5
+ MASTER_ADDR=localhost
6
+ MASTER_PORT=6000
7
+ NNODES=1
8
+ NODE_RANK=0
9
+ WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
10
+
11
+ DATA_PATH=<Specify path and file prefix>
12
+ CHECKPOINT_PATH=<Specify path>
13
+
14
+ DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
15
+
16
+ python -m torch.distributed.launch $DISTRIBUTED_ARGS \
17
+ pretrain_t5.py \
18
+ --tensor-model-parallel-size 2 \
19
+ --num-layers 12 \
20
+ --hidden-size 768 \
21
+ --num-attention-heads 12 \
22
+ --kv-channels 64 \
23
+ --ffn-hidden-size 3072 \
24
+ --encoder-seq-length 512 \
25
+ --decoder-seq-length 128 \
26
+ --micro-batch-size 16 \
27
+ --global-batch-size 2048 \
28
+ --seq-length 512 \
29
+ --max-position-embeddings 512 \
30
+ --train-iters 1000000 \
31
+ --lr-decay-iters 1000000 \
32
+ --save $CHECKPOINT_PATH \
33
+ --load $CHECKPOINT_PATH \
34
+ --data-path $DATA_PATH \
35
+ --vocab-file t5-vocab.txt \
36
+ --data-impl mmap \
37
+ --split 949,50,1 \
38
+ --lr 0.0001 \
39
+ --min-lr 0.00001 \
40
+ --lr-decay-style linear \
41
+ --lr-warmup-fraction .01 \
42
+ --weight-decay 1e-2 \
43
+ --clip-grad 1.0 \
44
+ --log-interval 100 \
45
+ --save-interval 10000 \
46
+ --eval-interval 1000 \
47
+ --eval-iters 10 \
48
+ --fp16
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/pretrain_bert.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Pretrain BERT"""
17
+
18
+ from functools import partial
19
+
20
+ import torch
21
+ import torch.nn.functional as F
22
+
23
+ from megatron import get_args
24
+ from megatron import print_rank_0
25
+ from megatron import get_timers
26
+ from megatron import mpu
27
+ from megatron.data.dataset_utils import build_train_valid_test_datasets
28
+ from megatron.model import BertModel
29
+ from megatron.training import pretrain
30
+ from megatron.utils import average_losses_across_data_parallel_group
31
+
32
+
33
+ def model_provider(pre_process=True, post_process=True):
34
+ """Build the model."""
35
+
36
+ print_rank_0('building BERT model ...')
37
+
38
+ args = get_args()
39
+ num_tokentypes = 2 if args.bert_binary_head else 0
40
+ model = BertModel(
41
+ num_tokentypes=num_tokentypes,
42
+ add_binary_head=args.bert_binary_head,
43
+ parallel_output=True,
44
+ pre_process=pre_process,
45
+ post_process=post_process)
46
+
47
+ return model
48
+
49
+
50
+ def get_batch(data_iterator):
51
+ """Build the batch."""
52
+
53
+ # Items and their type.
54
+ keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask']
55
+ datatype = torch.int64
56
+
57
+ # Broadcast data.
58
+ if data_iterator is not None:
59
+ data = next(data_iterator)
60
+ else:
61
+ data = None
62
+ data_b = mpu.broadcast_data(keys, data, datatype)
63
+
64
+ # Unpack.
65
+ tokens = data_b['text'].long()
66
+ types = data_b['types'].long()
67
+ sentence_order = data_b['is_random'].long()
68
+ loss_mask = data_b['loss_mask'].float()
69
+ lm_labels = data_b['labels'].long()
70
+ padding_mask = data_b['padding_mask'].long()
71
+
72
+ return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask
73
+
74
+
75
+ def loss_func(loss_mask, sentence_order, output_tensor):
76
+ lm_loss_, sop_logits = output_tensor
77
+
78
+ lm_loss_ = lm_loss_.float()
79
+ loss_mask = loss_mask.float()
80
+ lm_loss = torch.sum(
81
+ lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
82
+
83
+ if sop_logits is not None:
84
+ sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(),
85
+ sentence_order.view(-1),
86
+ ignore_index=-1)
87
+ sop_loss = sop_loss.float()
88
+ loss = lm_loss + sop_loss
89
+ averaged_losses = average_losses_across_data_parallel_group(
90
+ [lm_loss, sop_loss])
91
+ return loss, {'lm loss': averaged_losses[0],
92
+ 'sop loss': averaged_losses[1]}
93
+
94
+ else:
95
+ loss = lm_loss
96
+ averaged_losses = average_losses_across_data_parallel_group(
97
+ [lm_loss])
98
+ return loss, {'lm loss': averaged_losses[0]}
99
+
100
+
101
+ def forward_step(data_iterator, model):
102
+ """Forward step."""
103
+ args = get_args()
104
+ timers = get_timers()
105
+
106
+ # Get the batch.
107
+ timers('batch-generator').start()
108
+ tokens, types, sentence_order, loss_mask, lm_labels, padding_mask = get_batch(
109
+ data_iterator)
110
+ timers('batch-generator').stop()
111
+
112
+ if not args.bert_binary_head:
113
+ types = None
114
+
115
+ # Forward pass through the model.
116
+ output_tensor = model(tokens, padding_mask, tokentype_ids=types,
117
+ lm_labels=lm_labels)
118
+
119
+ return output_tensor, partial(loss_func, loss_mask, sentence_order)
120
+
121
+
122
+ def train_valid_test_datasets_provider(train_val_test_num_samples):
123
+ """Build train, valid, and test datasets."""
124
+ args = get_args()
125
+
126
+ print_rank_0('> building train, validation, and test datasets '
127
+ 'for BERT ...')
128
+ train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
129
+ data_prefix=args.data_path,
130
+ data_impl=args.data_impl,
131
+ splits_string=args.split,
132
+ train_valid_test_num_samples=train_val_test_num_samples,
133
+ max_seq_length=args.seq_length,
134
+ masked_lm_prob=args.mask_prob,
135
+ short_seq_prob=args.short_seq_prob,
136
+ seed=args.seed,
137
+ skip_warmup=(not args.mmap_warmup),
138
+ binary_head=args.bert_binary_head)
139
+ print_rank_0("> finished creating BERT datasets ...")
140
+
141
+ return train_ds, valid_ds, test_ds
142
+
143
+
144
+ if __name__ == "__main__":
145
+
146
+ pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
147
+ args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/pretrain_gpt.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Pretrain GPT"""
17
+ import habana_frameworks.torch.gpu_migration
18
+
19
+ import torch
20
+ from functools import partial
21
+ from megatron import get_args
22
+ from megatron import print_rank_0
23
+ from megatron import get_timers
24
+ from megatron import get_tokenizer
25
+ from megatron import mpu
26
+ from megatron.data.gpt_dataset import build_train_valid_test_datasets
27
+ from megatron.model import GPTModel, GPTModelPipe
28
+ from megatron.training import pretrain
29
+ from megatron.utils import get_ltor_masks_and_position_ids
30
+ from megatron.utils import average_losses_across_data_parallel_group
31
+
32
+ import deepspeed
33
+ from deepspeed.runtime.utils import see_memory_usage
34
+ import os
35
+ import subprocess
36
+
37
+ from torch import nn
38
+ import torch.nn.functional as F
39
+
40
+ def model_provider(pre_process=True, post_process=True):
41
+ """Build the model."""
42
+
43
+ print_rank_0('building GPT model ...')
44
+ see_memory_usage(f"Before Building Model", force=True)
45
+
46
+ args = get_args()
47
+ with deepspeed.zero.Init(data_parallel_group=mpu.get_data_parallel_group(),
48
+ remote_device=None if args.remote_device == 'none' else args.remote_device,
49
+ config_dict_or_path=args.deepspeed_config,
50
+ enabled=args.zero_stage == 3,
51
+ mpu=mpu):
52
+ if args.deepspeed and not args.no_pipeline_parallel:
53
+ model = GPTModelPipe(
54
+ num_tokentypes=0,
55
+ parallel_output=True
56
+ )
57
+ # This is a hack to give us a reference to get_batch_pipe from within training.py
58
+ # We need to call model.set_batch_fn after deepspeed.initialize
59
+ model._megatron_batch_fn = get_batch_pipe
60
+
61
+ # Predompute the attention mask and store it in args. This avoids having to
62
+ # pipeline it as an activation during training. The mask is constant, and thus
63
+ # we can reuse it.
64
+ attention_mask = torch.tril(torch.ones(
65
+ (1, args.seq_length, args.seq_length), device=torch.cuda.current_device())).view(
66
+ 1, 1, args.seq_length, args.seq_length)
67
+
68
+ # Convert attention mask to binary:
69
+ attention_mask = (attention_mask < 0.5)
70
+ if args.fp16:
71
+ attention_mask = attention_mask.half()
72
+ elif args.bf16:
73
+ attention_mask = attention_mask.bfloat16()
74
+
75
+ # Attention mask must be bool.
76
+ args.attn_mask = attention_mask.to(torch.bool)
77
+
78
+ else:
79
+ model = GPTModel(
80
+ num_tokentypes=0,
81
+ parallel_output=True,
82
+ pre_process=pre_process,
83
+ post_process=post_process
84
+ )
85
+ see_memory_usage(f"After Building Model", force=True)
86
+ return model
87
+
88
+
89
+ def get_batch(data_iterator):
90
+ """Generate a batch"""
91
+ args = get_args()
92
+ tokenizer = get_tokenizer()
93
+
94
+ # Items and their type.
95
+ keys = ['text']
96
+ datatype = torch.int64
97
+
98
+ # Broadcast data.
99
+ if data_iterator is not None:
100
+ data = next(data_iterator)
101
+ else:
102
+ data = None
103
+ data_b = mpu.broadcast_data(keys, data, datatype)
104
+
105
+ # Unpack.
106
+ tokens_ = data_b['text'].long()
107
+ labels = tokens_[:, 1:].contiguous()
108
+ tokens = tokens_[:, :-1].contiguous()
109
+
110
+ # Get the masks and postition ids.
111
+ attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
112
+ tokens,
113
+ tokenizer.eod,
114
+ args.reset_position_ids,
115
+ args.reset_attention_mask,
116
+ args.eod_mask_loss)
117
+
118
+ return tokens, labels, loss_mask, attention_mask, position_ids
119
+
120
+
121
+ def get_batch_pipe(data):
122
+ """Modification of `get_batch` to work on `next(data_iterator)` instead of `data_iterator`"""
123
+ args = get_args()
124
+ tokenizer = get_tokenizer()
125
+
126
+ # Items and their type.
127
+ keys = ['text']
128
+ datatype = torch.int64
129
+
130
+ # Broadcast data.
131
+ data_b = mpu.broadcast_data(keys, data, datatype)
132
+
133
+ # Unpack.
134
+ tokens_ = data_b['text'].long()
135
+ labels = tokens_[:, 1:].contiguous()
136
+ tokens = tokens_[:, :-1].contiguous()
137
+
138
+ # Get the masks and postition ids.
139
+ attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
140
+ tokens,
141
+ tokenizer.eod,
142
+ args.reset_position_ids,
143
+ args.reset_attention_mask,
144
+ args.eod_mask_loss)
145
+ if args.curriculum_learning and args.curriculum_seqlen < tokens.size()[1]:
146
+ # seqlen-based curriculum learning
147
+ # tokens, position_ids, labels, loss_mask have size [batch size, seqlen]
148
+ tokens = tokens[:, :args.curriculum_seqlen].contiguous()
149
+ position_ids = position_ids[:, :args.curriculum_seqlen].contiguous()
150
+ if labels is not None:
151
+ labels = labels[:, :args.curriculum_seqlen].contiguous()
152
+ loss_mask = loss_mask[:, :args.curriculum_seqlen].contiguous()
153
+
154
+ return (tokens, position_ids, attention_mask), (labels, loss_mask)
155
+
156
+
157
+ def loss_func(loss_mask, moe_loss, mos_loss, output_tensor):
158
+ args = get_args()
159
+ losses = output_tensor.float()
160
+ loss_mask = loss_mask.view(-1).float()
161
+ loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
162
+
163
+ # Reduce loss for logging.
164
+ averaged_loss = average_losses_across_data_parallel_group([loss])
165
+ if args.mos or args.kd:
166
+ # assert max(args.num_experts) >= 1
167
+ loss = loss + moe_loss + mos_loss
168
+ if args.mos:
169
+ return loss, {'total loss': loss, 'lm loss': averaged_loss[0], 'moe loss': moe_loss, 'mos loss': mos_loss}
170
+ elif args.kd:
171
+ return loss, {'total loss': loss, 'lm loss': averaged_loss[0], 'moe loss': moe_loss, 'kd loss': mos_loss}
172
+ print_rank_0('>>> total loss: {}, lm loss {}, kd loss {}'.format(loss, averaged_loss[0], mos_loss))
173
+ else:
174
+ if max(args.num_experts) <= 1:
175
+ return loss, {'lm loss': averaged_loss[0]}
176
+ else:
177
+ loss = loss + moe_loss
178
+ return loss, {'lm loss': averaged_loss[0], 'moe loss': moe_loss}
179
+
180
+ def calculate_mos_loss(args, stu_output, teacher_model, tokens, position_ids, attention_mask):
181
+ mos_loss = 0
182
+ alpha = args.kd_alpha_ce
183
+ beta = args.kd_beta_ce
184
+ kd_temp = args.kd_temp
185
+
186
+ if teacher_model:
187
+ with torch.no_grad():
188
+ if args.curriculum_learning and args.curriculum_seqlen < args.seq_length:
189
+ assert args.curriculum_seqlen is not None
190
+ curriculum_seqlen = args.curriculum_seqlen
191
+ tokens = tokens[:, :curriculum_seqlen].contiguous()
192
+ position_ids = position_ids[:, :curriculum_seqlen].contiguous()
193
+ attention_mask = attention_mask[:, :, :curriculum_seqlen, :curriculum_seqlen].contiguous()
194
+ # No need to truncate labels as we do not need it for the teacher logits
195
+ tea_output, *tea_other_losses = teacher_model(tokens, position_ids, attention_mask)
196
+ assert stu_output.size() == tea_output.size(), 'teacher and student output should match in size. Student: {}, Teacher: {}, CL seq length {}'.format(stu_output.size(), tea_output.size(), args.curriculum_seqlen)
197
+
198
+ student_logits = F.log_softmax(stu_output / kd_temp, dim=2)
199
+ tea_logits = F.softmax(tea_output / kd_temp, dim=2) # The target logits is expected to be probabilities. If we use log_softmax, then we need to set target_log to true when initializing the KLDivLoss.
200
+
201
+ mos_loss = kd_temp * kd_temp * nn.KLDivLoss(reduction='batchmean')(student_logits, tea_logits)
202
+
203
+ mos_loss = mos_loss.div(args.seq_length) * beta
204
+ return mos_loss
205
+
206
+ def forward_step(data_iterator, model, teacher_model=None):
207
+ """Forward step."""
208
+ args = get_args()
209
+ timers = get_timers()
210
+
211
+ # Get the batch.
212
+ timers('batch-generator').start()
213
+ tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
214
+ data_iterator)
215
+ timers('batch-generator').stop()
216
+
217
+ if args.mos or args.kd:
218
+ # The forward func can return either the loss or the logits, depending on whether passing in the labels or not.
219
+ stu_output, *other_losses = model(tokens, position_ids, attention_mask)
220
+ if args.curriculum_learning and args.curriculum_seqlen < args.seq_length:
221
+ assert args.curriculum_seqlen is not None
222
+ labels = labels[:, :args.curriculum_seqlen].contiguous()
223
+ output_tensor = mpu.vocab_parallel_cross_entropy(stu_output.contiguous().float(), labels)
224
+ else:
225
+ output_tensor, *other_losses = model(tokens, position_ids, attention_mask,
226
+ labels=labels)
227
+ if args.curriculum_learning and args.curriculum_seqlen < args.seq_length:
228
+ loss_mask = loss_mask[:, :args.curriculum_seqlen].contiguous()
229
+
230
+ moe_losses = []
231
+ for moe_loss in other_losses:
232
+ if moe_loss is not None:
233
+ moe_losses.append(moe_loss)
234
+ moe_loss = sum(moe_losses) * args.moe_loss_coeff
235
+
236
+ mos_loss = 0
237
+ if args.mos or args.kd:
238
+ assert model.training
239
+ mos_loss = calculate_mos_loss(args, stu_output, teacher_model, tokens, position_ids, attention_mask)
240
+
241
+ # Output_tensor stores the standard loss, loos_func calculates the total loss.
242
+ return output_tensor, partial(loss_func, loss_mask, moe_loss, mos_loss)
243
+
244
+
245
+ def train_valid_test_datasets_provider(train_val_test_num_samples):
246
+ """Build train, valid, and test datasets."""
247
+ args = get_args()
248
+
249
+ print_rank_0('> building train, validation, and test datasets '
250
+ 'for GPT ...')
251
+ train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
252
+ data_prefix=args.data_path,
253
+ data_impl=args.data_impl,
254
+ splits_string=args.split,
255
+ train_valid_test_num_samples=train_val_test_num_samples,
256
+ seq_length=args.seq_length,
257
+ seed=args.seed,
258
+ skip_warmup=(not args.mmap_warmup))
259
+ print_rank_0("> finished creating GPT datasets ...")
260
+
261
+ return train_ds, valid_ds, test_ds
262
+
263
+
264
+ def command_exists(cmd):
265
+ result = subprocess.Popen(f'type {cmd}', stdout=subprocess.PIPE, shell=True)
266
+ return result.wait() == 0
267
+
268
+
269
+ def git_ds_info():
270
+ from deepspeed.env_report import main as ds_report
271
+ # ds_report()
272
+
273
+ # Write out version/git info
274
+ git_hash_cmd = "git rev-parse --short HEAD"
275
+ git_branch_cmd = "git rev-parse --abbrev-ref HEAD"
276
+ if command_exists('git'):
277
+ try:
278
+ result = subprocess.check_output(git_hash_cmd, shell=True)
279
+ git_hash = result.decode('utf-8').strip()
280
+ result = subprocess.check_output(git_branch_cmd, shell=True)
281
+ git_branch = result.decode('utf-8').strip()
282
+ except subprocess.CalledProcessError:
283
+ git_hash = "unknown"
284
+ git_branch = "unknown"
285
+ else:
286
+ git_hash = "unknown"
287
+ git_branch = "unknown"
288
+ print(f'**** Git info for Megatron: git_hash={git_hash} git_branch={git_branch} ****')
289
+
290
+
291
+ if __name__ == "__main__":
292
+ git_ds_info()
293
+ pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
294
+ args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/pretrain_ict.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Pretrain BERT for Inverse Cloze Task"""
17
+ import math
18
+
19
+ import torch
20
+ import torch.distributed as dist
21
+ import torch.nn.functional as F
22
+
23
+ from megatron import get_args
24
+ from megatron import print_rank_0
25
+ from megatron import get_timers
26
+ from megatron import mpu
27
+ from megatron.data.biencoder_dataset_utils import get_ict_batch
28
+ from megatron.data.dataset_utils import build_train_valid_test_datasets
29
+ from megatron.model.biencoder_model import biencoder_model_provider
30
+ from megatron.training import pretrain
31
+ from megatron.utils import average_losses_across_data_parallel_group
32
+
33
+
34
+ def pretrain_ict_model_provider():
35
+ args = get_args()
36
+ model = biencoder_model_provider(
37
+ only_context_model=False,
38
+ only_query_model=False,
39
+ biencoder_shared_query_context_model=\
40
+ args.biencoder_shared_query_context_model)
41
+ return model
42
+
43
+ def get_group_world_size_rank():
44
+
45
+ group = mpu.get_data_parallel_group()
46
+ rank = torch.distributed.get_rank(group=group)
47
+ world_size = torch.distributed.get_world_size(group=group)
48
+
49
+ return group, rank, world_size
50
+
51
+
52
+ class AllgatherFromDataParallelRegion(torch.autograd.Function):
53
+
54
+ @staticmethod
55
+ def forward(ctx, input_):
56
+ assert input_.dim() == 2
57
+ group, rank, world_size = get_group_world_size_rank()
58
+
59
+ tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
60
+ tensor_list[rank] = input_
61
+ torch.distributed.all_gather(tensor_list, input_, group=group)
62
+
63
+ output = torch.cat(tensor_list, dim=0).contiguous()
64
+
65
+ return output
66
+
67
+
68
+ @staticmethod
69
+ def backward(ctx, grad_output):
70
+ group, rank, world_size = get_group_world_size_rank()
71
+
72
+ assert grad_output.shape[0] % world_size == 0
73
+ dim_size = grad_output.shape[0] // world_size
74
+ output_list = torch.split(grad_output, dim_size, dim=0)
75
+
76
+ # get chunk from this rank
77
+ output = output_list[rank].contiguous()
78
+ return output
79
+
80
+ def forward_step(data_iterator, model, input_tensor):
81
+ """Forward step."""
82
+ args = get_args()
83
+ timers = get_timers()
84
+
85
+ # Get the batch.
86
+ timers('batch-generator').start()
87
+ query_tokens, query_mask, \
88
+ context_tokens, context_mask, context_indices = get_ict_batch(data_iterator)
89
+ timers('batch-generator').stop()
90
+
91
+ # Query and Context Types
92
+ query_types = torch.cuda.LongTensor(*query_tokens.shape).fill_(0)
93
+ context_types = torch.cuda.LongTensor(*context_tokens.shape).fill_(0)
94
+
95
+ # Forward model.
96
+ query_logits, context_logits = model(query_tokens, query_mask,
97
+ query_types, context_tokens,
98
+ context_mask, context_types)
99
+
100
+ micro_batch_size = query_logits.shape[0]
101
+ # recall we assert that tensor_model_parallel_size == 1
102
+ assert mpu.get_tensor_model_parallel_world_size() == 1, \
103
+ "Model parallel size > 1 not supported for ICT"
104
+
105
+ global_batch_size = dist.get_world_size() * micro_batch_size
106
+ all_query_logits = AllgatherFromDataParallelRegion.apply(query_logits)
107
+ all_context_logits = AllgatherFromDataParallelRegion.apply(context_logits)
108
+
109
+ # scores are inner products between query and context embeddings
110
+ retrieval_scores = torch.matmul(all_query_logits,
111
+ torch.transpose(all_context_logits, 0, 1))
112
+ # scaling the retriever scores
113
+ if args.retriever_score_scaling:
114
+ retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size)
115
+
116
+ softmax_scores = F.log_softmax(retrieval_scores, dim=1)
117
+ sorted_vals, sorted_indices = torch.topk(softmax_scores,
118
+ k=softmax_scores.shape[1], sorted=True)
119
+
120
+ def topk_accuracy(k):
121
+ return torch.cuda.FloatTensor([sum([int(i in sorted_indices[i, :k]) \
122
+ for i in range(global_batch_size)]) / global_batch_size])
123
+
124
+ topk_accs = [topk_accuracy(int(k)) for k in args.retriever_report_topk_accuracies]
125
+
126
+ labels = torch.arange(global_batch_size).long().cuda()
127
+ loss = F.nll_loss(softmax_scores, labels, reduction='mean')
128
+ reduced_losses = average_losses_across_data_parallel_group([loss, *topk_accs])
129
+
130
+ # Scale the retrieval loss
131
+ loss = loss * mpu.get_data_parallel_world_size()
132
+
133
+ # create stats_dict with retrieval loss and all specified top-k accuracies
134
+ topk_acc_dict = {'top{}_acc'.format(k): v * 100 for k, v in \
135
+ zip(args.retriever_report_topk_accuracies, reduced_losses[1:])}
136
+ stats_dict = dict(loss=reduced_losses[0], **topk_acc_dict)
137
+ return loss, stats_dict
138
+
139
+
140
+ def train_valid_test_datasets_provider(train_val_test_num_samples):
141
+ """Build train, valid and test datasets."""
142
+ args = get_args()
143
+ print_rank_0('> building train, validation, and test datasets '
144
+ 'for BERT ICT...')
145
+
146
+ train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
147
+ data_prefix=args.data_path,
148
+ data_impl=args.data_impl,
149
+ splits_string=args.split,
150
+ train_valid_test_num_samples=train_val_test_num_samples,
151
+ max_seq_length=args.seq_length,
152
+ masked_lm_prob=args.mask_prob,
153
+ short_seq_prob=args.short_seq_prob,
154
+ seed=args.seed,
155
+ skip_warmup=(not args.mmap_warmup),
156
+ binary_head=False,
157
+ dataset_type='ict')
158
+ print_rank_0("> finished creating BERT ICT datasets ...")
159
+
160
+ return train_ds, valid_ds, test_ds
161
+
162
+
163
+ if __name__ == "__main__":
164
+ pretrain(train_valid_test_datasets_provider,
165
+ pretrain_ict_model_provider,
166
+ forward_step,
167
+ args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/pretrain_t5.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Pretrain T5"""
17
+
18
+ from functools import partial
19
+
20
+ import torch
21
+
22
+ from megatron import (
23
+ get_args,
24
+ get_timers,
25
+ mpu,
26
+ print_rank_0
27
+ )
28
+ from megatron.data.dataset_utils import build_train_valid_test_datasets
29
+ from megatron.model import T5Model
30
+ from megatron.training import pretrain
31
+ from megatron.utils import average_losses_across_data_parallel_group
32
+
33
+
34
+ def model_provider(pre_process=True, post_process=True):
35
+ """Build the model."""
36
+ assert pre_process and post_process, "T5 doesn't yet support pipelining"
37
+
38
+ print_rank_0('building T5 model ...')
39
+ model = T5Model(num_tokentypes=0,
40
+ parallel_output=True)
41
+ return model
42
+
43
+
44
+ def get_batch(data_iterator):
45
+ """Build the batch."""
46
+
47
+ keys = ['text_enc', 'text_dec', 'labels', 'loss_mask',
48
+ 'enc_mask', 'dec_mask', 'enc_dec_mask']
49
+ datatype = torch.int64
50
+
51
+ # Broadcast data.
52
+ if data_iterator is not None:
53
+ data = next(data_iterator)
54
+ else:
55
+ data = None
56
+ data_b = mpu.broadcast_data(keys, data, datatype)
57
+
58
+ # Unpack.
59
+ tokens_enc = data_b['text_enc'].long()
60
+ tokens_dec = data_b['text_dec'].long()
61
+ labels = data_b['labels'].long()
62
+ loss_mask = data_b['loss_mask'].float()
63
+
64
+ enc_mask = (data_b['enc_mask'] < 0.5)
65
+ dec_mask = (data_b['dec_mask'] < 0.5)
66
+ enc_dec_mask = (data_b['enc_dec_mask'] < 0.5)
67
+
68
+ return tokens_enc, tokens_dec, loss_mask, labels, \
69
+ enc_mask, dec_mask, enc_dec_mask
70
+
71
+
72
+ def loss_func(loss_mask, output_tensor):
73
+ lm_loss_, _ = output_tensor
74
+
75
+ lm_loss_ = lm_loss_.float()
76
+ lm_loss = torch.sum(
77
+ lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
78
+
79
+ loss = lm_loss
80
+ averaged_losses = average_losses_across_data_parallel_group([lm_loss])
81
+
82
+ return loss, {'lm loss': averaged_losses[0]}
83
+
84
+
85
+ def forward_step(data_iterator, model):
86
+ """Forward step."""
87
+ args = get_args()
88
+ timers = get_timers()
89
+
90
+ # Get the batch.
91
+ timers('batch generator').start()
92
+ tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask \
93
+ = get_batch(data_iterator)
94
+ timers('batch generator').stop()
95
+
96
+ # Forward model lm_labels
97
+ output_tensor = model(tokens_enc,
98
+ tokens_dec,
99
+ enc_mask,
100
+ dec_mask,
101
+ enc_dec_mask,
102
+ tokentype_ids=None,
103
+ lm_labels=lm_labels)
104
+
105
+ return output_tensor, partial(loss_func, loss_mask)
106
+
107
+
108
+ def train_valid_test_datasets_provider(train_val_test_num_samples):
109
+ """Build train, valid, and test datasets."""
110
+ args = get_args()
111
+
112
+ print_rank_0('> building train, validation, and test datasets '
113
+ 'for T5 ...')
114
+ train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
115
+ data_prefix=args.data_path,
116
+ data_impl=args.data_impl,
117
+ splits_string=args.split,
118
+ train_valid_test_num_samples=train_val_test_num_samples,
119
+ max_seq_length=args.encoder_seq_length,
120
+ max_seq_length_dec=args.decoder_seq_length,
121
+ masked_lm_prob=args.mask_prob,
122
+ short_seq_prob=args.short_seq_prob,
123
+ seed=args.seed,
124
+ skip_warmup=(not args.mmap_warmup),
125
+ dataset_type='t5')
126
+ print_rank_0("> finished creating T5 datasets ...")
127
+
128
+ return train_ds, valid_ds, test_ds
129
+
130
+
131
+ if __name__ == "__main__":
132
+
133
+ pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
134
+ args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/pretrain_vit.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Pretrain VIT"""
17
+
18
+ import torch
19
+ import torch.nn.functional as F
20
+ from megatron import get_args, get_timers, mpu, print_rank_0
21
+ from megatron.data.vit_dataset import build_train_valid_datasets
22
+ from megatron.model.vit_model import VitModel
23
+ from megatron.training import pretrain
24
+ from megatron.utils import average_losses_across_data_parallel_group
25
+
26
+ def model_provider():
27
+ """Build the model."""
28
+
29
+ print_rank_0("building VIT model ...")
30
+ args = get_args()
31
+
32
+ model = VitModel(num_classes=args.num_classes)
33
+ return model
34
+
35
+ def get_batch(data_iterator):
36
+ """Build the batch."""
37
+ data = next(data_iterator)
38
+
39
+ # only data parallelism; no need for broadcast
40
+ images = data[0].cuda()
41
+ labels = data[1].cuda()
42
+
43
+ return images, labels
44
+
45
+ def forward_step(data_iterator, model, input_tensor):
46
+ """Forward step."""
47
+ timers = get_timers()
48
+ assert input_tensor is None
49
+
50
+ # Get the batch.
51
+ timers("batch-generator").start()
52
+ (
53
+ images,
54
+ labels,
55
+ ) = get_batch(data_iterator)
56
+ timers("batch-generator").stop()
57
+
58
+ # Forward model. lm_labels
59
+ logits = model(images).contiguous().float()
60
+ loss = F.cross_entropy(logits, labels)
61
+
62
+ outputs = torch.argmax(logits, -1)
63
+ correct = (outputs == labels).float()
64
+ accuracy = torch.mean(correct)
65
+
66
+ averaged_loss = average_losses_across_data_parallel_group([loss, accuracy])
67
+
68
+ return loss, {"loss": averaged_loss[0], "accuracy": averaged_loss[1]}
69
+
70
+
71
+ def train_valid_test_datasets_provider(train_val_test_num_samples):
72
+ """Build train, valid, and test datasets."""
73
+ args = get_args()
74
+
75
+ print_rank_0(
76
+ "> building train, validation, and test datasets " "for VIT ..."
77
+ )
78
+ train_ds, valid_ds = build_train_valid_datasets(data_path=args.data_path)
79
+ print_rank_0("> finished creating VIT datasets ...")
80
+
81
+ return train_ds, valid_ds, None
82
+
83
+
84
+ if __name__ == "__main__":
85
+
86
+ pretrain(
87
+ train_valid_test_datasets_provider,
88
+ model_provider,
89
+ forward_step,
90
+ args_defaults={'dataloader_type': 'cyclic'}
91
+ )
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pybind11
2
+ torch
3
+ six
4
+ regex
5
+ numpy
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/DeepSpeedExamples/Megatron-DeepSpeed/setup.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Setup for pip package."""
17
+
18
+ import os
19
+ import sys
20
+ import setuptools
21
+
22
+ if sys.version_info < (3,):
23
+ raise Exception("Python 2 is not supported by Megatron.")
24
+
25
+ from megatron.package_info import (
26
+ __description__,
27
+ __contact_names__,
28
+ __url__,
29
+ __download_url__,
30
+ __keywords__,
31
+ __license__,
32
+ __package_name__,
33
+ __version__,
34
+ )
35
+
36
+ with open("README.md", "r") as fh:
37
+ long_description = fh.read()
38
+
39
+ ###############################################################################
40
+ # Dependency Loading #
41
+ # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #
42
+
43
+
44
+ def req_file(filename):
45
+ with open(filename) as f:
46
+ content = f.readlines()
47
+ return [x.strip() for x in content]
48
+
49
+
50
+ install_requires = req_file("requirements.txt")
51
+
52
+ setuptools.setup(
53
+ name=__package_name__,
54
+ # Versions should comply with PEP440. For a discussion on single-sourcing
55
+ # the version across setup.py and the project code, see
56
+ # https://packaging.python.org/en/latest/single_source_version.html
57
+ version=__version__,
58
+ description=__description__,
59
+ long_description=long_description,
60
+ long_description_content_type="text/markdown",
61
+ # The project's main homepage.
62
+ url=__url__,
63
+ author=__contact_names__,
64
+ maintainer=__contact_names__,
65
+ # The licence under which the project is released
66
+ license=__license__,
67
+ classifiers=[
68
+ 'Intended Audience :: Developers',
69
+ 'Intended Audience :: Science/Research',
70
+ 'Intended Audience :: Information Technology',
71
+ # Indicate what your project relates to
72
+ 'Topic :: Scientific/Engineering :: Artificial Intelligence',
73
+ 'Topic :: Software Development :: Libraries :: Python Modules',
74
+ # Supported python versions
75
+ 'Programming Language :: Python :: 3.6',
76
+ 'Programming Language :: Python :: 3.7',
77
+ 'Programming Language :: Python :: 3.8',
78
+ # Additional Setting
79
+ 'Environment :: Console',
80
+ 'Natural Language :: English',
81
+ 'Operating System :: OS Independent',
82
+ ],
83
+ python_requires='>=3.6',
84
+ packages=setuptools.find_packages(),
85
+ install_requires=install_requires,
86
+ # Add in any packaged data.
87
+ include_package_data=True,
88
+ zip_safe=False,
89
+ # PyPI package information.
90
+ keywords=__keywords__
91
+ )
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/LICENSE ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (C) 2023 Habana Labs Ltd. an Intel Company
2
+
3
+ Apache License
4
+ Version 2.0, January 2004
5
+ http://www.apache.org/licenses/
6
+
7
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
8
+
9
+ 1. Definitions.
10
+
11
+ "License" shall mean the terms and conditions for use, reproduction,
12
+ and distribution as defined by Sections 1 through 9 of this document.
13
+
14
+ "Licensor" shall mean the copyright owner or entity authorized by
15
+ the copyright owner that is granting the License.
16
+
17
+ "Legal Entity" shall mean the union of the acting entity and all
18
+ other entities that control, are controlled by, or are under common
19
+ control with that entity. For the purposes of this definition,
20
+ "control" means (i) the power, direct or indirect, to cause the
21
+ direction or management of such entity, whether by contract or
22
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
23
+ outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ "You" (or "Your") shall mean an individual or Legal Entity
26
+ exercising permissions granted by this License.
27
+
28
+ "Source" form shall mean the preferred form for making modifications,
29
+ including but not limited to software source code, documentation
30
+ source, and configuration files.
31
+
32
+ "Object" form shall mean any form resulting from mechanical
33
+ transformation or translation of a Source form, including but
34
+ not limited to compiled object code, generated documentation,
35
+ and conversions to other media types.
36
+
37
+ "Work" shall mean the work of authorship, whether in Source or
38
+ Object form, made available under the License, as indicated by a
39
+ copyright notice that is included in or attached to the work
40
+ (an example is provided in the Appendix below).
41
+
42
+ "Derivative Works" shall mean any work, whether in Source or Object
43
+ form, that is based on (or derived from) the Work and for which the
44
+ editorial revisions, annotations, elaborations, or other modifications
45
+ represent, as a whole, an original work of authorship. For the purposes
46
+ of this License, Derivative Works shall not include works that remain
47
+ separable from, or merely link (or bind by name) to the interfaces of,
48
+ the Work and Derivative Works thereof.
49
+
50
+ "Contribution" shall mean any work of authorship, including
51
+ the original version of the Work and any modifications or additions
52
+ to that Work or Derivative Works thereof, that is intentionally
53
+ submitted to Licensor for inclusion in the Work by the copyright owner
54
+ or by an individual or Legal Entity authorized to submit on behalf of
55
+ the copyright owner. For the purposes of this definition, "submitted"
56
+ means any form of electronic, verbal, or written communication sent
57
+ to the Licensor or its representatives, including but not limited to
58
+ communication on electronic mailing lists, source code control systems,
59
+ and issue tracking systems that are managed by, or on behalf of, the
60
+ Licensor for the purpose of discussing and improving the Work, but
61
+ excluding communication that is conspicuously marked or otherwise
62
+ designated in writing by the copyright owner as "Not a Contribution."
63
+
64
+ "Contributor" shall mean Licensor and any individual or Legal Entity
65
+ on behalf of whom a Contribution has been received by Licensor and
66
+ subsequently incorporated within the Work.
67
+
68
+ 2. Grant of Copyright License. Subject to the terms and conditions of
69
+ this License, each Contributor hereby grants to You a perpetual,
70
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
71
+ copyright license to reproduce, prepare Derivative Works of,
72
+ publicly display, publicly perform, sublicense, and distribute the
73
+ Work and such Derivative Works in Source or Object form.
74
+
75
+ 3. Grant of Patent License. Subject to the terms and conditions of
76
+ this License, each Contributor hereby grants to You a perpetual,
77
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
78
+ (except as stated in this section) patent license to make, have made,
79
+ use, offer to sell, sell, import, and otherwise transfer the Work,
80
+ where such license applies only to those patent claims licensable
81
+ by such Contributor that are necessarily infringed by their
82
+ Contribution(s) alone or by combination of their Contribution(s)
83
+ with the Work to which such Contribution(s) was submitted. If You
84
+ institute patent litigation against any entity (including a
85
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
86
+ or a Contribution incorporated within the Work constitutes direct
87
+ or contributory patent infringement, then any patent licenses
88
+ granted to You under this License for that Work shall terminate
89
+ as of the date such litigation is filed.
90
+
91
+ 4. Redistribution. You may reproduce and distribute copies of the
92
+ Work or Derivative Works thereof in any medium, with or without
93
+ modifications, and in Source or Object form, provided that You
94
+ meet the following conditions:
95
+
96
+ (a) You must give any other recipients of the Work or
97
+ Derivative Works a copy of this License; and
98
+
99
+ (b) You must cause any modified files to carry prominent notices
100
+ stating that You changed the files; and
101
+
102
+ (c) You must retain, in the Source form of any Derivative Works
103
+ that You distribute, all copyright, patent, trademark, and
104
+ attribution notices from the Source form of the Work,
105
+ excluding those notices that do not pertain to any part of
106
+ the Derivative Works; and
107
+
108
+ (d) If the Work includes a "NOTICE" text file as part of its
109
+ distribution, then any Derivative Works that You distribute must
110
+ include a readable copy of the attribution notices contained
111
+ within such NOTICE file, excluding those notices that do not
112
+ pertain to any part of the Derivative Works, in at least one
113
+ of the following places: within a NOTICE text file distributed
114
+ as part of the Derivative Works; within the Source form or
115
+ documentation, if provided along with the Derivative Works; or,
116
+ within a display generated by the Derivative Works, if and
117
+ wherever such third-party notices normally appear. The contents
118
+ of the NOTICE file are for informational purposes only and
119
+ do not modify the License. You may add Your own attribution
120
+ notices within Derivative Works that You distribute, alongside
121
+ or as an addendum to the NOTICE text from the Work, provided
122
+ that such additional attribution notices cannot be construed
123
+ as modifying the License.
124
+
125
+ You may add Your own copyright statement to Your modifications and
126
+ may provide additional or different license terms and conditions
127
+ for use, reproduction, or distribution of Your modifications, or
128
+ for any such Derivative Works as a whole, provided Your use,
129
+ reproduction, and distribution of the Work otherwise complies with
130
+ the conditions stated in this License.
131
+
132
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
133
+ any Contribution intentionally submitted for inclusion in the Work
134
+ by You to the Licensor shall be under the terms and conditions of
135
+ this License, without any additional terms or conditions.
136
+ Notwithstanding the above, nothing herein shall supersede or modify
137
+ the terms of any separate license agreement you may have executed
138
+ with Licensor regarding such Contributions.
139
+
140
+ 6. Trademarks. This License does not grant permission to use the trade
141
+ names, trademarks, service marks, or product names of the Licensor,
142
+ except as required for reasonable and customary use in describing the
143
+ origin of the Work and reproducing the content of the NOTICE file.
144
+
145
+ 7. Disclaimer of Warranty. Unless required by applicable law or
146
+ agreed to in writing, Licensor provides the Work (and each
147
+ Contributor provides its Contributions) on an "AS IS" BASIS,
148
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
149
+ implied, including, without limitation, any warranties or conditions
150
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
151
+ PARTICULAR PURPOSE. You are solely responsible for determining the
152
+ appropriateness of using or redistributing the Work and assume any
153
+ risks associated with Your exercise of permissions under this License.
154
+
155
+ 8. Limitation of Liability. In no event and under no legal theory,
156
+ whether in tort (including negligence), contract, or otherwise,
157
+ unless required by applicable law (such as deliberate and grossly
158
+ negligent acts) or agreed to in writing, shall any Contributor be
159
+ liable to You for damages, including any direct, indirect, special,
160
+ incidental, or consequential damages of any character arising as a
161
+ result of this License or out of the use or inability to use the
162
+ Work (including but not limited to damages for loss of goodwill,
163
+ work stoppage, computer failure or malfunction, or any and all
164
+ other commercial damages or losses), even if such Contributor
165
+ has been advised of the possibility of such damages.
166
+
167
+ 9. Accepting Warranty or Additional Liability. While redistributing
168
+ the Work or Derivative Works thereof, You may choose to offer,
169
+ and charge a fee for, acceptance of support, warranty, indemnity,
170
+ or other liability obligations and/or rights consistent with this
171
+ License. However, in accepting such obligations, You may act only
172
+ on Your own behalf and on Your sole responsibility, not on behalf
173
+ of any other Contributor, and only if You agree to indemnify,
174
+ defend, and hold each Contributor harmless for any liability
175
+ incurred by, or claims asserted against, such Contributor by reason
176
+ of your accepting any such warranty or additional liability.
177
+
178
+ END OF TERMS AND CONDITIONS
179
+
180
+ Copyright 2019 NVIDIA CORPORATION. All rights reserved.
181
+ APPENDIX: How to apply the Apache License to your work.
182
+
183
+ To apply the Apache License to your work, attach the following
184
+ boilerplate notice, with the fields enclosed by brackets "[]"
185
+ replaced with your own identifying information. (Don't include
186
+ the brackets!) The text should be enclosed in the appropriate
187
+ comment syntax for the file format. We also recommend that a
188
+ file or class name and description of purpose be included on the
189
+ same "printed page" as the copyright notice for easier
190
+ identification within third-party archives.
191
+
192
+ Copyright [yyyy] [name of copyright owner]
193
+
194
+ Licensed under the Apache License, Version 2.0 (the "License");
195
+ you may not use this file except in compliance with the License.
196
+ You may obtain a copy of the License at
197
+
198
+ http://www.apache.org/licenses/LICENSE-2.0
199
+
200
+ Unless required by applicable law or agreed to in writing, software
201
+ distributed under the License is distributed on an "AS IS" BASIS,
202
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
203
+ See the License for the specific language governing permissions and
204
+ limitations under the License.
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/bert_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_probs_dropout_prob": 0.1,
3
+ "hidden_act": "gelu",
4
+ "hidden_dropout_prob": 0.1,
5
+ "hidden_size": 1024,
6
+ "initializer_range": 0.02,
7
+ "intermediate_size": 4096,
8
+ "max_position_embeddings": 512,
9
+ "num_attention_heads": 16,
10
+ "num_hidden_layers": 24,
11
+ "type_vocab_size": 2,
12
+ "vocab_size": 30522
13
+ }
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/checkpoints/.keep ADDED
File without changes
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/BooksDownloader.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ import subprocess
15
+
16
+ class BooksDownloader:
17
+ def __init__(self, save_path):
18
+ self.save_path = save_path
19
+ pass
20
+
21
+
22
+ def download(self):
23
+ bookscorpus_download_command = 'python3 /workspace/bookcorpus/download_files.py --list /workspace/bookcorpus/url_list.jsonl --out'
24
+ bookscorpus_download_command += ' ' + self.save_path + '/bookscorpus'
25
+ bookscorpus_download_command += ' --trash-bad-count'
26
+ bookscorpus_download_process = subprocess.run(bookscorpus_download_command, shell=True, check=True)
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/BookscorpusTextFormatting.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ import glob
15
+ import os
16
+
17
+ class BookscorpusTextFormatting:
18
+ def __init__(self, books_path, output_filename, recursive = False):
19
+ self.books_path = books_path
20
+ self.recursive = recursive
21
+ self.output_filename = output_filename
22
+
23
+
24
+ # This puts one book per line
25
+ def merge(self):
26
+ with open(self.output_filename, mode='w', newline='\n') as ofile:
27
+ for filename in glob.glob(self.books_path + '/' + '*.txt', recursive=True):
28
+ with open(filename, mode='r', encoding='utf-8-sig', newline='\n') as file:
29
+ for line in file:
30
+ if line.strip() != '':
31
+ ofile.write(line.strip() + ' ')
32
+ ofile.write("\n\n")
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/Downloader.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ from GooglePretrainedWeightDownloader import GooglePretrainedWeightDownloader
15
+ from NVIDIAPretrainedWeightDownloader import NVIDIAPretrainedWeightDownloader
16
+ from WikiDownloader import WikiDownloader
17
+ from BooksDownloader import BooksDownloader
18
+ from GLUEDownloader import GLUEDownloader
19
+ from SquadDownloader import SquadDownloader
20
+
21
+
22
+ class Downloader:
23
+
24
+ def __init__(self, dataset_name, save_path):
25
+ self.dataset_name = dataset_name
26
+ self.save_path = save_path
27
+
28
+ def download(self):
29
+ if self.dataset_name == 'bookscorpus':
30
+ self.download_bookscorpus()
31
+
32
+ elif self.dataset_name == 'wikicorpus_en':
33
+ self.download_wikicorpus('en')
34
+
35
+ elif self.dataset_name == 'wikicorpus_zh':
36
+ self.download_wikicorpus('zh')
37
+
38
+ elif self.dataset_name == 'google_pretrained_weights':
39
+ self.download_google_pretrained_weights()
40
+
41
+ elif self.dataset_name == 'nvidia_pretrained_weights':
42
+ self.download_nvidia_pretrained_weights()
43
+
44
+ elif self.dataset_name in {'mrpc', 'sst-2'}:
45
+ self.download_glue(self.dataset_name)
46
+
47
+ elif self.dataset_name == 'squad':
48
+ self.download_squad()
49
+
50
+ elif self.dataset_name == 'all':
51
+ self.download_bookscorpus()
52
+ self.download_wikicorpus('en')
53
+ self.download_wikicorpus('zh')
54
+ self.download_google_pretrained_weights()
55
+ self.download_nvidia_pretrained_weights()
56
+ self.download_glue('mrpc')
57
+ self.download_glue('sst-2')
58
+ self.download_squad()
59
+
60
+ else:
61
+ print(self.dataset_name)
62
+ assert False, 'Unknown dataset_name provided to downloader'
63
+
64
+ def download_bookscorpus(self):
65
+ downloader = BooksDownloader(self.save_path)
66
+ downloader.download()
67
+
68
+ def download_wikicorpus(self, language):
69
+ downloader = WikiDownloader(language, self.save_path)
70
+ downloader.download()
71
+
72
+ def download_google_pretrained_weights(self):
73
+ downloader = GooglePretrainedWeightDownloader(self.save_path)
74
+ downloader.download()
75
+
76
+ def download_nvidia_pretrained_weights(self):
77
+ downloader = NVIDIAPretrainedWeightDownloader(self.save_path)
78
+ downloader.download()
79
+
80
+ def download_glue(self, task_name):
81
+ downloader = GLUEDownloader(self.save_path)
82
+ downloader.download(task_name)
83
+
84
+ def download_squad(self):
85
+ downloader = SquadDownloader(self.save_path)
86
+ downloader.download()
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/GLUEDownloader.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ import sys
15
+ import wget
16
+
17
+ from pathlib import Path
18
+
19
+
20
+ def mkdir(path):
21
+ Path(path).mkdir(parents=True, exist_ok=True)
22
+
23
+
24
+ class GLUEDownloader:
25
+
26
+ def __init__(self, save_path):
27
+ self.save_path = save_path + '/glue'
28
+
29
+ def download(self, task_name):
30
+ mkdir(self.save_path)
31
+ if task_name in {'mrpc', 'mnli'}:
32
+ task_name = task_name.upper()
33
+ elif task_name == 'cola':
34
+ task_name = 'CoLA'
35
+ else: # SST-2
36
+ assert task_name == 'sst-2'
37
+ task_name = 'SST'
38
+ wget.download(
39
+ 'https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/1502038877f6a88c225a34450793fbc3ea87eaba/download_glue_data.py',
40
+ out=self.save_path,
41
+ )
42
+ sys.path.append(self.save_path)
43
+ import download_glue_data
44
+ download_glue_data.main(
45
+ ['--data_dir', self.save_path, '--tasks', task_name])
46
+ sys.path.pop()
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/GooglePretrainedWeightDownloader.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ import hashlib
15
+ import os
16
+ import urllib.request
17
+ import zipfile
18
+
19
+ class GooglePretrainedWeightDownloader:
20
+ def __init__(self, save_path):
21
+ self.save_path = save_path + '/google_pretrained_weights'
22
+
23
+ if not os.path.exists(self.save_path):
24
+ os.makedirs(self.save_path)
25
+
26
+ # Download urls
27
+ self.model_urls = {
28
+ 'bert_base_uncased': ('https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip', 'uncased_L-12_H-768_A-12.zip'),
29
+ 'bert_large_uncased': ('https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip', 'uncased_L-24_H-1024_A-16.zip'),
30
+ 'bert_base_cased': ('https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip', 'cased_L-12_H-768_A-12.zip'),
31
+ 'bert_large_cased': ('https://storage.googleapis.com/bert_models/2018_10_18/cased_L-24_H-1024_A-16.zip', 'cased_L-24_H-1024_A-16.zip'),
32
+ 'bert_base_multilingual_cased': ('https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip', 'multi_cased_L-12_H-768_A-12.zip'),
33
+ 'bert_large_multilingual_uncased': ('https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip', 'multilingual_L-12_H-768_A-12.zip'),
34
+ 'bert_base_chinese': ('https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip', 'chinese_L-12_H-768_A-12.zip')
35
+ }
36
+
37
+ # SHA256sum verification for file download integrity (and checking for changes from the download source over time)
38
+ self.bert_base_uncased_sha = {
39
+ 'bert_config.json': '7b4e5f53efbd058c67cda0aacfafb340113ea1b5797d9ce6ee411704ba21fcbc',
40
+ 'bert_model.ckpt.data-00000-of-00001': '58580dc5e0bf0ae0d2efd51d0e8272b2f808857f0a43a88aaf7549da6d7a8a84',
41
+ 'bert_model.ckpt.index': '04c1323086e2f1c5b7c0759d8d3e484afbb0ab45f51793daab9f647113a0117b',
42
+ 'bert_model.ckpt.meta': 'dd5682170a10c3ea0280c2e9b9a45fee894eb62da649bbdea37b38b0ded5f60e',
43
+ 'vocab.txt': '07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3',
44
+ }
45
+
46
+ self.bert_large_uncased_sha = {
47
+ 'bert_config.json': 'bfa42236d269e2aeb3a6d30412a33d15dbe8ea597e2b01dc9518c63cc6efafcb',
48
+ 'bert_model.ckpt.data-00000-of-00001': 'bc6b3363e3be458c99ecf64b7f472d2b7c67534fd8f564c0556a678f90f4eea1',
49
+ 'bert_model.ckpt.index': '68b52f2205ffc64dc627d1120cf399c1ef1cbc35ea5021d1afc889ffe2ce2093',
50
+ 'bert_model.ckpt.meta': '6fcce8ff7628f229a885a593625e3d5ff9687542d5ef128d9beb1b0c05edc4a1',
51
+ 'vocab.txt': '07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3',
52
+ }
53
+
54
+ self.bert_base_cased_sha = {
55
+ 'bert_config.json': 'f11dfb757bea16339a33e1bf327b0aade6e57fd9c29dc6b84f7ddb20682f48bc',
56
+ 'bert_model.ckpt.data-00000-of-00001': '734d5a1b68bf98d4e9cb6b6692725d00842a1937af73902e51776905d8f760ea',
57
+ 'bert_model.ckpt.index': '517d6ef5c41fc2ca1f595276d6fccf5521810d57f5a74e32616151557790f7b1',
58
+ 'bert_model.ckpt.meta': '5f8a9771ff25dadd61582abb4e3a748215a10a6b55947cbb66d0f0ba1694be98',
59
+ 'vocab.txt': 'eeaa9875b23b04b4c54ef759d03db9d1ba1554838f8fb26c5d96fa551df93d02',
60
+ }
61
+
62
+ self.bert_large_cased_sha = {
63
+ 'bert_config.json': '7adb2125c8225da495656c982fd1c5f64ba8f20ad020838571a3f8a954c2df57',
64
+ 'bert_model.ckpt.data-00000-of-00001': '6ff33640f40d472f7a16af0c17b1179ca9dcc0373155fb05335b6a4dd1657ef0',
65
+ 'bert_model.ckpt.index': 'ef42a53f577fbe07381f4161b13c7cab4f4fc3b167cec6a9ae382c53d18049cf',
66
+ 'bert_model.ckpt.meta': 'd2ddff3ed33b80091eac95171e94149736ea74eb645e575d942ec4a5e01a40a1',
67
+ 'vocab.txt': 'eeaa9875b23b04b4c54ef759d03db9d1ba1554838f8fb26c5d96fa551df93d02',
68
+ }
69
+
70
+ self.bert_base_multilingual_cased_sha = {
71
+ 'bert_config.json': 'e76c3964bc14a8bb37a5530cdc802699d2f4a6fddfab0611e153aa2528f234f0',
72
+ 'bert_model.ckpt.data-00000-of-00001': '55b8a2df41f69c60c5180e50a7c31b7cdf6238909390c4ddf05fbc0d37aa1ac5',
73
+ 'bert_model.ckpt.index': '7d8509c2a62b4e300feb55f8e5f1eef41638f4998dd4d887736f42d4f6a34b37',
74
+ 'bert_model.ckpt.meta': '95e5f1997e8831f1c31e5cf530f1a2e99f121e9cd20887f2dce6fe9e3343e3fa',
75
+ 'vocab.txt': 'fe0fda7c425b48c516fc8f160d594c8022a0808447475c1a7c6d6479763f310c',
76
+ }
77
+
78
+ self.bert_large_multilingual_uncased_sha = {
79
+ 'bert_config.json': '49063bb061390211d2fdd108cada1ed86faa5f90b80c8f6fdddf406afa4c4624',
80
+ 'bert_model.ckpt.data-00000-of-00001': '3cd83912ebeb0efe2abf35c9f1d5a515d8e80295e61c49b75c8853f756658429',
81
+ 'bert_model.ckpt.index': '87c372c1a3b1dc7effaaa9103c80a81b3cbab04c7933ced224eec3b8ad2cc8e7',
82
+ 'bert_model.ckpt.meta': '27f504f34f02acaa6b0f60d65195ec3e3f9505ac14601c6a32b421d0c8413a29',
83
+ 'vocab.txt': '87b44292b452f6c05afa49b2e488e7eedf79ea4f4c39db6f2f4b37764228ef3f',
84
+ }
85
+
86
+ self.bert_base_chinese_sha = {
87
+ 'bert_config.json': '7aaad0335058e2640bcb2c2e9a932b1cd9da200c46ea7b8957d54431f201c015',
88
+ 'bert_model.ckpt.data-00000-of-00001': '756699356b78ad0ef1ca9ba6528297bcb3dd1aef5feadd31f4775d7c7fc989ba',
89
+ 'bert_model.ckpt.index': '46315546e05ce62327b3e2cd1bed22836adcb2ff29735ec87721396edb21b82e',
90
+ 'bert_model.ckpt.meta': 'c0f8d51e1ab986604bc2b25d6ec0af7fd21ff94cf67081996ec3f3bf5d823047',
91
+ 'vocab.txt': '45bbac6b341c319adc98a532532882e91a9cefc0329aa57bac9ae761c27b291c',
92
+ }
93
+
94
+ # Relate SHA to urls for loop below
95
+ self.model_sha = {
96
+ 'bert_base_uncased': self.bert_base_uncased_sha,
97
+ 'bert_large_uncased': self.bert_large_uncased_sha,
98
+ 'bert_base_cased': self.bert_base_cased_sha,
99
+ 'bert_large_cased': self.bert_large_cased_sha,
100
+ 'bert_base_multilingual_cased': self.bert_base_multilingual_cased_sha,
101
+ 'bert_large_multilingual_uncased': self.bert_large_multilingual_uncased_sha,
102
+ 'bert_base_chinese': self.bert_base_chinese_sha
103
+ }
104
+
105
+ # Helper to get sha256sum of a file
106
+ def sha256sum(self, filename):
107
+ h = hashlib.sha256()
108
+ b = bytearray(128*1024)
109
+ mv = memoryview(b)
110
+ with open(filename, 'rb', buffering=0) as f:
111
+ for n in iter(lambda : f.readinto(mv), 0):
112
+ h.update(mv[:n])
113
+
114
+ return h.hexdigest()
115
+
116
+ def download(self):
117
+ # Iterate over urls: download, unzip, verify sha256sum
118
+ found_mismatch_sha = False
119
+ for model in self.model_urls:
120
+ url = self.model_urls[model][0]
121
+ file = self.save_path + '/' + self.model_urls[model][1]
122
+
123
+ print('Downloading', url)
124
+ response = urllib.request.urlopen(url)
125
+ with open(file, 'wb') as handle:
126
+ handle.write(response.read())
127
+
128
+ print('Unzipping', file)
129
+ zip = zipfile.ZipFile(file, 'r')
130
+ zip.extractall(self.save_path)
131
+ zip.close()
132
+
133
+ sha_dict = self.model_sha[model]
134
+ for extracted_file in sha_dict:
135
+ sha = sha_dict[extracted_file]
136
+ if sha != self.sha256sum(file[:-4] + '/' + extracted_file):
137
+ found_mismatch_sha = True
138
+ print('SHA256sum does not match on file:', extracted_file, 'from download url:', url)
139
+ else:
140
+ print(file[:-4] + '/' + extracted_file, '\t', 'verified')
141
+
142
+ if not found_mismatch_sha:
143
+ print("All downloads pass sha256sum verification.")
144
+
145
+ def serialize(self):
146
+ pass
147
+
148
+ def deserialize(self):
149
+ pass
150
+
151
+ def listAvailableWeights(self):
152
+ print("Available Weight Datasets")
153
+ for item in self.model_urls:
154
+ print(item)
155
+
156
+ def listLocallyStoredWeights(self):
157
+ pass
158
+
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/NVIDIAPretrainedWeightDownloader.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ import os
15
+
16
+ class NVIDIAPretrainedWeightDownloader:
17
+ def __init__(self, save_path):
18
+ self.save_path = save_path + '/nvidia_pretrained_weights'
19
+
20
+ if not os.path.exists(self.save_path):
21
+ os.makedirs(self.save_path)
22
+
23
+ pass
24
+
25
+
26
+ def download(self):
27
+ assert False, 'NVIDIAPretrainedWeightDownloader not implemented yet.'
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/SquadDownloader.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ import bz2
15
+ import os
16
+ import urllib.request
17
+ import sys
18
+
19
+ class SquadDownloader:
20
+ def __init__(self, save_path):
21
+ self.save_path = save_path + '/squad'
22
+
23
+ if not os.path.exists(self.save_path):
24
+ os.makedirs(self.save_path)
25
+
26
+ if not os.path.exists(self.save_path + '/v1.1'):
27
+ os.makedirs(self.save_path + '/v1.1')
28
+
29
+ if not os.path.exists(self.save_path + '/v2.0'):
30
+ os.makedirs(self.save_path + '/v2.0')
31
+
32
+ self.download_urls = {
33
+ 'https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json' : 'v1.1/train-v1.1.json',
34
+ 'https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json' : 'v1.1/dev-v1.1.json',
35
+ 'https://worksheets.codalab.org/rest/bundles/0xbcd57bee090b421c982906709c8c27e1/contents/blob/' : 'v1.1/evaluate-v1.1.py',
36
+ 'https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json' : 'v2.0/train-v2.0.json',
37
+ 'https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json' : 'v2.0/dev-v2.0.json',
38
+ 'https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/' : 'v2.0/evaluate-v2.0.py',
39
+ }
40
+
41
+ def download(self):
42
+ for item in self.download_urls:
43
+ url = item
44
+ file = self.download_urls[item]
45
+
46
+ print('Downloading:', url)
47
+ if os.path.isfile(self.save_path + '/' + file):
48
+ print('** Download file already exists, skipping download')
49
+ else:
50
+ response = urllib.request.urlopen(url)
51
+ with open(self.save_path + '/' + file, "wb") as handle:
52
+ handle.write(response.read())
53
+
54
+
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/TextSharding.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ from collections import defaultdict
15
+ from itertools import islice
16
+
17
+ import multiprocessing
18
+ import statistics
19
+
20
+ class Sharding:
21
+ def __init__(self, input_files, output_name_prefix, n_training_shards, n_test_shards, fraction_test_set):
22
+ assert len(input_files) > 0, 'The input file list must contain at least one file.'
23
+ assert n_training_shards > 0, 'There must be at least one output shard.'
24
+ assert n_test_shards > 0, 'There must be at least one output shard.'
25
+
26
+ self.n_training_shards = n_training_shards
27
+ self.n_test_shards = n_test_shards
28
+ self.fraction_test_set = fraction_test_set
29
+
30
+ self.input_files = input_files
31
+
32
+ self.output_name_prefix = output_name_prefix
33
+ self.output_training_identifier = '_training'
34
+ self.output_test_identifier = '_test'
35
+ self.output_file_extension = '.txt'
36
+
37
+ self.articles = {} # key: integer identifier, value: list of articles
38
+ self.sentences = {} # key: integer identifier, value: list of sentences
39
+ self.output_training_files = {} # key: filename, value: list of articles to go into file
40
+ self.output_test_files = {} # key: filename, value: list of articles to go into file
41
+
42
+ self.init_output_files()
43
+
44
+
45
+ # Remember, the input files contain one article per line (the whitespace check is to skip extraneous blank lines)
46
+ def load_articles(self):
47
+ print('Start: Loading Articles')
48
+
49
+ global_article_count = 0
50
+ for input_file in self.input_files:
51
+ print('input file:', input_file)
52
+ with open(input_file, mode='r', newline='\n') as f:
53
+ for i, line in enumerate(f):
54
+ if line.strip():
55
+ self.articles[global_article_count] = line.rstrip()
56
+ global_article_count += 1
57
+
58
+ print('End: Loading Articles: There are', len(self.articles), 'articles.')
59
+
60
+
61
+ def segment_articles_into_sentences(self, segmenter):
62
+ print('Start: Sentence Segmentation')
63
+ if len(self.articles) is 0:
64
+ self.load_articles()
65
+
66
+ assert len(self.articles) is not 0, 'Please check that input files are present and contain data.'
67
+
68
+ # TODO: WIP: multiprocessing (create independent ranges and spawn processes)
69
+ use_multiprocessing = 'serial'
70
+
71
+ def chunks(data, size=len(self.articles)):
72
+ it = iter(data)
73
+ for i in range(0, len(data), size):
74
+ yield {k: data[k] for k in islice(it, size)}
75
+
76
+ if use_multiprocessing == 'manager':
77
+ manager = multiprocessing.Manager()
78
+ return_dict = manager.dict()
79
+ jobs = []
80
+ n_processes = 7 # in addition to the main process, total = n_proc+1
81
+
82
+ def work(articles, return_dict):
83
+ sentences = {}
84
+ for i, article in enumerate(articles):
85
+ sentences[i] = segmenter.segment_string(articles[article])
86
+
87
+ if i % 5000 == 0:
88
+ print('Segmenting article', i)
89
+
90
+ return_dict.update(sentences)
91
+
92
+ for item in chunks(self.articles, len(self.articles)):
93
+ p = multiprocessing.Process(target=work, args=(item, return_dict))
94
+
95
+ # Busy wait
96
+ while len(jobs) >= n_processes:
97
+ pass
98
+
99
+ jobs.append(p)
100
+ p.start()
101
+
102
+ for proc in jobs:
103
+ proc.join()
104
+
105
+ elif use_multiprocessing == 'queue':
106
+ work_queue = multiprocessing.Queue()
107
+ jobs = []
108
+
109
+ for item in chunks(self.articles, len(self.articles)):
110
+ pass
111
+
112
+ else: # serial option
113
+ for i, article in enumerate(self.articles):
114
+ self.sentences[i] = segmenter.segment_string(self.articles[article])
115
+
116
+ if i % 5000 == 0:
117
+ print('Segmenting article', i)
118
+
119
+ print('End: Sentence Segmentation')
120
+
121
+
122
+ def init_output_files(self):
123
+ print('Start: Init Output Files')
124
+ assert len(self.output_training_files) is 0, 'Internal storage self.output_files already contains data. This function is intended to be used by the constructor only.'
125
+ assert len(self.output_test_files) is 0, 'Internal storage self.output_files already contains data. This function is intended to be used by the constructor only.'
126
+
127
+ for i in range(self.n_training_shards):
128
+ name = self.output_name_prefix + self.output_training_identifier + '_' + str(i) + self.output_file_extension
129
+ self.output_training_files[name] = []
130
+
131
+ for i in range(self.n_test_shards):
132
+ name = self.output_name_prefix + self.output_test_identifier + '_' + str(i) + self.output_file_extension
133
+ self.output_test_files[name] = []
134
+
135
+ print('End: Init Output Files')
136
+
137
+
138
+ def get_sentences_per_shard(self, shard):
139
+ result = 0
140
+ for article_id in shard:
141
+ result += len(self.sentences[article_id])
142
+
143
+ return result
144
+
145
+
146
+ def distribute_articles_over_shards(self):
147
+ print('Start: Distribute Articles Over Shards')
148
+ assert len(self.articles) >= self.n_training_shards + self.n_test_shards, 'There are fewer articles than shards. Please add more data or reduce the number of shards requested.'
149
+
150
+ # Create dictionary with - key: sentence count per article, value: article id number
151
+ sentence_counts = defaultdict(lambda: [])
152
+
153
+ max_sentences = 0
154
+ total_sentences = 0
155
+
156
+ for article_id in self.sentences:
157
+ current_length = len(self.sentences[article_id])
158
+ sentence_counts[current_length].append(article_id)
159
+ max_sentences = max(max_sentences, current_length)
160
+ total_sentences += current_length
161
+
162
+ n_sentences_assigned_to_training = int((1 - self.fraction_test_set) * total_sentences)
163
+ nominal_sentences_per_training_shard = n_sentences_assigned_to_training // self.n_training_shards
164
+ nominal_sentences_per_test_shard = (total_sentences - n_sentences_assigned_to_training) // self.n_test_shards
165
+
166
+ consumed_article_set = set({})
167
+ unused_article_set = set(self.articles.keys())
168
+
169
+ # Make first pass and add one article worth of lines per file
170
+ for file in self.output_training_files:
171
+ current_article_id = sentence_counts[max_sentences][-1]
172
+ sentence_counts[max_sentences].pop(-1)
173
+ self.output_training_files[file].append(current_article_id)
174
+ consumed_article_set.add(current_article_id)
175
+ unused_article_set.remove(current_article_id)
176
+
177
+ # Maintain the max sentence count
178
+ while len(sentence_counts[max_sentences]) == 0 and max_sentences > 0:
179
+ max_sentences -= 1
180
+
181
+ if len(self.sentences[current_article_id]) > nominal_sentences_per_training_shard:
182
+ nominal_sentences_per_training_shard = len(self.sentences[current_article_id])
183
+ print('Warning: A single article contains more than the nominal number of sentences per training shard.')
184
+
185
+ for file in self.output_test_files:
186
+ current_article_id = sentence_counts[max_sentences][-1]
187
+ sentence_counts[max_sentences].pop(-1)
188
+ self.output_test_files[file].append(current_article_id)
189
+ consumed_article_set.add(current_article_id)
190
+ unused_article_set.remove(current_article_id)
191
+
192
+ # Maintain the max sentence count
193
+ while len(sentence_counts[max_sentences]) == 0 and max_sentences > 0:
194
+ max_sentences -= 1
195
+
196
+ if len(self.sentences[current_article_id]) > nominal_sentences_per_test_shard:
197
+ nominal_sentences_per_test_shard = len(self.sentences[current_article_id])
198
+ print('Warning: A single article contains more than the nominal number of sentences per test shard.')
199
+
200
+ training_counts = []
201
+ test_counts = []
202
+
203
+ for shard in self.output_training_files:
204
+ training_counts.append(self.get_sentences_per_shard(self.output_training_files[shard]))
205
+
206
+ for shard in self.output_test_files:
207
+ test_counts.append(self.get_sentences_per_shard(self.output_test_files[shard]))
208
+
209
+ training_median = statistics.median(training_counts)
210
+ test_median = statistics.median(test_counts)
211
+
212
+ # Make subsequent passes over files to find articles to add without going over limit
213
+ history_remaining = []
214
+ n_history_remaining = 4
215
+
216
+ while len(consumed_article_set) < len(self.articles):
217
+ for fidx, file in enumerate(self.output_training_files):
218
+ nominal_next_article_size = min(nominal_sentences_per_training_shard - training_counts[fidx], max_sentences)
219
+
220
+ # Maintain the max sentence count
221
+ while len(sentence_counts[max_sentences]) == 0 and max_sentences > 0:
222
+ max_sentences -= 1
223
+
224
+ while len(sentence_counts[nominal_next_article_size]) == 0 and nominal_next_article_size > 0:
225
+ nominal_next_article_size -= 1
226
+
227
+ if nominal_next_article_size not in sentence_counts or nominal_next_article_size is 0 or training_counts[fidx] > training_median:
228
+ continue # skip adding to this file, will come back later if no file can accept unused articles
229
+
230
+ current_article_id = sentence_counts[nominal_next_article_size][-1]
231
+ sentence_counts[nominal_next_article_size].pop(-1)
232
+
233
+ self.output_training_files[file].append(current_article_id)
234
+ consumed_article_set.add(current_article_id)
235
+ unused_article_set.remove(current_article_id)
236
+
237
+ for fidx, file in enumerate(self.output_test_files):
238
+ nominal_next_article_size = min(nominal_sentences_per_test_shard - test_counts[fidx], max_sentences)
239
+
240
+ # Maintain the max sentence count
241
+ while len(sentence_counts[max_sentences]) == 0 and max_sentences > 0:
242
+ max_sentences -= 1
243
+
244
+ while len(sentence_counts[nominal_next_article_size]) == 0 and nominal_next_article_size > 0:
245
+ nominal_next_article_size -= 1
246
+
247
+ if nominal_next_article_size not in sentence_counts or nominal_next_article_size is 0 or test_counts[fidx] > test_median:
248
+ continue # skip adding to this file, will come back later if no file can accept unused articles
249
+
250
+ current_article_id = sentence_counts[nominal_next_article_size][-1]
251
+ sentence_counts[nominal_next_article_size].pop(-1)
252
+
253
+ self.output_test_files[file].append(current_article_id)
254
+ consumed_article_set.add(current_article_id)
255
+ unused_article_set.remove(current_article_id)
256
+
257
+ # If unable to place articles a few times, bump up nominal sizes by fraction until articles get placed
258
+ if len(history_remaining) == n_history_remaining:
259
+ history_remaining.pop(0)
260
+ history_remaining.append(len(unused_article_set))
261
+
262
+ history_same = True
263
+ for i in range(1, len(history_remaining)):
264
+ history_same = history_same and (history_remaining[i-1] == history_remaining[i])
265
+
266
+ if history_same:
267
+ nominal_sentences_per_training_shard += 1
268
+ # nominal_sentences_per_test_shard += 1
269
+
270
+ training_counts = []
271
+ test_counts = []
272
+ for shard in self.output_training_files:
273
+ training_counts.append(self.get_sentences_per_shard(self.output_training_files[shard]))
274
+
275
+ for shard in self.output_test_files:
276
+ test_counts.append(self.get_sentences_per_shard(self.output_test_files[shard]))
277
+
278
+ training_median = statistics.median(training_counts)
279
+ test_median = statistics.median(test_counts)
280
+
281
+ print('Distributing data over shards:', len(unused_article_set), 'articles remaining.')
282
+
283
+
284
+ if len(unused_article_set) != 0:
285
+ print('Warning: Some articles did not make it into output files.')
286
+
287
+
288
+ for shard in self.output_training_files:
289
+ print('Training shard:', self.get_sentences_per_shard(self.output_training_files[shard]))
290
+
291
+ for shard in self.output_test_files:
292
+ print('Test shard:', self.get_sentences_per_shard(self.output_test_files[shard]))
293
+
294
+ print('End: Distribute Articles Over Shards')
295
+
296
+
297
+ def write_shards_to_disk(self):
298
+ print('Start: Write Shards to Disk')
299
+ for shard in self.output_training_files:
300
+ self.write_single_shard(shard, self.output_training_files[shard])
301
+
302
+ for shard in self.output_test_files:
303
+ self.write_single_shard(shard, self.output_test_files[shard])
304
+
305
+ print('End: Write Shards to Disk')
306
+
307
+
308
+ def write_single_shard(self, shard_name, shard):
309
+ with open(shard_name, mode='w', newline='\n') as f:
310
+ for article_id in shard:
311
+ for line in self.sentences[article_id]:
312
+ f.write(line + '\n')
313
+
314
+ f.write('\n') # Line break between articles
315
+
316
+
317
+ import nltk
318
+
319
+ nltk.download('punkt')
320
+
321
+ class NLTKSegmenter:
322
+ def __init(self):
323
+ pass
324
+
325
+ def segment_string(self, article):
326
+ return nltk.tokenize.sent_tokenize(article)
327
+
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/WikiDownloader.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ import bz2
15
+ import os
16
+ import urllib.request
17
+ import subprocess
18
+ import sys
19
+
20
+ class WikiDownloader:
21
+ def __init__(self, language, save_path):
22
+ self.save_path = save_path + '/wikicorpus_' + language
23
+
24
+ if not os.path.exists(self.save_path):
25
+ os.makedirs(self.save_path)
26
+
27
+ self.language = language
28
+ self.download_urls = {
29
+ 'en' : 'https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2',
30
+ 'zh' : 'https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2'
31
+ }
32
+
33
+ self.output_files = {
34
+ 'en' : 'wikicorpus_en.xml.bz2',
35
+ 'zh' : 'wikicorpus_zh.xml.bz2'
36
+ }
37
+
38
+
39
+ def download(self):
40
+ if self.language in self.download_urls:
41
+ url = self.download_urls[self.language]
42
+ filename = self.output_files[self.language]
43
+
44
+ print('Downloading:', url)
45
+ if os.path.isfile(self.save_path + '/' + filename):
46
+ print('** Download file already exists, skipping download')
47
+ else:
48
+ subprocess.run('wget -O ' + self.save_path + '/' + filename + ' ' + url, shell=True, check=True)
49
+
50
+ # Always unzipping since this is relatively fast and will overwrite
51
+ print('Unzipping:', self.output_files[self.language])
52
+ subprocess.run('bzip2 -dk ' + self.save_path + '/' + filename, shell=True, check=True)
53
+
54
+ else:
55
+ assert False, 'WikiDownloader not implemented for this language yet.'
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/WikicorpusTextFormatting.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ import glob
15
+ import os
16
+
17
+ class WikicorpusTextFormatting:
18
+ def __init__(self, wiki_path, output_filename, recursive = False):
19
+ self.wiki_path = wiki_path
20
+ self.recursive = recursive
21
+ self.output_filename = output_filename
22
+
23
+
24
+ # This puts one article per line
25
+ def merge(self):
26
+ with open(self.output_filename, mode='w', newline='\n') as ofile:
27
+ for dirname in glob.glob(self.wiki_path + '/*/', recursive=False):
28
+ for filename in glob.glob(dirname + 'wiki_*', recursive=self.recursive):
29
+ print(filename)
30
+ article_lines = []
31
+ article_open = False
32
+
33
+ with open(filename, mode='r', newline='\n') as file:
34
+ for line in file:
35
+ if '<doc id=' in line:
36
+ article_open = True
37
+ elif '</doc>' in line:
38
+ article_open = False
39
+ for oline in article_lines[1:]:
40
+ if oline != '\n':
41
+ ofile.write(oline.rstrip() + " ")
42
+ ofile.write("\n\n")
43
+ article_lines = []
44
+ else:
45
+ if article_open:
46
+ article_lines.append(line)
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/bertPrep.py ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ import BookscorpusTextFormatting
15
+ import Downloader
16
+ import TextSharding
17
+ import WikicorpusTextFormatting
18
+
19
+ import argparse
20
+ import itertools
21
+ import multiprocessing
22
+ import os
23
+ import pprint
24
+ import subprocess
25
+
26
+
27
+ def main(args):
28
+ working_dir = os.environ['BERT_PREP_WORKING_DIR']
29
+
30
+ print('Working Directory:', working_dir)
31
+ print('Action:', args.action)
32
+ print('Dataset Name:', args.dataset)
33
+
34
+ if args.input_files:
35
+ args.input_files = args.input_files.split(',')
36
+
37
+ hdf5_tfrecord_folder_prefix = "_lower_case_" + str(args.do_lower_case) + "_seq_len_" + str(args.max_seq_length) \
38
+ + "_max_pred_" + str(args.max_predictions_per_seq) + "_masked_lm_prob_" + str(args.masked_lm_prob) \
39
+ + "_random_seed_" + str(args.random_seed) + "_dupe_factor_" + str(args.dupe_factor)
40
+
41
+ directory_structure = {
42
+ 'download' : working_dir + '/download', # Downloaded and decompressed
43
+ 'extracted' : working_dir +'/extracted', # Extracted from whatever the initial format is (e.g., wikiextractor)
44
+ 'formatted' : working_dir + '/formatted_one_article_per_line', # This is the level where all sources should look the same
45
+ 'sharded' : working_dir + '/sharded_' + "training_shards_" + str(args.n_training_shards) + "_test_shards_" + str(args.n_test_shards) + "_fraction_" + str(args.fraction_test_set),
46
+ 'tfrecord' : working_dir + '/tfrecord'+ hdf5_tfrecord_folder_prefix,
47
+ 'hdf5': working_dir + '/hdf5' + hdf5_tfrecord_folder_prefix
48
+ }
49
+
50
+ print('\nDirectory Structure:')
51
+ pp = pprint.PrettyPrinter(indent=2)
52
+ pp.pprint(directory_structure)
53
+ print('')
54
+
55
+ if args.action == 'download':
56
+ if not os.path.exists(directory_structure['download']):
57
+ os.makedirs(directory_structure['download'])
58
+
59
+ downloader = Downloader.Downloader(args.dataset, directory_structure['download'])
60
+ downloader.download()
61
+
62
+ elif args.action == 'text_formatting':
63
+ assert args.dataset != 'google_pretrained_weights' and args.dataset != 'nvidia_pretrained_weights' and args.dataset != 'squad' and args.dataset != 'mrpc', 'Cannot perform text_formatting on pretrained weights'
64
+
65
+ if not os.path.exists(directory_structure['extracted']):
66
+ os.makedirs(directory_structure['extracted'])
67
+
68
+ if not os.path.exists(directory_structure['formatted']):
69
+ os.makedirs(directory_structure['formatted'])
70
+
71
+ if args.dataset == 'bookscorpus':
72
+ books_path = directory_structure['download'] + '/bookscorpus'
73
+ #books_path = directory_structure['download']
74
+ output_filename = directory_structure['formatted'] + '/bookscorpus_one_book_per_line.txt'
75
+ books_formatter = BookscorpusTextFormatting.BookscorpusTextFormatting(books_path, output_filename, recursive=True)
76
+ books_formatter.merge()
77
+
78
+ elif args.dataset == 'wikicorpus_en':
79
+ if args.skip_wikiextractor == 0:
80
+ path_to_wikiextractor_in_container = '/workspace/wikiextractor/WikiExtractor.py'
81
+ wikiextractor_command = path_to_wikiextractor_in_container + ' ' + directory_structure['download'] + '/' + args.dataset + '/wikicorpus_en.xml ' + '-b 100M --processes ' + str(args.n_processes) + ' -o ' + directory_structure['extracted'] + '/' + args.dataset
82
+ print('WikiExtractor Command:', wikiextractor_command)
83
+ wikiextractor_process = subprocess.run(wikiextractor_command, shell=True, check=True)
84
+ #wikiextractor_process.communicate()
85
+
86
+ wiki_path = directory_structure['extracted'] + '/wikicorpus_en'
87
+ output_filename = directory_structure['formatted'] + '/wikicorpus_en_one_article_per_line.txt'
88
+ wiki_formatter = WikicorpusTextFormatting.WikicorpusTextFormatting(wiki_path, output_filename, recursive=True)
89
+ wiki_formatter.merge()
90
+
91
+ elif args.dataset == 'wikicorpus_zh':
92
+ assert False, 'wikicorpus_zh not fully supported at this time. The simplified/tradition Chinese data needs to be translated and properly segmented still, and should work once this step is added.'
93
+ if args.skip_wikiextractor == 0:
94
+ path_to_wikiextractor_in_container = '/workspace/wikiextractor/WikiExtractor.py'
95
+ wikiextractor_command = path_to_wikiextractor_in_container + ' ' + directory_structure['download'] + '/' + args.dataset + '/wikicorpus_zh.xml ' + '-b 100M --processes ' + str(args.n_processes) + ' -o ' + directory_structure['extracted'] + '/' + args.dataset
96
+ print('WikiExtractor Command:', wikiextractor_command)
97
+ wikiextractor_process = subprocess.run(wikiextractor_command, shell=True, check=True)
98
+ #wikiextractor_process.communicate()
99
+
100
+ wiki_path = directory_structure['extracted'] + '/wikicorpus_zh'
101
+ output_filename = directory_structure['formatted'] + '/wikicorpus_zh_one_article_per_line.txt'
102
+ wiki_formatter = WikicorpusTextFormatting.WikicorpusTextFormatting(wiki_path, output_filename, recursive=True)
103
+ wiki_formatter.merge()
104
+
105
+ assert os.stat(output_filename).st_size > 0, 'File glob did not pick up extracted wiki files from WikiExtractor.'
106
+
107
+ elif args.action == 'sharding':
108
+ # Note: books+wiki requires user to provide list of input_files (comma-separated with no spaces)
109
+ if args.dataset == 'bookscorpus' or 'wikicorpus' in args.dataset or 'books_wiki' in args.dataset:
110
+ if args.input_files is None:
111
+ if args.dataset == 'bookscorpus':
112
+ args.input_files = [directory_structure['formatted'] + '/bookscorpus_one_book_per_line.txt']
113
+ elif args.dataset == 'wikicorpus_en':
114
+ args.input_files = [directory_structure['formatted'] + '/wikicorpus_en_one_article_per_line.txt']
115
+ elif args.dataset == 'wikicorpus_zh':
116
+ args.input_files = [directory_structure['formatted'] + '/wikicorpus_zh_one_article_per_line.txt']
117
+ elif args.dataset == 'books_wiki_en_corpus':
118
+ args.input_files = [directory_structure['formatted'] + '/bookscorpus_one_book_per_line.txt', directory_structure['formatted'] + '/wikicorpus_en_one_article_per_line.txt']
119
+
120
+ output_file_prefix = directory_structure['sharded'] + '/' + args.dataset + '/' + args.dataset
121
+
122
+ if not os.path.exists(directory_structure['sharded']):
123
+ os.makedirs(directory_structure['sharded'])
124
+
125
+ if not os.path.exists(directory_structure['sharded'] + '/' + args.dataset):
126
+ os.makedirs(directory_structure['sharded'] + '/' + args.dataset)
127
+
128
+ # Segmentation is here because all datasets look the same in one article/book/whatever per line format, and
129
+ # it seemed unnecessarily complicated to add an additional preprocessing step to call just for this.
130
+ # Different languages (e.g., Chinese simplified/traditional) may require translation and
131
+ # other packages to be called from here -- just add a conditional branch for those extra steps
132
+ segmenter = TextSharding.NLTKSegmenter()
133
+ sharding = TextSharding.Sharding(args.input_files, output_file_prefix, args.n_training_shards, args.n_test_shards, args.fraction_test_set)
134
+
135
+ sharding.load_articles()
136
+ sharding.segment_articles_into_sentences(segmenter)
137
+ sharding.distribute_articles_over_shards()
138
+ sharding.write_shards_to_disk()
139
+
140
+ else:
141
+ assert False, 'Unsupported dataset for sharding'
142
+
143
+ elif args.action == 'create_tfrecord_files':
144
+ assert False, 'TFrecord creation not supported in this PyTorch model example release.' \
145
+ ''
146
+ if not os.path.exists(directory_structure['tfrecord'] + "/" + args.dataset):
147
+ os.makedirs(directory_structure['tfrecord'] + "/" + args.dataset)
148
+
149
+ def create_record_worker(filename_prefix, shard_id, output_format='tfrecord'):
150
+ bert_preprocessing_command = 'python /workspace/bert/create_pretraining_data.py'
151
+ bert_preprocessing_command += ' --input_file=' + directory_structure['sharded'] + '/' + args.dataset + '/' + filename_prefix + '_' + str(shard_id) + '.txt'
152
+ bert_preprocessing_command += ' --output_file=' + directory_structure['tfrecord'] + '/' + args.dataset + '/' + filename_prefix + '_' + str(shard_id) + '.' + output_format
153
+ bert_preprocessing_command += ' --vocab_file=' + args.vocab_file
154
+ bert_preprocessing_command += ' --do_lower_case' if args.do_lower_case else ''
155
+ bert_preprocessing_command += ' --max_seq_length=' + str(args.max_seq_length)
156
+ bert_preprocessing_command += ' --max_predictions_per_seq=' + str(args.max_predictions_per_seq)
157
+ bert_preprocessing_command += ' --masked_lm_prob=' + str(args.masked_lm_prob)
158
+ bert_preprocessing_command += ' --random_seed=' + str(args.random_seed)
159
+ bert_preprocessing_command += ' --dupe_factor=' + str(args.dupe_factor)
160
+ bert_preprocessing_process = subprocess.Popen(bert_preprocessing_command, shell=True)
161
+
162
+ last_process = bert_preprocessing_process
163
+
164
+ # This could be better optimized (fine if all take equal time)
165
+ if shard_id % args.n_processes == 0 and shard_id > 0:
166
+ bert_preprocessing_process.wait()
167
+ return last_process
168
+
169
+ output_file_prefix = args.dataset
170
+
171
+ for i in range(args.n_training_shards):
172
+ last_process =create_record_worker(output_file_prefix + '_training', i)
173
+
174
+ last_process.wait()
175
+
176
+ for i in range(args.n_test_shards):
177
+ last_process = create_record_worker(output_file_prefix + '_test', i)
178
+
179
+ last_process.wait()
180
+
181
+
182
+ elif args.action == 'create_hdf5_files':
183
+ last_process = None
184
+
185
+ if not os.path.exists(directory_structure['hdf5'] + "/" + args.dataset):
186
+ os.makedirs(directory_structure['hdf5'] + "/" + args.dataset)
187
+
188
+ def create_record_worker(filename_prefix, shard_id, output_format='hdf5'):
189
+ bert_preprocessing_command = 'python /workspace/bert/create_pretraining_data.py'
190
+ bert_preprocessing_command += ' --input_file=' + directory_structure['sharded'] + '/' + args.dataset + '/' + filename_prefix + '_' + str(shard_id) + '.txt'
191
+ bert_preprocessing_command += ' --output_file=' + directory_structure['hdf5'] + '/' + args.dataset + '/' + filename_prefix + '_' + str(shard_id) + '.' + output_format
192
+ bert_preprocessing_command += ' --vocab_file=' + args.vocab_file
193
+ bert_preprocessing_command += ' --do_lower_case' if args.do_lower_case else ''
194
+ bert_preprocessing_command += ' --max_seq_length=' + str(args.max_seq_length)
195
+ bert_preprocessing_command += ' --max_predictions_per_seq=' + str(args.max_predictions_per_seq)
196
+ bert_preprocessing_command += ' --masked_lm_prob=' + str(args.masked_lm_prob)
197
+ bert_preprocessing_command += ' --random_seed=' + str(args.random_seed)
198
+ bert_preprocessing_command += ' --dupe_factor=' + str(args.dupe_factor)
199
+ bert_preprocessing_process = subprocess.Popen(bert_preprocessing_command, shell=True)
200
+
201
+ last_process = bert_preprocessing_process
202
+
203
+ # This could be better optimized (fine if all take equal time)
204
+ if shard_id % args.n_processes == 0 and shard_id > 0:
205
+ bert_preprocessing_process.wait()
206
+ return last_process
207
+
208
+ output_file_prefix = args.dataset
209
+
210
+ for i in range(args.n_training_shards):
211
+ last_process = create_record_worker(output_file_prefix + '_training', i)
212
+
213
+ last_process.wait()
214
+
215
+ for i in range(args.n_test_shards):
216
+ last_process = create_record_worker(output_file_prefix + '_test', i)
217
+
218
+ last_process.wait()
219
+
220
+
221
+ if __name__ == "__main__":
222
+ parser = argparse.ArgumentParser(
223
+ description='Preprocessing Application for Everything BERT-related'
224
+ )
225
+
226
+ parser.add_argument(
227
+ '--action',
228
+ type=str,
229
+ help='Specify the action you want the app to take. e.g., generate vocab, segment, create tfrecords',
230
+ choices={
231
+ 'download', # Download and verify mdf5/sha sums
232
+ 'text_formatting', # Convert into a file that contains one article/book per line
233
+ 'sharding', # Convert previous formatted text into shards containing one sentence per line
234
+ 'create_tfrecord_files', # Turn each shard into a TFrecord with masking and next sentence prediction info
235
+ 'create_hdf5_files' # Turn each shard into a HDF5 file with masking and next sentence prediction info
236
+ }
237
+ )
238
+
239
+ parser.add_argument(
240
+ '--dataset',
241
+ type=str,
242
+ help='Specify the dataset to perform --action on',
243
+ choices={
244
+ 'bookscorpus',
245
+ 'wikicorpus_en',
246
+ 'wikicorpus_zh',
247
+ 'books_wiki_en_corpus',
248
+ 'google_pretrained_weights',
249
+ 'nvidia_pretrained_weights',
250
+ 'mrpc',
251
+ 'sst-2',
252
+ 'squad',
253
+ 'all'
254
+ }
255
+ )
256
+
257
+ parser.add_argument(
258
+ '--input_files',
259
+ type=str,
260
+ help='Specify the input files in a comma-separated list (no spaces)'
261
+ )
262
+
263
+ parser.add_argument(
264
+ '--n_training_shards',
265
+ type=int,
266
+ help='Specify the number of training shards to generate',
267
+ default=256
268
+ )
269
+
270
+ parser.add_argument(
271
+ '--n_test_shards',
272
+ type=int,
273
+ help='Specify the number of test shards to generate',
274
+ default=256
275
+ )
276
+
277
+ parser.add_argument(
278
+ '--fraction_test_set',
279
+ type=float,
280
+ help='Specify the fraction (0..1) of the data to withhold for the test data split (based on number of sequences)',
281
+ default=0.1
282
+ )
283
+
284
+ parser.add_argument(
285
+ '--segmentation_method',
286
+ type=str,
287
+ help='Specify your choice of sentence segmentation',
288
+ choices={
289
+ 'nltk'
290
+ },
291
+ default='nltk'
292
+ )
293
+
294
+ parser.add_argument(
295
+ '--n_processes',
296
+ type=int,
297
+ help='Specify the max number of processes to allow at one time',
298
+ default=4
299
+ )
300
+
301
+ parser.add_argument(
302
+ '--random_seed',
303
+ type=int,
304
+ help='Specify the base seed to use for any random number generation',
305
+ default=12345
306
+ )
307
+
308
+ parser.add_argument(
309
+ '--dupe_factor',
310
+ type=int,
311
+ help='Specify the duplication factor',
312
+ default=5
313
+ )
314
+
315
+ parser.add_argument(
316
+ '--masked_lm_prob',
317
+ type=float,
318
+ help='Specify the probability for masked lm',
319
+ default=0.15
320
+ )
321
+
322
+ parser.add_argument(
323
+ '--max_seq_length',
324
+ type=int,
325
+ help='Specify the maximum sequence length',
326
+ default=512
327
+ )
328
+
329
+ parser.add_argument(
330
+ '--max_predictions_per_seq',
331
+ type=int,
332
+ help='Specify the maximum number of masked words per sequence',
333
+ default=20
334
+ )
335
+
336
+ parser.add_argument(
337
+ '--do_lower_case',
338
+ type=int,
339
+ help='Specify whether it is cased (0) or uncased (1) (any number greater than 0 will be treated as uncased)',
340
+ default=1
341
+ )
342
+
343
+ parser.add_argument(
344
+ '--vocab_file',
345
+ type=str,
346
+ help='Specify absolute path to vocab file to use)'
347
+ )
348
+
349
+ parser.add_argument(
350
+ '--skip_wikiextractor',
351
+ type=int,
352
+ help='Specify whether to skip wikiextractor step 0=False, 1=True',
353
+ default=0
354
+ )
355
+
356
+ parser.add_argument(
357
+ '--interactive_json_config_generator',
358
+ type=str,
359
+ help='Specify the action you want the app to take. e.g., generate vocab, segment, create tfrecords'
360
+ )
361
+
362
+ args = parser.parse_args()
363
+ main(args)
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/create_datasets_from_start.sh ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ to_download=${1:-"wiki_only"}
17
+
18
+ #Download
19
+ if [ "$to_download" = "wiki_books" ] ; then
20
+ python3 /workspace/bert/data/bertPrep.py --action download --dataset bookscorpus
21
+ fi
22
+
23
+ python3 /workspace/bert/data/bertPrep.py --action download --dataset wikicorpus_en
24
+ python3 /workspace/bert/data/bertPrep.py --action download --dataset google_pretrained_weights # Includes vocab
25
+ python3 /workspace/bert/data/bertPrep.py --action download --dataset squad
26
+ python3 /workspace/bert/data/bertPrep.py --action download --dataset mrpc
27
+ python3 /workspace/bert/data/bertPrep.py --action download --dataset sst-2
28
+
29
+ # Properly format the text files
30
+ if [ "$to_download" = "wiki_books" ] ; then
31
+ python3 /workspace/bert/data/bertPrep.py --action text_formatting --dataset bookscorpus
32
+ fi
33
+ python3 /workspace/bert/data/bertPrep.py --action text_formatting --dataset wikicorpus_en
34
+
35
+ if [ "$to_download" = "wiki_books" ] ; then
36
+ DATASET="books_wiki_en_corpus"
37
+ else
38
+ DATASET="wikicorpus_en"
39
+ # Shard the text files
40
+ fi
41
+
42
+ # Shard the text files
43
+ python3 /workspace/bert/data/bertPrep.py --action sharding --dataset $DATASET
44
+
45
+ # Create HDF5 files Phase 1
46
+ python3 /workspace/bert/data/bertPrep.py --action create_hdf5_files --dataset $DATASET --max_seq_length 128 \
47
+ --max_predictions_per_seq 20 --vocab_file $BERT_PREP_WORKING_DIR/download/google_pretrained_weights/uncased_L-24_H-1024_A-16/vocab.txt --do_lower_case 1
48
+
49
+ # Create HDF5 files Phase 2
50
+ python3 /workspace/bert/data/bertPrep.py --action create_hdf5_files --dataset $DATASET --max_seq_length 512 \
51
+ --max_predictions_per_seq 80 --vocab_file $BERT_PREP_WORKING_DIR/download/google_pretrained_weights/uncased_L-24_H-1024_A-16/vocab.txt --do_lower_case 1
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/data/squad/squad_download.sh ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ echo "Downloading dataset for squad..."
17
+
18
+ # Download SQuAD
19
+
20
+ v1="v1.1"
21
+ mkdir $v1
22
+ wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json -O $v1/train-v1.1.json
23
+ wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json -O $v1/dev-v1.1.json
24
+ wget https://worksheets.codalab.org/rest/bundles/0xbcd57bee090b421c982906709c8c27e1/contents/blob/ -O $v1/evaluate-v1.1.py
25
+
26
+ EXP_TRAIN_v1='981b29407e0affa3b1b156f72073b945 -'
27
+ EXP_DEV_v1='3e85deb501d4e538b6bc56f786231552 -'
28
+ EXP_EVAL_v1='afb04912d18ff20696f7f88eed49bea9 -'
29
+ CALC_TRAIN_v1=`cat ${v1}/train-v1.1.json |md5sum`
30
+ CALC_DEV_v1=`cat ${v1}/dev-v1.1.json |md5sum`
31
+ CALC_EVAL_v1=`cat ${v1}/evaluate-v1.1.py |md5sum`
32
+
33
+ v2="v2.0"
34
+ mkdir $v2
35
+ wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json -O $v2/train-v2.0.json
36
+ wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json -O $v2/dev-v2.0.json
37
+ wget https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/ -O $v2/evaluate-v2.0.py
38
+
39
+ EXP_TRAIN_v2='62108c273c268d70893182d5cf8df740 -'
40
+ EXP_DEV_v2='246adae8b7002f8679c027697b0b7cf8 -'
41
+ EXP_EVAL_v2='ff23213bed5516ea4a6d9edb6cd7d627 -'
42
+
43
+ CALC_TRAIN_v2=`cat ${v2}/train-v2.0.json |md5sum`
44
+ CALC_DEV_v2=`cat ${v2}/dev-v2.0.json |md5sum`
45
+ CALC_EVAL_v2=`cat ${v2}/evaluate-v2.0.py |md5sum`
46
+
47
+ echo "Squad data download done!"
48
+
49
+ echo "Verifying Dataset...."
50
+
51
+ if [ "$EXP_TRAIN_v1" != "$CALC_TRAIN_v1" ]; then
52
+ echo "train-v1.1.json is corrupted! md5sum doesn't match"
53
+ fi
54
+
55
+ if [ "$EXP_DEV_v1" != "$CALC_DEV_v1" ]; then
56
+ echo "dev-v1.1.json is corrupted! md5sum doesn't match"
57
+ fi
58
+ if [ "$EXP_EVAL_v1" != "$CALC_EVAL_v1" ]; then
59
+ echo "evaluate-v1.1.py is corrupted! md5sum doesn't match"
60
+ fi
61
+
62
+
63
+ if [ "$EXP_TRAIN_v2" != "$CALC_TRAIN_v2" ]; then
64
+ echo "train-v2.0.json is corrupted! md5sum doesn't match"
65
+ fi
66
+ if [ "$EXP_DEV_v2" != "$CALC_DEV_v2" ]; then
67
+ echo "dev-v2.0.json is corrupted! md5sum doesn't match"
68
+ fi
69
+ if [ "$EXP_EVAL_v2" != "$CALC_EVAL_v2" ]; then
70
+ echo "evaluate-v2.0.py is corrupted! md5sum doesn't match"
71
+ fi
72
+
73
+ echo "Complete!"
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/file_utils.py ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+
14
+ """
15
+ Utilities for working with the local dataset cache.
16
+ This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
17
+ Copyright by the AllenNLP authors.
18
+ """
19
+
20
+ from __future__ import (absolute_import, division, print_function, unicode_literals)
21
+
22
+ import json
23
+ import logging
24
+ import os
25
+ import shutil
26
+ import tempfile
27
+ from functools import wraps
28
+ from hashlib import sha256
29
+ import sys
30
+ from io import open
31
+
32
+ import boto3
33
+ import requests
34
+ from botocore.exceptions import ClientError
35
+ from tqdm import tqdm
36
+
37
+ try:
38
+ from urllib.parse import urlparse
39
+ except ImportError:
40
+ from urlparse import urlparse
41
+
42
+ try:
43
+ from pathlib import Path
44
+ PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
45
+ Path.home() / '.pytorch_pretrained_bert'))
46
+ except AttributeError:
47
+ PYTORCH_PRETRAINED_BERT_CACHE = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
48
+ os.path.join(os.path.expanduser("~"), '.pytorch_pretrained_bert'))
49
+
50
+ logger = logging.getLogger(__name__) # pylint: disable=invalid-name
51
+
52
+
53
+ def url_to_filename(url, etag=None):
54
+ """
55
+ Convert `url` into a hashed filename in a repeatable way.
56
+ If `etag` is specified, append its hash to the url's, delimited
57
+ by a period.
58
+ """
59
+ url_bytes = url.encode('utf-8')
60
+ url_hash = sha256(url_bytes)
61
+ filename = url_hash.hexdigest()
62
+
63
+ if etag:
64
+ etag_bytes = etag.encode('utf-8')
65
+ etag_hash = sha256(etag_bytes)
66
+ filename += '.' + etag_hash.hexdigest()
67
+
68
+ return filename
69
+
70
+
71
+ def filename_to_url(filename, cache_dir=None):
72
+ """
73
+ Return the url and etag (which may be ``None``) stored for `filename`.
74
+ Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
75
+ """
76
+ if cache_dir is None:
77
+ cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
78
+ if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
79
+ cache_dir = str(cache_dir)
80
+
81
+ cache_path = os.path.join(cache_dir, filename)
82
+ if not os.path.exists(cache_path):
83
+ raise EnvironmentError("file {} not found".format(cache_path))
84
+
85
+ meta_path = cache_path + '.json'
86
+ if not os.path.exists(meta_path):
87
+ raise EnvironmentError("file {} not found".format(meta_path))
88
+
89
+ with open(meta_path, encoding="utf-8") as meta_file:
90
+ metadata = json.load(meta_file)
91
+ url = metadata['url']
92
+ etag = metadata['etag']
93
+
94
+ return url, etag
95
+
96
+
97
+ def cached_path(url_or_filename, cache_dir=None):
98
+ """
99
+ Given something that might be a URL (or might be a local path),
100
+ determine which. If it's a URL, download the file and cache it, and
101
+ return the path to the cached file. If it's already a local path,
102
+ make sure the file exists and then return the path.
103
+ """
104
+ if cache_dir is None:
105
+ cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
106
+ if sys.version_info[0] == 3 and isinstance(url_or_filename, Path):
107
+ url_or_filename = str(url_or_filename)
108
+ if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
109
+ cache_dir = str(cache_dir)
110
+
111
+ parsed = urlparse(url_or_filename)
112
+
113
+ if parsed.scheme in ('http', 'https', 's3'):
114
+ # URL, so get it from the cache (downloading if necessary)
115
+ return get_from_cache(url_or_filename, cache_dir)
116
+ elif os.path.exists(url_or_filename):
117
+ # File, and it exists.
118
+ return url_or_filename
119
+ elif parsed.scheme == '':
120
+ # File, but it doesn't exist.
121
+ raise EnvironmentError("file {} not found".format(url_or_filename))
122
+ else:
123
+ # Something unknown
124
+ raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
125
+
126
+
127
+ def split_s3_path(url):
128
+ """Split a full s3 path into the bucket name and path."""
129
+ parsed = urlparse(url)
130
+ if not parsed.netloc or not parsed.path:
131
+ raise ValueError("bad s3 path {}".format(url))
132
+ bucket_name = parsed.netloc
133
+ s3_path = parsed.path
134
+ # Remove '/' at beginning of path.
135
+ if s3_path.startswith("/"):
136
+ s3_path = s3_path[1:]
137
+ return bucket_name, s3_path
138
+
139
+
140
+ def s3_request(func):
141
+ """
142
+ Wrapper function for s3 requests in order to create more helpful error
143
+ messages.
144
+ """
145
+
146
+ @wraps(func)
147
+ def wrapper(url, *args, **kwargs):
148
+ try:
149
+ return func(url, *args, **kwargs)
150
+ except ClientError as exc:
151
+ if int(exc.response["Error"]["Code"]) == 404:
152
+ raise EnvironmentError("file {} not found".format(url))
153
+ else:
154
+ raise
155
+
156
+ return wrapper
157
+
158
+
159
+ @s3_request
160
+ def s3_etag(url):
161
+ """Check ETag on S3 object."""
162
+ s3_resource = boto3.resource("s3")
163
+ bucket_name, s3_path = split_s3_path(url)
164
+ s3_object = s3_resource.Object(bucket_name, s3_path)
165
+ return s3_object.e_tag
166
+
167
+
168
+ @s3_request
169
+ def s3_get(url, temp_file):
170
+ """Pull a file directly from S3."""
171
+ s3_resource = boto3.resource("s3")
172
+ bucket_name, s3_path = split_s3_path(url)
173
+ s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
174
+
175
+
176
+ def http_get(url, temp_file):
177
+ req = requests.get(url, stream=True)
178
+ content_length = req.headers.get('Content-Length')
179
+ total = int(content_length) if content_length is not None else None
180
+ progress = tqdm(unit="B", total=total)
181
+ for chunk in req.iter_content(chunk_size=1024):
182
+ if chunk: # filter out keep-alive new chunks
183
+ progress.update(len(chunk))
184
+ temp_file.write(chunk)
185
+ progress.close()
186
+
187
+
188
+ def get_from_cache(url, cache_dir=None):
189
+ """
190
+ Given a URL, look for the corresponding dataset in the local cache.
191
+ If it's not there, download it. Then return the path to the cached file.
192
+ """
193
+ if cache_dir is None:
194
+ cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
195
+ if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
196
+ cache_dir = str(cache_dir)
197
+
198
+ if not os.path.exists(cache_dir):
199
+ os.makedirs(cache_dir)
200
+
201
+ # Get eTag to add to filename, if it exists.
202
+ if url.startswith("s3://"):
203
+ etag = s3_etag(url)
204
+ else:
205
+ response = requests.head(url, allow_redirects=True)
206
+ if response.status_code != 200:
207
+ raise IOError("HEAD request failed for url {} with status code {}"
208
+ .format(url, response.status_code))
209
+ etag = response.headers.get("ETag")
210
+
211
+ filename = url_to_filename(url, etag)
212
+
213
+ # get cache path to put the file
214
+ cache_path = os.path.join(cache_dir, filename)
215
+
216
+ if not os.path.exists(cache_path):
217
+ # Download to temporary file, then copy to cache dir once finished.
218
+ # Otherwise you get corrupt cache entries if the download gets interrupted.
219
+ with tempfile.NamedTemporaryFile() as temp_file:
220
+ logger.info("%s not found in cache, downloading to %s", url, temp_file.name)
221
+
222
+ # GET file object
223
+ if url.startswith("s3://"):
224
+ s3_get(url, temp_file)
225
+ else:
226
+ http_get(url, temp_file)
227
+
228
+ # we are copying the file before closing it, so flush to avoid truncation
229
+ temp_file.flush()
230
+ # shutil.copyfileobj() starts at the current position, so go to the start
231
+ temp_file.seek(0)
232
+
233
+ logger.info("copying %s to cache at %s", temp_file.name, cache_path)
234
+ with open(cache_path, 'wb') as cache_file:
235
+ shutil.copyfileobj(temp_file, cache_file)
236
+
237
+ logger.info("creating metadata file for %s", cache_path)
238
+ meta = {'url': url, 'etag': etag}
239
+ meta_path = cache_path + '.json'
240
+ with open(meta_path, 'w', encoding="utf-8") as meta_file:
241
+ json.dump(meta, meta_file)
242
+
243
+ logger.info("removing temp file %s", temp_file.name)
244
+
245
+ return cache_path
246
+
247
+
248
+ def read_set_from_file(filename):
249
+ '''
250
+ Extract a de-duped collection (set) of text from a file.
251
+ Expected file format is one item per line.
252
+ '''
253
+ collection = set()
254
+ with open(filename, 'r', encoding='utf-8') as file_:
255
+ for line in file_:
256
+ collection.add(line.rstrip())
257
+ return collection
258
+
259
+
260
+ def get_file_extension(path, dot=True, lower=True):
261
+ ext = os.path.splitext(path)[1]
262
+ ext = ext if dot else ext[1:]
263
+ return ext.lower() if lower else ext
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/gpu_migration_logs/gpu_migration_5494.log ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-03-17 11:42:27] /usr/local/lib/python3.8/dist-packages/torch/random.py:40
2
+ [context]: torch.cuda.manual_seed_all(seed)
3
+ [hpu_match]: torch.cuda.manual_seed_all(seed=42, ) --> torch.hpu.random.manual_seed_all(42)
4
+
5
+ [2023-03-17 11:42:27] run_pretraining.py:580
6
+ [context]: torch.cuda.manual_seed(args.seed + args.local_rank)
7
+ [hpu_match]: torch.cuda.manual_seed(seed=42, ) --> torch.hpu.random.manual_seed(42)
8
+
9
+ [2023-03-17 11:42:27] run_pretraining.py:316
10
+ [context]: assert (torch.cuda.is_available())
11
+ [hpu_match]: torch.cuda.is_available() --> torch.hpu.is_available()
12
+
13
+ [2023-03-17 11:42:27] run_pretraining.py:325
14
+ [context]: torch.cuda.set_device(args.local_rank)
15
+ [hpu_match]: torch.cuda.set_device(device=0, ) --> torch.hpu.set_device(hpu:0)
16
+
17
+ [2023-03-17 11:42:27] run_pretraining.py:328
18
+ [context]: torch.distributed.init_process_group(backend='nccl', init_method='env://')
19
+ [hpu_match]: torch.distributed.init_process_group(backend=nccl, init_method=env://, timeout=0:30:00, world_size=-1, rank=-1, store=None, group_name=, pg_options=None, ) --> change backend to hccl
20
+
21
+ [2023-03-17 11:42:31] /usr/local/lib/python3.8/dist-packages/habana_frameworks/torch/core/weight_sharing.py:150
22
+ [context]: result = self.original_to(*args, **kwargs)
23
+ [hpu_match]: torch.Tensor.to(args=(device(type='cuda', index=0), None, False), kwargs={}, ) --> torch.Tensor.to(args=('hpu:0', None, False), kwargs={})
24
+
25
+ [2023-03-17 11:42:33] /usr/local/lib/python3.8/dist-packages/apex/amp/scaler.py:56
26
+ [context]: self._overflow_buf = torch.cuda.IntTensor([0])
27
+ [hpu_modified]: torch.cuda.__new__(args=([0],), kwargs={}, ) --> torch.IntTensor(args=([0],), kwargs={}).to(hpu)
28
+
29
+ [2023-03-17 11:42:33] /usr/local/lib/python3.8/dist-packages/apex/parallel/distributed.py:63
30
+ [context]: tp = tensor.type()
31
+ [hpu_match]: torch.Tensor.type(dtype=None, non_blocking=False, kwargs={}, ) --> change output value from torch.hpu.FloatTensor to torch.cuda.FloatTensor
32
+
33
+ [2023-03-17 11:42:35] run_pretraining.py:652
34
+ [context]: train_dataloader = DataLoader(train_data, sampler=train_sampler,
35
+ [hpu_match]: torch.utils.data.DataLoader.__init__(dataset=dataset, batch_size=64, shuffle=None, sampler=<torch.utils.data.sampler.RandomSampler object at 0x7f893a457dc0>, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=True, drop_last=True, timeout=0, worker_init_fn=<__main__.WorkerInitObj object at 0x7f893fb04670>, multiprocessing_context=None, generator=None, prefetch_factor=2, persistent_workers=False, pin_memory_device=, ) --> change pin_memory_device to hpu
36
+
37
+ [2023-03-17 11:42:35] run_pretraining.py:663
38
+ [context]: overflow_buf = torch.cuda.IntTensor([0])
39
+ [hpu_modified]: torch.cuda.__new__(args=([0],), kwargs={}, ) --> torch.IntTensor(args=([0],), kwargs={}).to(hpu)
40
+
41
+ [2023-03-17 11:42:35] run_pretraining.py:685
42
+ [context]: batch = [t.to(device) for t in batch]
43
+ [hpu_match]: torch.Tensor.to(args=(device(type='cuda', index=0),), kwargs={}, ) --> torch.Tensor.to(args=('hpu:0',), kwargs={})
44
+
45
+ [2023-03-17 11:42:35] /usr/local/lib/python3.8/dist-packages/torch/cuda/amp/common.py:6
46
+ [context]: return not (torch.cuda.is_available() or find_spec('torch_xla'))
47
+ [hpu_match]: torch.cuda.is_available() --> torch.hpu.is_available()
48
+
49
+ [2023-03-17 11:42:35] /usr/lib/python3.8/multiprocessing/context.py:277
50
+ [context]: return Popen(process_obj)
51
+ [hpu_match]: torch.utils.data.DataLoader.__init__(dataset=dataset, batch_size=64, shuffle=None, sampler=<torch.utils.data.sampler.RandomSampler object at 0x7f88cedbf520>, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=True, drop_last=True, timeout=0, worker_init_fn=<__main__.WorkerInitObj object at 0x7f893a4578b0>, multiprocessing_context=None, generator=None, prefetch_factor=2, persistent_workers=False, pin_memory_device=, ) --> change pin_memory_device to hpu
52
+
53
+ [2023-03-17 11:44:11] /usr/lib/python3.8/multiprocessing/context.py:277
54
+ [context]: return Popen(process_obj)
55
+ [hpu_match]: torch.utils.data.DataLoader.__init__(dataset=dataset, batch_size=64, shuffle=None, sampler=<torch.utils.data.sampler.RandomSampler object at 0x7f88cedbf6d0>, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=True, drop_last=True, timeout=0, worker_init_fn=<__main__.WorkerInitObj object at 0x7f88cedbf430>, multiprocessing_context=None, generator=None, prefetch_factor=2, persistent_workers=False, pin_memory_device=, ) --> change pin_memory_device to hpu
56
+
57
+ [2023-03-17 11:44:27] run_pretraining.py:484
58
+ [context]: flat_raw = torch.empty(flat_grad_size, device='cuda', dtype=allreduce_dtype)
59
+ [hpu_match]: torch.empty(args=(336232258,), kwargs={'device': 'hpu', 'dtype': torch.bfloat16}, ) --> torch.Tensor.empty(args=(336232258,), kwargs={device=hpu, dtype=torch.bfloat16, })
60
+
61
+ [2023-03-17 11:45:29] /usr/lib/python3.8/multiprocessing/context.py:277
62
+ [context]: return Popen(process_obj)
63
+ [hpu_match]: torch.utils.data.DataLoader.__init__(dataset=dataset, batch_size=64, shuffle=None, sampler=<torch.utils.data.sampler.RandomSampler object at 0x7f88cedbf850>, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=True, drop_last=True, timeout=0, worker_init_fn=<__main__.WorkerInitObj object at 0x7f88cedbf730>, multiprocessing_context=None, generator=None, prefetch_factor=2, persistent_workers=False, pin_memory_device=, ) --> change pin_memory_device to hpu
64
+
65
+ [2023-03-17 11:45:58] /usr/lib/python3.8/multiprocessing/context.py:277
66
+ [context]: return Popen(process_obj)
67
+ [hpu_match]: torch.utils.data.DataLoader.__init__(dataset=dataset, batch_size=64, shuffle=None, sampler=<torch.utils.data.sampler.RandomSampler object at 0x7f88cedbf9d0>, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=True, drop_last=True, timeout=0, worker_init_fn=<__main__.WorkerInitObj object at 0x7f88cedbf8b0>, multiprocessing_context=None, generator=None, prefetch_factor=2, persistent_workers=False, pin_memory_device=, ) --> change pin_memory_device to hpu
68
+
69
+ [2023-03-17 11:46:40] /usr/lib/python3.8/multiprocessing/context.py:277
70
+ [context]: return Popen(process_obj)
71
+ [hpu_match]: torch.utils.data.DataLoader.__init__(dataset=dataset, batch_size=64, shuffle=None, sampler=<torch.utils.data.sampler.RandomSampler object at 0x7f88cedbfb50>, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=True, drop_last=True, timeout=0, worker_init_fn=<__main__.WorkerInitObj object at 0x7f88cedbfa30>, multiprocessing_context=None, generator=None, prefetch_factor=2, persistent_workers=False, pin_memory_device=, ) --> change pin_memory_device to hpu
72
+
73
+ [2023-03-17 11:47:09] /usr/lib/python3.8/multiprocessing/context.py:277
74
+ [context]: return Popen(process_obj)
75
+ [hpu_match]: torch.utils.data.DataLoader.__init__(dataset=dataset, batch_size=64, shuffle=None, sampler=<torch.utils.data.sampler.RandomSampler object at 0x7f88cedbfcd0>, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=True, drop_last=True, timeout=0, worker_init_fn=<__main__.WorkerInitObj object at 0x7f88cedbfbb0>, multiprocessing_context=None, generator=None, prefetch_factor=2, persistent_workers=False, pin_memory_device=, ) --> change pin_memory_device to hpu
76
+
77
+ [2023-03-17 11:47:38] /usr/lib/python3.8/multiprocessing/context.py:277
78
+ [context]: return Popen(process_obj)
79
+ [hpu_match]: torch.utils.data.DataLoader.__init__(dataset=dataset, batch_size=64, shuffle=None, sampler=<torch.utils.data.sampler.RandomSampler object at 0x7f88cedbfe50>, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=True, drop_last=True, timeout=0, worker_init_fn=<__main__.WorkerInitObj object at 0x7f88cedbfd30>, multiprocessing_context=None, generator=None, prefetch_factor=2, persistent_workers=False, pin_memory_device=, ) --> change pin_memory_device to hpu
80
+
81
+ [2023-03-17 11:48:07] /usr/lib/python3.8/multiprocessing/context.py:277
82
+ [context]: return Popen(process_obj)
83
+ [hpu_match]: torch.utils.data.DataLoader.__init__(dataset=dataset, batch_size=64, shuffle=None, sampler=<torch.utils.data.sampler.RandomSampler object at 0x7f88cedbff70>, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=True, drop_last=True, timeout=0, worker_init_fn=<__main__.WorkerInitObj object at 0x7f88cedbfeb0>, multiprocessing_context=None, generator=None, prefetch_factor=2, persistent_workers=False, pin_memory_device=, ) --> change pin_memory_device to hpu
84
+
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/inference.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ BERT inference script. Does not depend on dataset. """
17
+
18
+ from __future__ import absolute_import, division, print_function
19
+
20
+ import argparse
21
+ import collections
22
+ import json
23
+ import logging
24
+ import math
25
+ import os
26
+ import random
27
+ import sys
28
+ from io import open
29
+
30
+ import numpy as np
31
+ import torch
32
+ from tqdm import tqdm, trange
33
+ from types import SimpleNamespace
34
+
35
+ from file_utils import PYTORCH_PRETRAINED_BERT_CACHE
36
+ from modeling import BertForQuestionAnswering, BertConfig, WEIGHTS_NAME, CONFIG_NAME
37
+ from tokenization import (BasicTokenizer, BertTokenizer, whitespace_tokenize)
38
+ from run_squad import _get_best_indices, _compute_softmax, get_valid_prelim_predictions, get_answer_text
39
+
40
+ if sys.version_info[0] == 2:
41
+ import cPickle as pickle
42
+ else:
43
+ import pickle
44
+
45
+ logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
46
+ datefmt='%m/%d/%Y %H:%M:%S',
47
+ level=logging.INFO)
48
+ logger = logging.getLogger(__name__)
49
+
50
+
51
+ import math
52
+ import json
53
+ import numpy as np
54
+ import collections
55
+
56
+
57
+ def preprocess_tokenized_text(doc_tokens, query_tokens, tokenizer,
58
+ max_seq_length, max_query_length):
59
+ """ converts an example into a feature """
60
+
61
+ if len(query_tokens) > max_query_length:
62
+ query_tokens = query_tokens[0:max_query_length]
63
+
64
+ tok_to_orig_index = []
65
+ orig_to_tok_index = []
66
+ all_doc_tokens = []
67
+ for (i, token) in enumerate(doc_tokens):
68
+ orig_to_tok_index.append(len(all_doc_tokens))
69
+ sub_tokens = tokenizer.tokenize(token)
70
+ for sub_token in sub_tokens:
71
+ tok_to_orig_index.append(i)
72
+ all_doc_tokens.append(sub_token)
73
+
74
+ # The -3 accounts for [CLS], [SEP] and [SEP]
75
+ max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
76
+
77
+ # truncate if too long
78
+ length = len(all_doc_tokens)
79
+ length = min(length, max_tokens_for_doc)
80
+
81
+ tokens = []
82
+ token_to_orig_map = {}
83
+ token_is_max_context = {}
84
+ segment_ids = []
85
+ tokens.append("[CLS]")
86
+ segment_ids.append(0)
87
+ for token in query_tokens:
88
+ tokens.append(token)
89
+ segment_ids.append(0)
90
+ tokens.append("[SEP]")
91
+ segment_ids.append(0)
92
+
93
+ for i in range(length):
94
+ token_to_orig_map[len(tokens)] = tok_to_orig_index[i]
95
+ token_is_max_context[len(tokens)] = True
96
+ tokens.append(all_doc_tokens[i])
97
+ segment_ids.append(1)
98
+ tokens.append("[SEP]")
99
+ segment_ids.append(1)
100
+
101
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
102
+
103
+ # The mask has 1 for real tokens and 0 for padding tokens. Only real
104
+ # tokens are attended to.
105
+ input_mask = [1] * len(input_ids)
106
+
107
+ # Zero-pad up to the sequence length.
108
+ while len(input_ids) < max_seq_length:
109
+ input_ids.append(0)
110
+ input_mask.append(0)
111
+ segment_ids.append(0)
112
+
113
+ assert len(input_ids) == max_seq_length
114
+ assert len(input_mask) == max_seq_length
115
+ assert len(segment_ids) == max_seq_length
116
+
117
+ tensors_for_inference = {
118
+ 'input_ids': input_ids,
119
+ 'input_mask': input_mask,
120
+ 'segment_ids': segment_ids
121
+ }
122
+ tensors_for_inference = SimpleNamespace(**tensors_for_inference)
123
+
124
+ tokens_for_postprocessing = {
125
+ 'tokens': tokens,
126
+ 'token_to_orig_map': token_to_orig_map,
127
+ 'token_is_max_context': token_is_max_context
128
+ }
129
+ tokens_for_postprocessing = SimpleNamespace(**tokens_for_postprocessing)
130
+
131
+ return tensors_for_inference, tokens_for_postprocessing
132
+
133
+
134
+ RawResult = collections.namedtuple("RawResult", ["start_logits", "end_logits"])
135
+
136
+
137
+ def get_answer(doc_tokens, tokens_for_postprocessing,
138
+ start_logits, end_logits, args):
139
+
140
+ result = RawResult(start_logits=start_logits, end_logits=end_logits)
141
+
142
+ predictions = []
143
+ Prediction = collections.namedtuple('Prediction', ['text', 'start_logit', 'end_logit'])
144
+
145
+ if args.version_2_with_negative:
146
+ null_val = (float("inf"), 0, 0)
147
+
148
+ start_indices = _get_best_indices(result.start_logits, args.n_best_size)
149
+ end_indices = _get_best_indices(result.end_logits, args.n_best_size)
150
+ prelim_predictions = get_valid_prelim_predictions(start_indices, end_indices,
151
+ tokens_for_postprocessing, result, args)
152
+ prelim_predictions = sorted(
153
+ prelim_predictions,
154
+ key=lambda x: (x.start_logit + x.end_logit),
155
+ reverse=True
156
+ )
157
+ if args.version_2_with_negative:
158
+ score = result.start_logits[0] + result.end_logits[0]
159
+ if score < null_val[0]:
160
+ null_val = (score, result.start_logits[0], result.end_logits[0])
161
+
162
+ doc_tokens_obj = {
163
+ 'doc_tokens': doc_tokens,
164
+ }
165
+ doc_tokens_obj = SimpleNamespace(**doc_tokens_obj)
166
+
167
+ curr_predictions = []
168
+ seen_predictions = []
169
+ for pred in prelim_predictions:
170
+ if len(curr_predictions) == args.n_best_size:
171
+ break
172
+ if pred.end_index > 0: # this is a non-null prediction
173
+ final_text = get_answer_text(doc_tokens_obj, tokens_for_postprocessing, pred, args)
174
+ if final_text in seen_predictions:
175
+ continue
176
+ else:
177
+ final_text = ""
178
+
179
+ seen_predictions.append(final_text)
180
+ curr_predictions.append(Prediction(final_text, pred.start_logit, pred.end_logit))
181
+ predictions += curr_predictions
182
+
183
+ # add empty prediction
184
+ if args.version_2_with_negative:
185
+ predictions.append(Prediction('', null_val[1], null_val[2]))
186
+
187
+ nbest_answers = []
188
+ answer = None
189
+ nbest = sorted(predictions,
190
+ key=lambda x: (x.start_logit + x.end_logit),
191
+ reverse=True)[:args.n_best_size]
192
+
193
+ total_scores = []
194
+ best_non_null_entry = None
195
+ for entry in nbest:
196
+ total_scores.append(entry.start_logit + entry.end_logit)
197
+ if not best_non_null_entry and entry.text:
198
+ best_non_null_entry = entry
199
+ probs = _compute_softmax(total_scores)
200
+ for (i, entry) in enumerate(nbest):
201
+ output = collections.OrderedDict()
202
+ output["text"] = entry.text
203
+ output["probability"] = probs[i]
204
+ output["start_logit"] = entry.start_logit
205
+ output["end_logit"] = entry.end_logit
206
+ nbest_answers.append(output)
207
+ if args.version_2_with_negative:
208
+ score_diff = null_val[0] - best_non_null_entry.start_logit - best_non_null_entry.end_logit
209
+ if score_diff > args.null_score_diff_threshold:
210
+ answer = ""
211
+ else:
212
+ answer = best_non_null_entry.text
213
+ else:
214
+ answer = nbest_answers[0]['text']
215
+
216
+ return answer, nbest_answers
217
+
218
+
219
+ def main():
220
+ parser = argparse.ArgumentParser()
221
+
222
+ ## Required parameters
223
+ parser.add_argument("--bert_model", default=None, type=str, required=True,
224
+ help="Bert pre-trained model selected in the list: bert-base-uncased, "
225
+ "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
226
+ "bert-base-multilingual-cased, bert-base-chinese.")
227
+ parser.add_argument("--init_checkpoint",
228
+ default=None,
229
+ type=str,
230
+ required=True,
231
+ help="The checkpoint file from pretraining")
232
+
233
+ ## Other parameters
234
+ parser.add_argument("--verbose_logging", action='store_true',
235
+ help="If true, all of the warnings related to data processing will be printed. ")
236
+ parser.add_argument("--seed", default=1, type=int)
237
+ parser.add_argument("--question", default="Most antibiotics target bacteria and don't affect what class of organisms? ",
238
+ type=str, help="question")
239
+ parser.add_argument("--context", default="Within the genitourinary and gastrointestinal tracts, commensal flora serve as biological barriers by competing with pathogenic bacteria for food and space and, in some cases, by changing the conditions in their environment, such as pH or available iron. This reduces the probability that pathogens will reach sufficient numbers to cause illness. However, since most antibiotics non-specifically target bacteria and do not affect fungi, oral antibiotics can lead to an overgrowth of fungi and cause conditions such as a vaginal candidiasis (a yeast infection). There is good evidence that re-introduction of probiotic flora, such as pure cultures of the lactobacilli normally found in unpasteurized yogurt, helps restore a healthy balance of microbial populations in intestinal infections in children and encouraging preliminary data in studies on bacterial gastroenteritis, inflammatory bowel diseases, urinary tract infection and post-surgical infections. ",
240
+ type=str, help="context")
241
+ parser.add_argument("--max_seq_length", default=384, type=int,
242
+ help="The maximum total input sequence length after WordPiece tokenization. Sequences "
243
+ "longer than this will be truncated, and sequences shorter than this will be padded.")
244
+ parser.add_argument("--max_query_length", default=64, type=int,
245
+ help="The maximum number of tokens for the question. Questions longer than this will "
246
+ "be truncated to this length.")
247
+ parser.add_argument("--n_best_size", default=1, type=int,
248
+ help="The total number of n-best predictions to generate. ")
249
+ parser.add_argument("--max_answer_length", default=30, type=int,
250
+ help="The maximum length of an answer that can be generated. This is needed because the start "
251
+ "and end predictions are not conditioned on one another.")
252
+ parser.add_argument("--no_cuda",
253
+ action='store_true',
254
+ help="Whether not to use CUDA when available")
255
+ parser.add_argument("--do_lower_case",
256
+ action='store_true',
257
+ help="Whether to lower case the input text. True for uncased models, False for cased models.")
258
+ parser.add_argument('--version_2_with_negative',
259
+ action='store_true',
260
+ help='If true, then the model can reply with "unknown". ')
261
+ parser.add_argument('--null_score_diff_threshold',
262
+ type=float, default=-11.0,
263
+ help="If null_score - best_non_null is greater than the threshold predict 'unknown'. ")
264
+ parser.add_argument('--vocab_file',
265
+ type=str, default=None, required=True,
266
+ help="Vocabulary mapping/file BERT was pretrainined on")
267
+ parser.add_argument("--config_file",
268
+ default=None,
269
+ type=str,
270
+ required=True,
271
+ help="The BERT model config")
272
+ parser.add_argument('--fp16',
273
+ action='store_true',
274
+ help="use mixed-precision")
275
+ parser.add_argument("--local_rank", default=-1, help="ordinal of the GPU to use")
276
+
277
+ args = parser.parse_args()
278
+ random.seed(args.seed)
279
+ np.random.seed(args.seed)
280
+ torch.manual_seed(args.seed)
281
+ torch.cuda.manual_seed(args.seed)
282
+
283
+ if args.local_rank == -1 or args.no_cuda:
284
+ device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
285
+ else:
286
+ torch.cuda.set_device(args.local_rank)
287
+ device = torch.device("cuda", args.local_rank)
288
+
289
+ tokenizer = BertTokenizer(args.vocab_file, do_lower_case=args.do_lower_case, max_len=512) # for bert large
290
+
291
+ # Prepare model
292
+ config = BertConfig.from_json_file(args.config_file)
293
+
294
+ # Padding for divisibility by 8
295
+ if config.vocab_size % 8 != 0:
296
+ config.vocab_size += 8 - (config.vocab_size % 8)
297
+
298
+ # initialize model
299
+ model = BertForQuestionAnswering(config)
300
+ model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu')["model"])
301
+ model.to(device)
302
+ if args.fp16:
303
+ model.half()
304
+ model.eval()
305
+
306
+ print("question: ", args.question)
307
+ print("context: ", args.context)
308
+ print()
309
+
310
+ # preprocessing
311
+ doc_tokens = args.context.split()
312
+ query_tokens = tokenizer.tokenize(args.question)
313
+ feature = preprocess_tokenized_text(doc_tokens,
314
+ query_tokens,
315
+ tokenizer,
316
+ max_seq_length=args.max_seq_length,
317
+ max_query_length=args.max_query_length)
318
+
319
+ tensors_for_inference, tokens_for_postprocessing = feature
320
+
321
+ input_ids = torch.tensor(tensors_for_inference.input_ids, dtype=torch.long).unsqueeze(0)
322
+ segment_ids = torch.tensor(tensors_for_inference.segment_ids, dtype=torch.long).unsqueeze(0)
323
+ input_mask = torch.tensor(tensors_for_inference.input_mask, dtype=torch.long).unsqueeze(0)
324
+
325
+ # load tensors to device
326
+ input_ids = input_ids.to(device)
327
+ input_mask = input_mask.to(device)
328
+ segment_ids = segment_ids.to(device)
329
+
330
+ # run prediction
331
+ with torch.no_grad():
332
+ start_logits, end_logits = model(input_ids, segment_ids, input_mask)
333
+
334
+ # post-processing
335
+ start_logits = start_logits[0].detach().cpu().tolist()
336
+ end_logits = end_logits[0].detach().cpu().tolist()
337
+ answer, answers = get_answer(doc_tokens, tokens_for_postprocessing,
338
+ start_logits, end_logits, args)
339
+
340
+ # print result
341
+ print()
342
+ print(answer)
343
+ print()
344
+ print(json.dumps(answers, indent=4))
345
+
346
+
347
+ if __name__ == "__main__":
348
+ main()
349
+
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/patches/minimal_changes.diff ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ diff --git a/PyTorch/LanguageModeling/BERT/run_pretraining.py b/PyTorch/LanguageModeling/BERT/run_pretraining.py
2
+ index a3577886..459b1f03 100755
3
+ --- a/PyTorch/LanguageModeling/BERT/run_pretraining.py
4
+ +++ b/PyTorch/LanguageModeling/BERT/run_pretraining.py
5
+ @@ -20,6 +20,8 @@ from __future__ import absolute_import
6
+ from __future__ import division
7
+ from __future__ import print_function
8
+
9
+ +import habana_frameworks.torch.gpu_migration
10
+ +import habana_frameworks.torch.core as htcore
11
+ # ==================
12
+ import csv
13
+ import os
14
+ @@ -607,10 +609,14 @@ def main():
15
+ else:
16
+ loss.backward()
17
+ average_loss += loss.item()
18
+ +
19
+ + htcore.mark_step()
20
+
21
+ if training_steps % args.gradient_accumulation_steps == 0:
22
+ lr_scheduler.step() # learning rate warmup
23
+ global_step = take_optimizer_step(args, optimizer, model, overflow_buf, global_step)
24
+ +
25
+ + htcore.mark_step()
26
+
27
+ if global_step >= args.steps_this_run or timeout_sent:
28
+ train_time_raw = time.time() - raw_train_start
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/patches/performance_improvements.diff ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ diff --git a/PyTorch/LanguageModeling/BERT/modeling.py b/PyTorch/LanguageModeling/BERT/modeling.py
2
+ index 31d6f3c3..0b339f82 100755
3
+ --- a/PyTorch/LanguageModeling/BERT/modeling.py
4
+ +++ b/PyTorch/LanguageModeling/BERT/modeling.py
5
+ @@ -117,7 +117,7 @@ def load_tf_weights_in_bert(model, tf_checkpoint_path):
6
+ return model
7
+
8
+ def gelu(x):
9
+ - return x * 0.5 * (1.0 + torch.erf(x / 1.41421))
10
+ + return F.gelu(x)
11
+
12
+ #used only for triton inference
13
+ def bias_gelu(bias, y):
14
+ @@ -136,8 +136,11 @@ def bias_tanh(bias, y):
15
+ def swish(x):
16
+ return x * torch.sigmoid(x)
17
+
18
+ +def tanh(x):
19
+ + return torch.tanh(x)
20
+ +
21
+ #torch.nn.functional.gelu(x) # Breaks ONNX export
22
+ -ACT2FN = {"gelu": gelu, "bias_gelu": bias_gelu, "bias_tanh": bias_tanh, "relu": torch.nn.functional.relu, "swish": swish}
23
+ +ACT2FN = {"gelu": gelu, "bias_gelu": bias_gelu, "bias_tanh": bias_tanh, "relu": torch.nn.functional.relu, "swish": swish, "tanh": tanh}
24
+
25
+ class LinearActivation(Module):
26
+ r"""Fused Linear and activation Module.
27
+ @@ -148,16 +151,16 @@ class LinearActivation(Module):
28
+ super(LinearActivation, self).__init__()
29
+ self.in_features = in_features
30
+ self.out_features = out_features
31
+ - self.act_fn = nn.Identity() #
32
+ - self.biased_act_fn = None #
33
+ + # setting act_fn to nn.Identity caused issues when re-assigning to gelu.Hence set to None
34
+ + self.act_fn = None #
35
+ + # self.biased_act_fn = None # not needed after applying perf improvement patch #
36
+ self.bias = None #
37
+ if isinstance(act, str) or (sys.version_info[0] == 2 and isinstance(act, unicode)): # For TorchScript
38
+ - if bias and not 'bias' in act: # compatibility
39
+ - act = 'bias_' + act #
40
+ - self.biased_act_fn = ACT2FN[act] #
41
+ -
42
+ - else:
43
+ - self.act_fn = ACT2FN[act]
44
+ + # if bias and not 'bias' in act: # # compatibility
45
+ + # act = 'bias_' + act # for perf improvement #
46
+ + # self.biased_act_fn = ACT2FN[act] # #
47
+ + # else:
48
+ + self.act_fn = ACT2FN[act]
49
+ else:
50
+ self.act_fn = act
51
+ self.weight = Parameter(torch.Tensor(out_features, in_features))
52
+ @@ -175,10 +178,10 @@ class LinearActivation(Module):
53
+ init.uniform_(self.bias, -bound, bound)
54
+
55
+ def forward(self, input):
56
+ - if not self.bias is None:
57
+ - return self.biased_act_fn(self.bias, F.linear(input, self.weight, None))
58
+ - else:
59
+ - return self.act_fn(F.linear(input, self.weight, self.bias))
60
+ + # if not self.bias is None: #
61
+ + # return self.biased_act_fn(self.bias, F.linear(input, self.weight, None)) # for perf improvement
62
+ + # else:
63
+ + return self.act_fn(F.linear(input, self.weight, self.bias))
64
+
65
+ def extra_repr(self):
66
+ return 'in_features={}, out_features={}, bias={}'.format(
67
+ diff --git a/PyTorch/LanguageModeling/BERT/run_pretraining.py b/PyTorch/LanguageModeling/BERT/run_pretraining.py
68
+ index 2aeffcff..86105df2 100755
69
+ --- a/PyTorch/LanguageModeling/BERT/run_pretraining.py
70
+ +++ b/PyTorch/LanguageModeling/BERT/run_pretraining.py
71
+ @@ -580,6 +580,7 @@ def main():
72
+ training_steps = 0
73
+ average_training_time_per_step = 0
74
+ average_perf_per_step = 0
75
+ + loss_list = []
76
+
77
+ pool = ProcessPoolExecutor(1)
78
+
79
+ @@ -623,8 +624,8 @@ def main():
80
+ train_sampler = RandomSampler(train_data)
81
+ train_dataloader = DataLoader(train_data, sampler=train_sampler,
82
+ batch_size=args.train_batch_size * args.n_gpu,
83
+ - num_workers=4, worker_init_fn=worker_init,
84
+ - pin_memory=True)
85
+ + num_workers=0, worker_init_fn=worker_init,
86
+ + drop_last=True, pin_memory=True)
87
+ # shared_file_list["0"] = (train_dataloader, data_file)
88
+ else:
89
+ train_dataloader = restored_data_loader
90
+ @@ -683,7 +684,7 @@ def main():
91
+ scaled_loss.backward()
92
+ else:
93
+ loss.backward()
94
+ - average_loss += loss.item()
95
+ + loss_list.append(loss)
96
+
97
+ htcore.mark_step()
98
+
99
+ @@ -694,6 +695,9 @@ def main():
100
+ htcore.mark_step()
101
+
102
+ if global_step >= args.steps_this_run or timeout_sent or training_steps % (args.log_freq * args.gradient_accumulation_steps) == 0:
103
+ + for loss_t in loss_list:
104
+ + average_loss += loss_t.item()
105
+ + loss_list.clear()
106
+ train_time = time.time() - starting_time
107
+ starting_time = time.time()
108
+ average_training_time_per_step = train_time/(args.gradient_accumulation_steps * args.log_freq)
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/patches/use_packed_dataset.diff ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ diff --git a/PyTorch/LanguageModeling/BERT/modeling.py b/PyTorch/LanguageModeling/BERT/modeling.py
2
+ index b2151eca..72e7e938 100755
3
+ --- a/PyTorch/LanguageModeling/BERT/modeling.py
4
+ +++ b/PyTorch/LanguageModeling/BERT/modeling.py
5
+ @@ -352,10 +352,13 @@ class BertEmbeddings(nn.Module):
6
+ self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
7
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
8
+
9
+ - def forward(self, input_ids, token_type_ids):
10
+ + def forward(self, input_ids, token_type_ids, positions = None):
11
+ seq_length = input_ids.size(1)
12
+ - position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
13
+ - position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
14
+ + if positions is not None:
15
+ + position_ids = positions
16
+ + else:
17
+ + position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
18
+ + position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
19
+
20
+ words_embeddings = self.word_embeddings(input_ids)
21
+ position_embeddings = self.position_embeddings(position_ids)
22
+ @@ -529,19 +532,33 @@ class BertEncoder(nn.Module):
23
+ all_encoder_layers.append(hidden_states)
24
+ return all_encoder_layers
25
+
26
+ +def gather_indexes(sequence_tensor, positions):
27
+ + """Gathers the vectors at the specific positions over a minibatch."""
28
+ + batch_size = sequence_tensor.shape[0]
29
+ + seq_length = sequence_tensor.shape[1]
30
+ + width = sequence_tensor.shape[2]
31
+ +
32
+ + flat_offsets = (torch.arange(batch_size, dtype=torch.long, device=sequence_tensor.device) * seq_length).unsqueeze(1)
33
+ + flat_positions = (positions + flat_offsets).flatten()
34
+ + flat_sequence_tensor = sequence_tensor.reshape(batch_size * seq_length, width)
35
+ + output_tensor = flat_sequence_tensor[flat_positions]
36
+ + return output_tensor.reshape(batch_size, -1, width)
37
+ +
38
+ class BertPooler(nn.Module):
39
+ def __init__(self, config):
40
+ super(BertPooler, self).__init__()
41
+ self.dense_act = LinearActivation(config.hidden_size, config.hidden_size, act="tanh")
42
+
43
+ - def forward(self, hidden_states):
44
+ - # We "pool" the model by simply taking the hidden state corresponding
45
+ - # to the first token.
46
+ - first_token_tensor = hidden_states[:, 0]
47
+ - pooled_output = self.dense_act(first_token_tensor)
48
+ + def forward(self, hidden_states, next_sentence_positions = None):
49
+ + if next_sentence_positions is not None:
50
+ + selected_tokens = gather_indexes(hidden_states, next_sentence_positions)
51
+ + else:
52
+ + # We "pool" the model by simply taking the hidden state corresponding
53
+ + # to the first token.
54
+ + selected_tokens = hidden_states[:, 0]
55
+ + pooled_output = self.dense_act(selected_tokens)
56
+ return pooled_output
57
+
58
+ -
59
+ class BertPredictionHeadTransform(nn.Module):
60
+ def __init__(self, config):
61
+ super(BertPredictionHeadTransform, self).__init__()
62
+ @@ -703,7 +720,24 @@ class BertPreTrainedModel(nn.Module):
63
+ logger.info("extracting archive file {} to temp dir {}".format(
64
+ resolved_archive_file, tempdir))
65
+ with tarfile.open(resolved_archive_file, 'r:gz') as archive:
66
+ - archive.extractall(tempdir)
67
+ + def is_within_directory(directory, target):
68
+ + abs_directory = os.path.abspath(directory)
69
+ + abs_target = os.path.abspath(target)
70
+ +
71
+ + prefix = os.path.commonprefix([abs_directory, abs_target])
72
+ +
73
+ + return prefix == abs_directory
74
+ +
75
+ + def safe_extract(tar, path=".", members=None, *, numeric_owner=False):
76
+ +
77
+ + for member in tar.getmembers():
78
+ + member_path = os.path.join(path, member.name)
79
+ + if not is_within_directory(path, member_path):
80
+ + raise Exception("Attempted Path Traversal in Tar File")
81
+ +
82
+ + tar.extractall(path, members, numeric_owner=numeric_owner)
83
+ +
84
+ + safe_extract(archive, tempdir)
85
+ serialization_dir = tempdir
86
+ # Load config
87
+ config_file = os.path.join(serialization_dir, CONFIG_NAME)
88
+ @@ -819,30 +853,36 @@ class BertModel(BertPreTrainedModel):
89
+ self.apply(self.init_bert_weights)
90
+ self.output_all_encoded_layers = config.output_all_encoded_layers
91
+
92
+ - def forward(self, input_ids, token_type_ids, attention_mask):
93
+ - # We create a 3D attention mask from a 2D tensor mask.
94
+ - # Sizes are [batch_size, 1, 1, to_seq_length]
95
+ - # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
96
+ - # this attention mask is more simple than the triangular masking of causal attention
97
+ - # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
98
+ - extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
99
+ -
100
+ - # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
101
+ - # masked positions, this operation will create a tensor which is 0.0 for
102
+ - # positions we want to attend and -10000.0 for masked positions.
103
+ - # Since we are adding it to the raw scores before the softmax, this is
104
+ - # effectively the same as removing these entirely.
105
+ - extended_attention_mask = extended_attention_mask.to(dtype=self.embeddings.word_embeddings.weight.dtype) # fp16 compatibility
106
+ - extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
107
+ -
108
+ - embedding_output = self.embeddings(input_ids, token_type_ids)
109
+ - encoded_layers = self.encoder(embedding_output, extended_attention_mask)
110
+ - sequence_output = encoded_layers[-1]
111
+ - pooled_output = self.pooler(sequence_output)
112
+ - if not self.output_all_encoded_layers:
113
+ - encoded_layers = encoded_layers[-1:]
114
+ - return encoded_layers, pooled_output
115
+ -
116
+ + def forward(self, input_ids, token_type_ids, attention_mask, enable_packed_data_mode = False, positions = None, next_sentence_positions = None):
117
+ + if enable_packed_data_mode:
118
+ + extended_attention_mask = 0.0
119
+ + for i in range(3):
120
+ + tmp = (attention_mask == i+1).type(torch.float32).unsqueeze(-1)
121
+ + tmp = torch.matmul(tmp, torch.transpose(tmp, 1, 2))
122
+ + extended_attention_mask += tmp.unsqueeze(1)
123
+ + else:
124
+ + # We create a 3D attention mask from a 2D tensor mask.
125
+ + # Sizes are [batch_size, 1, 1, to_seq_length]
126
+ + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
127
+ + # this attention mask is more simple than the triangular masking of causal attention
128
+ + # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
129
+ + extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
130
+ +
131
+ + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
132
+ + # masked positions, this operation will create a tensor which is 0.0 for
133
+ + # positions we want to attend and -10000.0 for masked positions.
134
+ + # Since we are adding it to the raw scores before the softmax, this is
135
+ + # effectively the same as removing these entirely.
136
+ + extended_attention_mask = extended_attention_mask.to(dtype=self.embeddings.word_embeddings.weight.dtype) # fp16 compatibility
137
+ + extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
138
+ +
139
+ + embedding_output = self.embeddings(input_ids, token_type_ids, positions)
140
+ + encoded_layers = self.encoder(embedding_output, extended_attention_mask)
141
+ + sequence_output = encoded_layers[-1]
142
+ + pooled_output = self.pooler(sequence_output, next_sentence_positions)
143
+ + if not self.output_all_encoded_layers:
144
+ + encoded_layers = encoded_layers[-1:]
145
+ + return encoded_layers, pooled_output
146
+
147
+ class BertForPreTraining(BertPreTrainedModel):
148
+ """BERT model with pre-training heads.
149
+ @@ -898,16 +938,15 @@ class BertForPreTraining(BertPreTrainedModel):
150
+ super(BertForPreTraining, self).__init__(config)
151
+ self.bert = BertModel(config)
152
+ self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
153
+ + self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=-1)
154
+ self.apply(self.init_bert_weights)
155
+
156
+ - def forward(self, input_ids, token_type_ids, attention_mask):
157
+ - encoded_layers, pooled_output = self.bert(input_ids, token_type_ids, attention_mask)
158
+ + def forward(self, input_ids, token_type_ids, attention_mask, masked_lm_labels=None, next_sentence_labels=None, enable_packed_data_mode = False, positions = None, next_sentence_positions = None):
159
+ + encoded_layers, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, enable_packed_data_mode, positions, next_sentence_positions)
160
+ sequence_output = encoded_layers[-1]
161
+ prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
162
+ -
163
+ return prediction_scores, seq_relationship_score
164
+
165
+ -
166
+ class BertForMaskedLM(BertPreTrainedModel):
167
+ """BERT model with the masked language modeling head.
168
+ This module comprises the BERT model followed by the masked language modeling head.
169
+ diff --git a/PyTorch/LanguageModeling/BERT/run_pretraining.py b/PyTorch/LanguageModeling/BERT/run_pretraining.py
170
+ index 459b1f03..2aeffcff 100755
171
+ --- a/PyTorch/LanguageModeling/BERT/run_pretraining.py
172
+ +++ b/PyTorch/LanguageModeling/BERT/run_pretraining.py
173
+ @@ -38,6 +38,7 @@ from torch.utils.data.distributed import DistributedSampler
174
+ import math
175
+ from apex import amp
176
+ import multiprocessing
177
+ +import json
178
+
179
+ from tokenization import BertTokenizer
180
+ import modeling
181
+ @@ -60,6 +61,7 @@ torch._C._jit_set_profiling_mode(False)
182
+ torch._C._jit_set_profiling_executor(False)
183
+
184
+ skipped_steps = 0
185
+ +avg_seq_per_pack = 1.0
186
+
187
+ # Track whether a SIGTERM (cluster time up) has been handled
188
+ timeout_sent = False
189
+ @@ -82,34 +84,43 @@ class WorkerInitObj(object):
190
+ random.seed(self.seed + id)
191
+
192
+ def create_pretraining_dataset(input_file, max_pred_length, shared_list, args, worker_init):
193
+ - train_data = pretraining_dataset(input_file=input_file, max_pred_length=max_pred_length)
194
+ + train_data = pretraining_dataset(input_file=input_file, max_pred_length=max_pred_length, enable_packed_data_mode=args.enable_packed_data_mode)
195
+ train_sampler = RandomSampler(train_data)
196
+ train_dataloader = DataLoader(train_data, sampler=train_sampler,
197
+ - batch_size=args.train_batch_size * args.n_gpu,
198
+ - num_workers=4, worker_init_fn=worker_init,
199
+ - pin_memory=True)
200
+ + batch_size=args.train_batch_size * args.n_gpu,
201
+ + num_workers=0, worker_init_fn=worker_init,
202
+ + drop_last=True, pin_memory=True)
203
+ return train_dataloader, input_file
204
+
205
+ class pretraining_dataset(Dataset):
206
+
207
+ - def __init__(self, input_file, max_pred_length):
208
+ + def __init__(self, input_file, max_pred_length, enable_packed_data_mode:bool=False):
209
+ self.input_file = input_file
210
+ self.max_pred_length = max_pred_length
211
+ f = h5py.File(input_file, "r")
212
+ - keys = ['input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions', 'masked_lm_ids',
213
+ - 'next_sentence_labels']
214
+ + if enable_packed_data_mode:
215
+ + keys = ['input_ids', 'input_mask', 'segment_ids', 'positions',
216
+ + 'masked_lm_positions', 'masked_lm_ids',
217
+ + 'next_sentence_positions', 'next_sentence_labels', 'next_sentence_weights']
218
+ + else:
219
+ + keys = ['input_ids', 'input_mask', 'segment_ids',
220
+ + 'masked_lm_positions', 'masked_lm_ids',
221
+ + 'next_sentence_labels']
222
+ self.inputs = [np.asarray(f[key][:]) for key in keys]
223
+ f.close()
224
+ + self.enable_packed_data_mode = enable_packed_data_mode
225
+
226
+ def __len__(self):
227
+ 'Denotes the total number of samples'
228
+ return len(self.inputs[0])
229
+
230
+ def __getitem__(self, index):
231
+ -
232
+ - [input_ids, input_mask, segment_ids, masked_lm_positions, masked_lm_ids, next_sentence_labels] = [
233
+ - torch.from_numpy(input[index].astype(np.int64)) if indice < 5 else torch.from_numpy(
234
+ - np.asarray(input[index].astype(np.int64))) for indice, input in enumerate(self.inputs)]
235
+ + if self.enable_packed_data_mode:
236
+ + [input_ids, input_mask, segment_ids, positions,
237
+ + masked_lm_positions, masked_lm_ids,
238
+ + next_sentence_positions, next_sentence_labels, next_sentence_weights] = [torch.from_numpy(input[index].astype(np.int64)) for input in self.inputs]
239
+ + else:
240
+ + [input_ids, input_mask, segment_ids, masked_lm_positions, masked_lm_ids, next_sentence_labels] = [torch.from_numpy(input[index].astype(np.int64)) if indice < 5 else torch.from_numpy(np.asarray(input[index].astype(np.int64))) for indice, input in enumerate(self.inputs)]
241
+
242
+ masked_lm_labels = torch.ones(input_ids.shape, dtype=torch.long) * -1
243
+ index = self.max_pred_length
244
+ @@ -119,8 +130,11 @@ class pretraining_dataset(Dataset):
245
+ index = padded_mask_indices[0].item()
246
+ masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]
247
+
248
+ - return [input_ids, segment_ids, input_mask,
249
+ - masked_lm_labels, next_sentence_labels]
250
+ + if self.enable_packed_data_mode:
251
+ + next_sentence_labels = (next_sentence_weights == 1) * next_sentence_labels + (next_sentence_weights == 0) * -1
252
+ + return [input_ids, segment_ids, input_mask, positions, masked_lm_labels, next_sentence_positions, next_sentence_labels]
253
+ + else:
254
+ + return [input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels]
255
+
256
+ class BertPretrainingCriterion(torch.nn.Module):
257
+ def __init__(self, vocab_size):
258
+ @@ -280,6 +294,8 @@ def parse_arguments():
259
+ help='Disable tqdm progress bar')
260
+ parser.add_argument('--steps_this_run', type=int, default=-1,
261
+ help='If provided, only run this many steps before exiting')
262
+ + parser.add_argument('--enable_packed_data_mode', default='True', type=lambda x: x.lower() == 'true',
263
+ + help='enable/disable training with packed data. Default is True, --input_dir should be set accordingly')
264
+
265
+ args = parser.parse_args()
266
+ args.fp16 = args.fp16 or args.amp
267
+ @@ -328,6 +344,9 @@ def setup_training(args):
268
+
269
+ args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
270
+
271
+ + if args.enable_packed_data_mode:
272
+ + args.gradient_accumulation_steps = round(args.gradient_accumulation_steps / avg_seq_per_pack)
273
+ +
274
+ if not args.do_train:
275
+ raise ValueError(" `do_train` must be True.")
276
+
277
+ @@ -490,8 +509,41 @@ def take_optimizer_step(args, optimizer, model, overflow_buf, global_step):
278
+
279
+ return global_step
280
+
281
+ +def get_metadata_file_path(input_dir : str) -> str:
282
+ + norm_path = os.path.normpath(input_dir)
283
+ + head_tail = os.path.split(norm_path)
284
+ + metadata_file_name = head_tail[1]
285
+ + metadata_file_name = metadata_file_name + '_metadata.json'
286
+ + metadata_file_path = os.path.join(head_tail[0],metadata_file_name)
287
+ + return metadata_file_path
288
+ +
289
+ +def read_avg_seq_per_sample(input_dir : str, max_sequence_length) -> float:
290
+ + metadata = None
291
+ + metadata_file_path = get_metadata_file_path(input_dir)
292
+ + print(f"Reading dataset metadata from: {metadata_file_path}")
293
+ + if os.path.exists(metadata_file_path):
294
+ + file_handle = open(metadata_file_path, mode='r')
295
+ + json_content = file_handle.read()
296
+ + metadata = json.loads(json_content)
297
+ + else:
298
+ + print("Packed dataset metadata file not accessible, falling back to default values of avg_seq_per_sample")
299
+ + if max_sequence_length == 128:
300
+ + return 1.2
301
+ + elif max_sequence_length == 512:
302
+ + return 2.0
303
+ + else:
304
+ + assert f"invalid max_sequence_length"
305
+ + avg_seq_per_sample_key = "avg_seq_per_sample"
306
+ + if metadata is not None and avg_seq_per_sample_key in metadata.keys():
307
+ + avg_seq_per_sample = metadata[avg_seq_per_sample_key]
308
+ + else:
309
+ + assert False, f"Key {avg_seq_per_sample_key} not present in packed dataset metadata file: {metadata_file_path}"
310
+ + print(f"AVG_SEQ_PER_SAMPLE: {avg_seq_per_sample}")
311
+ + return avg_seq_per_sample
312
+ +
313
+ def main():
314
+ global timeout_sent
315
+ + global avg_seq_per_pack
316
+
317
+ args = parse_arguments()
318
+
319
+ @@ -501,6 +553,10 @@ def main():
320
+ torch.cuda.manual_seed(args.seed + args.local_rank)
321
+ worker_init = WorkerInitObj(args.seed + args.local_rank)
322
+
323
+ + if args.enable_packed_data_mode:
324
+ + avg_seq_per_pack = read_avg_seq_per_sample(args.input_dir, args.max_seq_length)
325
+ + else:
326
+ + avg_seq_per_pack = 1.0
327
+ device, args = setup_training(args)
328
+ dllogger.log(step="PARAMETER", data={"Config": [str(args)]})
329
+
330
+ @@ -522,16 +578,23 @@ def main():
331
+ average_loss = 0.0 # averaged loss every args.log_freq steps
332
+ epoch = 0
333
+ training_steps = 0
334
+ + average_training_time_per_step = 0
335
+ + average_perf_per_step = 0
336
+
337
+ pool = ProcessPoolExecutor(1)
338
+ -
339
+ +
340
+ + starting_time = time.time()
341
+ # Note: We loop infinitely over epochs, termination is handled via iteration count
342
+ while True:
343
+ thread = None
344
+ restored_data_loader = None
345
+ if not args.resume_from_checkpoint or epoch > 0 or (args.phase2 and global_step < 1) or args.init_checkpoint:
346
+ - files = [os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if
347
+ - os.path.isfile(os.path.join(args.input_dir, f)) and 'training' in f]
348
+ + if args.enable_packed_data_mode:
349
+ + files = [os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if
350
+ + os.path.isfile(os.path.join(args.input_dir, f))] # Packed files have no 'training' pre/postfix.
351
+ + else:
352
+ + files = [os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if
353
+ + os.path.isfile(os.path.join(args.input_dir, f)) and 'training' in f]
354
+ files.sort()
355
+ num_files = len(files)
356
+ random.Random(args.seed + epoch).shuffle(files)
357
+ @@ -556,7 +619,7 @@ def main():
358
+ previous_file = data_file
359
+
360
+ if restored_data_loader is None:
361
+ - train_data = pretraining_dataset(data_file, args.max_predictions_per_seq)
362
+ + train_data = pretraining_dataset(data_file, args.max_predictions_per_seq, args.enable_packed_data_mode)
363
+ train_sampler = RandomSampler(train_data)
364
+ train_dataloader = DataLoader(train_data, sampler=train_sampler,
365
+ batch_size=args.train_batch_size * args.n_gpu,
366
+ @@ -590,9 +653,21 @@ def main():
367
+ for step, batch in enumerate(train_iter):
368
+
369
+ training_steps += 1
370
+ +
371
+ batch = [t.to(device) for t in batch]
372
+ - input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels = batch
373
+ - prediction_scores, seq_relationship_score = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
374
+ + if args.enable_packed_data_mode:
375
+ + input_ids, segment_ids, input_mask, positions, masked_lm_labels, next_sentence_positions, next_sentence_labels = batch
376
+ + else:
377
+ + input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels = batch
378
+ +
379
+ + if (args.local_rank != -1) and (training_steps % args.gradient_accumulation_steps == 0):
380
+ + torch.distributed.barrier()
381
+ +
382
+ + prediction_scores, seq_relationship_score = model(
383
+ + input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, enable_packed_data_mode=args.enable_packed_data_mode,
384
+ + positions=positions if args.enable_packed_data_mode else None,
385
+ + next_sentence_positions=next_sentence_positions if args.enable_packed_data_mode else None)
386
+ +
387
+ loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels)
388
+ if args.n_gpu > 1:
389
+ loss = loss.mean() # mean() to average on multi-gpu.
390
+ @@ -618,6 +693,12 @@ def main():
391
+
392
+ htcore.mark_step()
393
+
394
+ + if global_step >= args.steps_this_run or timeout_sent or training_steps % (args.log_freq * args.gradient_accumulation_steps) == 0:
395
+ + train_time = time.time() - starting_time
396
+ + starting_time = time.time()
397
+ + average_training_time_per_step = train_time/(args.gradient_accumulation_steps * args.log_freq)
398
+ + average_perf_per_step = args.train_batch_size*avg_seq_per_pack/average_training_time_per_step
399
+ +
400
+ if global_step >= args.steps_this_run or timeout_sent:
401
+ train_time_raw = time.time() - raw_train_start
402
+ last_num_steps = int(training_steps / args.gradient_accumulation_steps) % args.log_freq
403
+ @@ -629,12 +710,16 @@ def main():
404
+ torch.distributed.all_reduce(average_loss)
405
+ final_loss = average_loss.item()
406
+ if is_main_process():
407
+ - dllogger.log(step=(epoch, global_step, ), data={"final_loss": final_loss})
408
+ + dllogger.log(step=(epoch, global_step, ), data={"final_loss": final_loss,
409
+ + "average_training_time_step": average_training_time_per_step,
410
+ + "average_perf_per_step": average_perf_per_step})
411
+ elif training_steps % (args.log_freq * args.gradient_accumulation_steps) == 0:
412
+ if is_main_process():
413
+ dllogger.log(step=(epoch, global_step, ), data={"average_loss": average_loss / (args.log_freq * divisor),
414
+ "step_loss": loss.item() * args.gradient_accumulation_steps / divisor,
415
+ - "learning_rate": optimizer.param_groups[0]['lr']})
416
+ + "learning_rate": optimizer.param_groups[0]['lr'],
417
+ + "average_training_time_step": average_training_time_per_step,
418
+ + "average_perf_per_step": average_perf_per_step})
419
+ average_loss = 0
420
+
421
+
422
+ @@ -690,7 +775,7 @@ if __name__ == "__main__":
423
+ gpu_count = get_world_size()
424
+ if is_main_process():
425
+ e2e_time = time.time() - now
426
+ - training_perf = args.train_batch_size * args.gradient_accumulation_steps * gpu_count\
427
+ + training_perf = args.train_batch_size * args.gradient_accumulation_steps * gpu_count * avg_seq_per_pack\
428
+ * (global_step - args.resume_step + skipped_steps) / train_time_raw
429
+ dllogger.log(step=tuple(), data={"e2e_train_time": e2e_time, "training_sequences_per_second": training_perf,
430
+ "final_loss": final_loss, "raw_train_time": train_time_raw })
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/processors/__init__.py ADDED
File without changes
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/processors/glue.py ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ import csv
18
+ import os
19
+ import sys
20
+
21
+
22
+ class InputExample(object):
23
+ """A single training/test example for simple sequence classification."""
24
+
25
+ def __init__(self, guid, text_a, text_b=None, label=None):
26
+ """Constructs a InputExample.
27
+
28
+ Args:
29
+ guid: Unique id for the example.
30
+ text_a: string. The untokenized text of the first sequence. For
31
+ single sequence tasks, only this sequence must be specified.
32
+ text_b: (Optional) string. The untokenized text of the second
33
+ sequence. Only must be specified for sequence pair tasks.
34
+ label: (Optional) string. The label of the example. This should be
35
+ specified for train and dev examples, but not for test
36
+ examples.
37
+ """
38
+ self.guid = guid
39
+ self.text_a = text_a
40
+ self.text_b = text_b
41
+ self.label = label
42
+
43
+
44
+ class InputFeatures(object):
45
+ """A single set of features of data."""
46
+
47
+ def __init__(self, input_ids, input_mask, segment_ids, label_id):
48
+ self.input_ids = input_ids
49
+ self.input_mask = input_mask
50
+ self.segment_ids = segment_ids
51
+ self.label_id = label_id
52
+
53
+
54
+ class DataProcessor(object):
55
+ """Base class for data converters for sequence classification data sets."""
56
+
57
+ def get_train_examples(self, data_dir):
58
+ """Gets a collection of `InputExample`s for the train set."""
59
+ raise NotImplementedError()
60
+
61
+ def get_dev_examples(self, data_dir):
62
+ """Gets a collection of `InputExample`s for the dev set."""
63
+ raise NotImplementedError()
64
+
65
+ def get_labels(self):
66
+ """Gets the list of labels for this data set."""
67
+ raise NotImplementedError()
68
+
69
+ @classmethod
70
+ def _read_tsv(cls, input_file, quotechar=None):
71
+ """Reads a tab separated value file."""
72
+ with open(input_file, "r") as f:
73
+ reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
74
+ lines = []
75
+ for line in reader:
76
+ if sys.version_info[0] == 2:
77
+ line = list(unicode(cell, 'utf-8') for cell in line)
78
+ lines.append(line)
79
+ return lines
80
+
81
+
82
+ class MrpcProcessor(DataProcessor):
83
+ """Processor for the MRPC data set (GLUE version)."""
84
+
85
+ def get_train_examples(self, data_dir):
86
+ """See base class."""
87
+ return self._create_examples(
88
+ self._read_tsv(os.path.join(data_dir, "train.tsv")),
89
+ "train",
90
+ )
91
+
92
+ def get_dev_examples(self, data_dir):
93
+ """See base class."""
94
+ return self._create_examples(
95
+ self._read_tsv(os.path.join(data_dir, "dev.tsv")),
96
+ "dev",
97
+ )
98
+
99
+ def get_labels(self):
100
+ """See base class."""
101
+ return ["0", "1"]
102
+
103
+ def _create_examples(self, lines, set_type):
104
+ """Creates examples for the training and dev sets."""
105
+ examples = []
106
+ for (i, line) in enumerate(lines):
107
+ if i == 0:
108
+ continue
109
+ guid = "%s-%s" % (set_type, i)
110
+ text_a = line[3]
111
+ text_b = line[4]
112
+ label = line[0]
113
+ examples.append(
114
+ InputExample(guid=guid,
115
+ text_a=text_a,
116
+ text_b=text_b,
117
+ label=label))
118
+ return examples
119
+
120
+
121
+ class MnliProcessor(DataProcessor):
122
+ """Processor for the MultiNLI data set (GLUE version)."""
123
+
124
+ def get_train_examples(self, data_dir):
125
+ """See base class."""
126
+ return self._create_examples(
127
+ self._read_tsv(os.path.join(data_dir, "train.tsv")),
128
+ "train",
129
+ )
130
+
131
+ def get_dev_examples(self, data_dir):
132
+ """See base class."""
133
+ return self._create_examples(
134
+ self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
135
+ "dev_matched",
136
+ )
137
+
138
+ def get_labels(self):
139
+ """See base class."""
140
+ return ["contradiction", "entailment", "neutral"]
141
+
142
+ def _create_examples(self, lines, set_type):
143
+ """Creates examples for the training and dev sets."""
144
+ examples = []
145
+ for (i, line) in enumerate(lines):
146
+ if i == 0:
147
+ continue
148
+ guid = "%s-%s" % (set_type, line[0])
149
+ text_a = line[8]
150
+ text_b = line[9]
151
+ label = line[-1]
152
+ examples.append(
153
+ InputExample(guid=guid,
154
+ text_a=text_a,
155
+ text_b=text_b,
156
+ label=label))
157
+ return examples
158
+
159
+
160
+ class ColaProcessor(DataProcessor):
161
+ """Processor for the CoLA data set (GLUE version)."""
162
+
163
+ def get_train_examples(self, data_dir):
164
+ """See base class."""
165
+ return self._create_examples(
166
+ self._read_tsv(os.path.join(data_dir, "train.tsv")),
167
+ "train",
168
+ )
169
+
170
+ def get_dev_examples(self, data_dir):
171
+ """See base class."""
172
+ return self._create_examples(
173
+ self._read_tsv(os.path.join(data_dir, "dev.tsv")),
174
+ "dev",
175
+ )
176
+
177
+ def get_labels(self):
178
+ """See base class."""
179
+ return ["0", "1"]
180
+
181
+ def _create_examples(self, lines, set_type):
182
+ """Creates examples for the training and dev sets."""
183
+ examples = []
184
+ for (i, line) in enumerate(lines):
185
+ guid = "%s-%s" % (set_type, i)
186
+ text_a = line[3]
187
+ label = line[1]
188
+ examples.append(
189
+ InputExample(guid=guid, text_a=text_a, text_b=None,
190
+ label=label))
191
+ return examples
192
+
193
+
194
+ class Sst2Processor(DataProcessor):
195
+ """Processor for the CoLA data set (GLUE version)."""
196
+
197
+ def get_train_examples(self, data_dir):
198
+ """See base class."""
199
+ return self._create_examples(
200
+ self._read_tsv(os.path.join(data_dir, "train.tsv")),
201
+ "train",
202
+ )
203
+
204
+ def get_dev_examples(self, data_dir):
205
+ """See base class."""
206
+ return self._create_examples(
207
+ self._read_tsv(os.path.join(data_dir, "dev.tsv")),
208
+ "dev",
209
+ )
210
+
211
+ def get_labels(self):
212
+ """See base class."""
213
+ return ["0", "1"]
214
+
215
+ def _create_examples(self, lines, set_type):
216
+ """Creates examples for the training and dev sets."""
217
+ examples = []
218
+ for (i, line) in enumerate(lines):
219
+ if i == 0:
220
+ continue
221
+ guid = "%s-%s" % (set_type, i)
222
+ text_a = line[0]
223
+ label = line[1]
224
+ examples.append(
225
+ InputExample(guid=guid, text_a=text_a, text_b=None,
226
+ label=label))
227
+ return examples
228
+
229
+
230
+ def convert_examples_to_features(examples, label_list, max_seq_length,
231
+ tokenizer):
232
+ """Loads a data file into a list of `InputBatch`s."""
233
+
234
+ label_map = {label: i for i, label in enumerate(label_list)}
235
+
236
+ features = []
237
+ for (ex_index, example) in enumerate(examples):
238
+ tokens_a = tokenizer.tokenize(example.text_a)
239
+
240
+ tokens_b = None
241
+ if example.text_b:
242
+ tokens_b = tokenizer.tokenize(example.text_b)
243
+ # Modifies `tokens_a` and `tokens_b` in place so that the total
244
+ # length is less than the specified length.
245
+ # Account for [CLS], [SEP], [SEP] with "- 3"
246
+ _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
247
+ else:
248
+ # Account for [CLS] and [SEP] with "- 2"
249
+ if len(tokens_a) > max_seq_length - 2:
250
+ tokens_a = tokens_a[:(max_seq_length - 2)]
251
+
252
+ # The convention in BERT is:
253
+ # (a) For sequence pairs:
254
+ # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
255
+ # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
256
+ # (b) For single sequences:
257
+ # tokens: [CLS] the dog is hairy . [SEP]
258
+ # type_ids: 0 0 0 0 0 0 0
259
+ #
260
+ # Where "type_ids" are used to indicate whether this is the first
261
+ # sequence or the second sequence. The embedding vectors for `type=0` and
262
+ # `type=1` were learned during pre-training and are added to the wordpiece
263
+ # embedding vector (and position vector). This is not *strictly* necessary
264
+ # since the [SEP] token unambigiously separates the sequences, but it makes
265
+ # it easier for the model to learn the concept of sequences.
266
+ #
267
+ # For classification tasks, the first vector (corresponding to [CLS]) is
268
+ # used as as the "sentence vector". Note that this only makes sense because
269
+ # the entire model is fine-tuned.
270
+ tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
271
+ segment_ids = [0] * len(tokens)
272
+
273
+ if tokens_b:
274
+ tokens += tokens_b + ["[SEP]"]
275
+ segment_ids += [1] * (len(tokens_b) + 1)
276
+
277
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
278
+
279
+ # The mask has 1 for real tokens and 0 for padding tokens. Only real
280
+ # tokens are attended to.
281
+ input_mask = [1] * len(input_ids)
282
+
283
+ # Zero-pad up to the sequence length.
284
+ padding = [0] * (max_seq_length - len(input_ids))
285
+ input_ids += padding
286
+ input_mask += padding
287
+ segment_ids += padding
288
+
289
+ assert len(input_ids) == max_seq_length
290
+ assert len(input_mask) == max_seq_length
291
+ assert len(segment_ids) == max_seq_length
292
+
293
+ label_id = label_map[example.label]
294
+
295
+ features.append(
296
+ InputFeatures(input_ids=input_ids,
297
+ input_mask=input_mask,
298
+ segment_ids=segment_ids,
299
+ label_id=label_id))
300
+ return features, label_map
301
+
302
+
303
+ def _truncate_seq_pair(tokens_a, tokens_b, max_length):
304
+ """Truncates a sequence pair in place to the maximum length."""
305
+
306
+ # This is a simple heuristic which will always truncate the longer sequence
307
+ # one token at a time. This makes more sense than truncating an equal percent
308
+ # of tokens from each, since if one sequence is very short then each token
309
+ # that's truncated likely contains more information than a longer sequence.
310
+ while True:
311
+ total_length = len(tokens_a) + len(tokens_b)
312
+ if total_length <= max_length:
313
+ break
314
+ if len(tokens_a) > len(tokens_b):
315
+ tokens_a.pop()
316
+ else:
317
+ tokens_b.pop()
318
+
319
+
320
+ PROCESSORS = {
321
+ "cola": ColaProcessor,
322
+ "mnli": MnliProcessor,
323
+ "mrpc": MrpcProcessor,
324
+ "sst-2": Sst2Processor,
325
+ }
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/requirements.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # progress bars in model download and training scripts
2
+ tqdm
3
+ # Accessing files from S3 directly.
4
+ boto3
5
+ # Used for downloading models over HTTP
6
+ requests
7
+ six
8
+ ipdb
9
+ #Data processing
10
+ h5py
11
+ html2text
12
+ nltk
13
+ progressbar
14
+ #Others
15
+ onnxruntime
16
+ git+https://github.com/NVIDIA/dllogger
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/results/.keep ADDED
File without changes
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/results/checkpoints/lddl_log/node-0.txt ADDED
File without changes
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/results/checkpoints/lddl_log/node-0_local-0.txt ADDED
File without changes
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/results/dllogger.json ADDED
File without changes
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/run.sub ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --exclusive
3
+ #SBATCH --mem=0
4
+ #SBATCH --overcommit
5
+
6
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+
19
+ set -eux
20
+
21
+ # The following variables variables need to be set
22
+ # Base container to be used - container built in step 1 on quick start guide
23
+ readonly docker_image="nvcr.io/nvidia/pytorch:20.06-py3"
24
+ # Location of dataset for phase 1
25
+ readonly datadir="/raid/datasets/bert/hdf5/shard_1472_test_split_10/seq_128_pred_20_dupe_5/training"
26
+ # Location of dataset for phase 2
27
+ readonly datadir_phase2="/raid/datasets/bert/hdf5/shard_1472_test_split_10/seq_512_pred_80_dupe_5/training"
28
+ # Path to where trained checkpoints will be saved on the system
29
+ readonly checkpointdir="$PWD/checkpoints"
30
+
31
+ readonly mounts=".:/workspace/bert,${datadir}:/workspace/data,${datadir_phase2}:/workspace/data_phase2,${checkpointdir}:/results"
32
+
33
+ BIND_CMD="./bind.sh --cpu=exclusive --ib=single --"
34
+
35
+ srun --ntasks="${SLURM_JOB_NUM_NODES}" --ntasks-per-node=1 mkdir -p "${checkpointdir}"
36
+
37
+ PHASE1="\
38
+ --train_batch_size=${BATCHSIZE:-16} \
39
+ --learning_rate=${LR:-6e-3} \
40
+ --warmup_proportion=${WARMUP_UPDATES:-0.2843} \
41
+ --input_dir=/workspace/data \
42
+ --max_seq_length=128 \
43
+ --max_predictions_per_seq=20 \
44
+ --max_steps=7038 \
45
+ --num_steps_per_checkpoint=2500 \
46
+ "
47
+ PHASE2="\
48
+ --train_batch_size=${BATCHSIZE:-4096} \
49
+ --learning_rate=${LR:-4e-3} \
50
+ --warmup_proportion=${WARMUP_UPDATES:-0.128} \
51
+ --input_dir=/workspace/data_phase2 \
52
+ --phase2 \
53
+ --max_seq_length=512 \
54
+ --max_predictions_per_seq=80 \
55
+ --max_steps=1563 \
56
+ --num_steps_per_checkpoint=1000 \
57
+ --resume_from_checkpoint --phase1_end_step=7038 \
58
+ "
59
+ PHASES=( "$PHASE1" "$PHASE2" )
60
+
61
+ PHASE=${PHASE:-1}
62
+
63
+ BERT_CMD="\
64
+ ${BIND_CMD} python -u /workspace/bert/run_pretraining.py \
65
+ --seed=42 \
66
+ ${PHASES[$((PHASE-1))]} \
67
+ --do_train \
68
+ --config_file=/workspace/bert/bert_config.json \
69
+ --output_dir=/results \
70
+ --fp16 \
71
+ --allreduce_post_accumulation --allreduce_post_accumulation_fp16 \
72
+ --gradient_accumulation_steps=${GRADIENT_STEPS:-2} \
73
+ --log_freq=1 \
74
+ --local_rank=\${SLURM_LOCALID}"
75
+
76
+ srun -l --container-image="${docker_image}" --container-mounts="${mounts}" sh -c "${BERT_CMD}"
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/run_pretraining.py ADDED
@@ -0,0 +1,818 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
3
+ # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
4
+
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ ###############################################################################
17
+ # Copyright (C) 2023 Habana Labs Ltd. an Intel Company
18
+ ###############################################################################
19
+
20
+ """BERT finetuning runner."""
21
+
22
+ from __future__ import absolute_import
23
+ from __future__ import division
24
+ from __future__ import print_function
25
+
26
+ import habana_frameworks.torch.gpu_migration
27
+ import habana_frameworks.torch.core as htcore
28
+ # ==================
29
+ import csv
30
+ import os
31
+ import time
32
+ import argparse
33
+ import random
34
+ import h5py
35
+ from tqdm import tqdm, trange
36
+ import os
37
+ import numpy as np
38
+ import torch
39
+ from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, Dataset
40
+ from torch.utils.data.distributed import DistributedSampler
41
+ import math
42
+ from apex import amp
43
+ import multiprocessing
44
+ import json
45
+
46
+ from tokenization import BertTokenizer
47
+ import modeling
48
+ from apex.optimizers import FusedLAMB
49
+ from schedulers import PolyWarmUpScheduler
50
+
51
+ from file_utils import PYTORCH_PRETRAINED_BERT_CACHE
52
+ from utils import is_main_process, format_step, get_world_size, get_rank
53
+ from apex.parallel import DistributedDataParallel as DDP
54
+ from schedulers import LinearWarmUpScheduler
55
+ from apex.parallel.distributed import flat_dist_call
56
+ import amp_C
57
+ from apex.amp import _amp_state
58
+
59
+ import dllogger
60
+ from concurrent.futures import ProcessPoolExecutor
61
+
62
+ torch._C._jit_set_profiling_mode(False)
63
+ torch._C._jit_set_profiling_executor(False)
64
+
65
+ skipped_steps = 0
66
+ avg_seq_per_pack = 1.0
67
+
68
+ # Track whether a SIGTERM (cluster time up) has been handled
69
+ timeout_sent = False
70
+
71
+ import signal
72
+ # handle SIGTERM sent from the scheduler and mark so we
73
+ # can gracefully save & exit
74
+ def signal_handler(sig, frame):
75
+ global timeout_sent
76
+ timeout_sent = True
77
+
78
+ signal.signal(signal.SIGTERM, signal_handler)
79
+
80
+ #Workaround because python functions are not picklable
81
+ class WorkerInitObj(object):
82
+ def __init__(self, seed):
83
+ self.seed = seed
84
+ def __call__(self, id):
85
+ np.random.seed(seed=self.seed + id)
86
+ random.seed(self.seed + id)
87
+
88
+ def create_pretraining_dataset(input_file, max_pred_length, shared_list, args, worker_init):
89
+ train_data = pretraining_dataset(input_file=input_file, max_pred_length=max_pred_length, enable_packed_data_mode=args.enable_packed_data_mode)
90
+ train_sampler = RandomSampler(train_data)
91
+ train_dataloader = DataLoader(train_data, sampler=train_sampler,
92
+ batch_size=args.train_batch_size * args.n_gpu,
93
+ num_workers=0, worker_init_fn=worker_init,
94
+ drop_last=True, pin_memory=True)
95
+ return train_dataloader, input_file
96
+
97
+ class pretraining_dataset(Dataset):
98
+
99
+ def __init__(self, input_file, max_pred_length, enable_packed_data_mode:bool=False):
100
+ self.input_file = input_file
101
+ self.max_pred_length = max_pred_length
102
+ f = h5py.File(input_file, "r")
103
+ if enable_packed_data_mode:
104
+ keys = ['input_ids', 'input_mask', 'segment_ids', 'positions',
105
+ 'masked_lm_positions', 'masked_lm_ids',
106
+ 'next_sentence_positions', 'next_sentence_labels', 'next_sentence_weights']
107
+ else:
108
+ keys = ['input_ids', 'input_mask', 'segment_ids',
109
+ 'masked_lm_positions', 'masked_lm_ids',
110
+ 'next_sentence_labels']
111
+ self.inputs = [np.asarray(f[key][:]) for key in keys]
112
+ f.close()
113
+ self.enable_packed_data_mode = enable_packed_data_mode
114
+
115
+ def __len__(self):
116
+ 'Denotes the total number of samples'
117
+ return len(self.inputs[0])
118
+
119
+ def __getitem__(self, index):
120
+ if self.enable_packed_data_mode:
121
+ [input_ids, input_mask, segment_ids, positions,
122
+ masked_lm_positions, masked_lm_ids,
123
+ next_sentence_positions, next_sentence_labels, next_sentence_weights] = [torch.from_numpy(input[index].astype(np.int64)) for input in self.inputs]
124
+ else:
125
+ [input_ids, input_mask, segment_ids, masked_lm_positions, masked_lm_ids, next_sentence_labels] = [torch.from_numpy(input[index].astype(np.int64)) if indice < 5 else torch.from_numpy(np.asarray(input[index].astype(np.int64))) for indice, input in enumerate(self.inputs)]
126
+
127
+ masked_lm_labels = torch.ones(input_ids.shape, dtype=torch.long) * -1
128
+ index = self.max_pred_length
129
+ # store number of masked tokens in index
130
+ padded_mask_indices = (masked_lm_positions == 0).nonzero()
131
+ if len(padded_mask_indices) != 0:
132
+ index = padded_mask_indices[0].item()
133
+ masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]
134
+
135
+ if self.enable_packed_data_mode:
136
+ next_sentence_labels = (next_sentence_weights == 1) * next_sentence_labels + (next_sentence_weights == 0) * -1
137
+ return [input_ids, segment_ids, input_mask, positions, masked_lm_labels, next_sentence_positions, next_sentence_labels]
138
+ else:
139
+ return [input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels]
140
+
141
+
142
+ class BertPretrainingCriterion(torch.nn.Module):
143
+ def __init__(self, vocab_size):
144
+ super(BertPretrainingCriterion, self).__init__()
145
+ self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=-1)
146
+ self.vocab_size = vocab_size
147
+ def forward(self, prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels):
148
+ masked_lm_loss = self.loss_fn(prediction_scores.view(-1, self.vocab_size), masked_lm_labels.view(-1))
149
+ next_sentence_loss = self.loss_fn(seq_relationship_score.view(-1, 2), next_sentence_labels.view(-1))
150
+ total_loss = masked_lm_loss + next_sentence_loss
151
+ return total_loss
152
+
153
+
154
+ def parse_arguments():
155
+ local_rank = os.getenv('OMPI_COMM_WORLD_LOCAL_RANK', None)
156
+ if local_rank != None:
157
+ os.environ['LOCAL_RANK'] = local_rank
158
+
159
+ parser = argparse.ArgumentParser()
160
+
161
+ ## Required parameters
162
+ parser.add_argument("--input_dir",
163
+ default=None,
164
+ type=str,
165
+ required=True,
166
+ help="The input data dir. Should contain .hdf5 files for the task.")
167
+
168
+ parser.add_argument("--config_file",
169
+ default=None,
170
+ type=str,
171
+ required=True,
172
+ help="The BERT model config")
173
+
174
+ parser.add_argument("--bert_model", default="bert-large-uncased", type=str,
175
+ help="Bert pre-trained model selected in the list: bert-base-uncased, "
176
+ "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
177
+
178
+ parser.add_argument("--output_dir",
179
+ default=None,
180
+ type=str,
181
+ required=True,
182
+ help="The output directory where the model checkpoints will be written.")
183
+
184
+ ## Other parameters
185
+ parser.add_argument("--init_checkpoint",
186
+ default=None,
187
+ type=str,
188
+ help="The initial checkpoint to start training from.")
189
+
190
+ parser.add_argument("--max_seq_length",
191
+ default=512,
192
+ type=int,
193
+ help="The maximum total input sequence length after WordPiece tokenization. \n"
194
+ "Sequences longer than this will be truncated, and sequences shorter \n"
195
+ "than this will be padded.")
196
+ parser.add_argument("--max_predictions_per_seq",
197
+ default=80,
198
+ type=int,
199
+ help="The maximum total of masked tokens in input sequence")
200
+ parser.add_argument("--train_batch_size",
201
+ default=32,
202
+ type=int,
203
+ help="Total batch size for training.")
204
+ parser.add_argument("--learning_rate",
205
+ default=5e-5,
206
+ type=float,
207
+ help="The initial learning rate for Adam.")
208
+ parser.add_argument("--num_train_epochs",
209
+ default=3.0,
210
+ type=float,
211
+ help="Total number of training epochs to perform.")
212
+ parser.add_argument("--max_steps",
213
+ default=1000,
214
+ type=float,
215
+ help="Total number of training steps to perform.")
216
+ parser.add_argument("--warmup_proportion",
217
+ default=0.01,
218
+ type=float,
219
+ help="Proportion of training to perform linear learning rate warmup for. "
220
+ "E.g., 0.1 = 10%% of training.")
221
+ parser.add_argument("--local_rank",
222
+ type=int,
223
+ default=os.getenv('LOCAL_RANK', -1),
224
+ help="local_rank for distributed training on gpus")
225
+ parser.add_argument('--seed',
226
+ type=int,
227
+ default=42,
228
+ help="random seed for initialization")
229
+ parser.add_argument('--gradient_accumulation_steps',
230
+ type=int,
231
+ default=1,
232
+ help="Number of updates steps to accumualte before performing a backward/update pass.")
233
+ parser.add_argument('--fp16',
234
+ default=False,
235
+ action='store_true',
236
+ help="Mixed precision training")
237
+ parser.add_argument('--amp',
238
+ default=False,
239
+ action='store_true',
240
+ help="Mixed precision training")
241
+ parser.add_argument('--loss_scale',
242
+ type=float, default=0.0,
243
+ help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
244
+ parser.add_argument('--log_freq',
245
+ type=float, default=1.0,
246
+ help='frequency of logging loss.')
247
+ parser.add_argument('--checkpoint_activations',
248
+ default=False,
249
+ action='store_true',
250
+ help="Whether to use gradient checkpointing")
251
+ parser.add_argument("--resume_from_checkpoint",
252
+ default=False,
253
+ action='store_true',
254
+ help="Whether to resume training from checkpoint.")
255
+ parser.add_argument('--resume_step',
256
+ type=int,
257
+ default=-1,
258
+ help="Step to resume training from.")
259
+ parser.add_argument('--num_steps_per_checkpoint',
260
+ type=int,
261
+ default=100,
262
+ help="Number of update steps until a model checkpoint is saved to disk.")
263
+ parser.add_argument('--skip_checkpoint',
264
+ default=False,
265
+ action='store_true',
266
+ help="Whether to save checkpoints")
267
+ parser.add_argument('--phase2',
268
+ default=False,
269
+ action='store_true',
270
+ help="Whether to train with seq len 512")
271
+ parser.add_argument('--allreduce_post_accumulation',
272
+ default=False,
273
+ action='store_true',
274
+ help="Whether to do allreduces during gradient accumulation steps.")
275
+ parser.add_argument('--allreduce_post_accumulation_fp16',
276
+ default=False,
277
+ action='store_true',
278
+ help="Whether to do fp16 allreduce post accumulation.")
279
+ parser.add_argument('--phase1_end_step',
280
+ type=int,
281
+ default=7038,
282
+ help="Number of training steps in Phase1 - seq len 128")
283
+ parser.add_argument('--init_loss_scale',
284
+ type=int,
285
+ default=2**20,
286
+ help="Initial loss scaler value")
287
+ parser.add_argument("--do_train",
288
+ default=False,
289
+ action='store_true',
290
+ help="Whether to run training.")
291
+ parser.add_argument('--json-summary', type=str, default="results/dllogger.json",
292
+ help='If provided, the json summary will be written to'
293
+ 'the specified file.')
294
+ parser.add_argument("--use_env",
295
+ action='store_true',
296
+ help="Whether to read local rank from ENVVAR")
297
+ parser.add_argument('--disable_progress_bar',
298
+ default=False,
299
+ action='store_true',
300
+ help='Disable tqdm progress bar')
301
+ parser.add_argument('--steps_this_run', type=int, default=-1,
302
+ help='If provided, only run this many steps before exiting')
303
+ parser.add_argument('--enable_packed_data_mode', default='True', type=lambda x: x.lower() == 'true',
304
+ help='enable/disable training with packed data. Default is True, --input_dir should be set accordingly')
305
+ parser.add_argument("--use_torch_compile", help="Compile model with torch compile", action="store_true")
306
+
307
+ args = parser.parse_args()
308
+ args.fp16 = args.fp16 or args.amp
309
+
310
+ if args.steps_this_run < 0:
311
+ args.steps_this_run = args.max_steps
312
+
313
+ return args
314
+
315
+ def setup_training(args):
316
+
317
+ assert (torch.cuda.is_available())
318
+
319
+ if args.local_rank == -1:
320
+ device = torch.device("cuda")
321
+ # DP is not supported
322
+ args.n_gpu = 1
323
+ args.allreduce_post_accumulation = False
324
+ args.allreduce_post_accumulation_fp16 = False
325
+ else:
326
+ torch.cuda.set_device(args.local_rank)
327
+ device = torch.device("cuda", args.local_rank)
328
+ # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
329
+ torch.distributed.init_process_group(backend='nccl', init_method='env://')
330
+ args.n_gpu = 1
331
+
332
+ if args.gradient_accumulation_steps == 1:
333
+ args.allreduce_post_accumulation = False
334
+ args.allreduce_post_accumulation_fp16 = False
335
+
336
+ if is_main_process():
337
+ dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE,
338
+ filename=args.json_summary),
339
+ dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step)])
340
+ else:
341
+ dllogger.init(backends=[])
342
+
343
+ print("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
344
+ device, args.n_gpu, bool(args.local_rank != -1), args.fp16))
345
+
346
+ if args.gradient_accumulation_steps < 1:
347
+ raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
348
+ args.gradient_accumulation_steps))
349
+ if args.train_batch_size % args.gradient_accumulation_steps != 0:
350
+ raise ValueError("Invalid gradient_accumulation_steps parameter: {}, batch size {} should be divisible".format(
351
+ args.gradient_accumulation_steps, args.train_batch_size))
352
+
353
+ args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
354
+
355
+ if args.enable_packed_data_mode:
356
+ args.gradient_accumulation_steps = round(args.gradient_accumulation_steps / avg_seq_per_pack)
357
+
358
+ if not args.do_train:
359
+ raise ValueError(" `do_train` must be True.")
360
+
361
+ if not args.resume_from_checkpoint and os.path.exists(args.output_dir) and (
362
+ os.listdir(args.output_dir) and any([i.startswith('ckpt') for i in os.listdir(args.output_dir)])):
363
+ raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
364
+
365
+ if (not args.resume_from_checkpoint or not os.path.exists(args.output_dir)) and is_main_process():
366
+ os.makedirs(args.output_dir, exist_ok=True)
367
+
368
+ return device, args
369
+
370
+ def prepare_model_and_optimizer(args, device):
371
+
372
+ # Prepare model
373
+ config = modeling.BertConfig.from_json_file(args.config_file)
374
+
375
+ # Padding for divisibility by 8
376
+ if config.vocab_size % 8 != 0:
377
+ config.vocab_size += 8 - (config.vocab_size % 8)
378
+
379
+ modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
380
+ model = modeling.BertForPreTraining(config)
381
+
382
+ checkpoint = None
383
+ if not args.resume_from_checkpoint:
384
+ global_step = 0
385
+ else:
386
+ if args.resume_step == -1 and not args.init_checkpoint:
387
+ model_names = [f for f in os.listdir(args.output_dir) if f.endswith(".pt")]
388
+ args.resume_step = max([int(x.split('.pt')[0].split('_')[1].strip()) for x in model_names])
389
+
390
+ global_step = args.resume_step if not args.init_checkpoint else 0
391
+
392
+ if not args.init_checkpoint:
393
+ checkpoint = torch.load(os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step)), map_location="cpu")
394
+ else:
395
+ checkpoint = torch.load(args.init_checkpoint, map_location="cpu")
396
+
397
+ model.load_state_dict(checkpoint['model'], strict=False)
398
+
399
+ if args.phase2 and not args.init_checkpoint:
400
+ global_step -= args.phase1_end_step
401
+ if is_main_process():
402
+ print("resume step from ", args.resume_step)
403
+
404
+ model.to(device)
405
+
406
+ # BERT modeling uses weight sharing between word embedding and prediction decoder.
407
+ # So make sure the storage is pointing properly even after model is moved to device.
408
+ # Can be removed after SW-108363 is merged
409
+ model.cls.predictions.decoder.weight = model.bert.embeddings.word_embeddings.weight
410
+
411
+ param_optimizer = list(model.named_parameters())
412
+ no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']
413
+
414
+ optimizer_grouped_parameters = [
415
+ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
416
+ {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
417
+
418
+ optimizer = FusedLAMB(optimizer_grouped_parameters,
419
+ lr=args.learning_rate)
420
+ lr_scheduler = PolyWarmUpScheduler(optimizer,
421
+ warmup=args.warmup_proportion,
422
+ total_steps=args.max_steps)
423
+ if args.fp16:
424
+
425
+ if args.loss_scale == 0:
426
+ model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale="dynamic", cast_model_outputs=torch.float16)
427
+ else:
428
+ model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale=args.loss_scale, cast_model_outputs=torch.float16)
429
+ amp._amp_state.loss_scalers[0]._loss_scale = args.init_loss_scale
430
+
431
+ model.checkpoint_activations(args.checkpoint_activations)
432
+
433
+ if args.resume_from_checkpoint:
434
+ if args.phase2 or args.init_checkpoint:
435
+ keys = list(checkpoint['optimizer']['state'].keys())
436
+ #Override hyperparameters from previous checkpoint
437
+ for key in keys:
438
+ checkpoint['optimizer']['state'][key]['step'] = global_step
439
+ for iter, item in enumerate(checkpoint['optimizer']['param_groups']):
440
+ checkpoint['optimizer']['param_groups'][iter]['step'] = global_step
441
+ checkpoint['optimizer']['param_groups'][iter]['t_total'] = args.max_steps
442
+ checkpoint['optimizer']['param_groups'][iter]['warmup'] = args.warmup_proportion
443
+ checkpoint['optimizer']['param_groups'][iter]['lr'] = args.learning_rate
444
+ optimizer.load_state_dict(checkpoint['optimizer']) # , strict=False)
445
+
446
+ # Restore AMP master parameters
447
+ if args.fp16 and amp._amp_state.opt_properties.enabled:
448
+ optimizer._lazy_init_maybe_master_weights()
449
+ optimizer._amp_stash.lazy_init_called = True
450
+ optimizer.load_state_dict(checkpoint['optimizer'])
451
+ for param, saved_param in zip(amp.master_params(optimizer), checkpoint['master params']):
452
+ param.data.copy_(saved_param.data)
453
+
454
+ if args.local_rank != -1:
455
+ if not args.allreduce_post_accumulation:
456
+ model = DDP(model, message_size=250000000, gradient_predivide_factor=get_world_size())
457
+ else:
458
+ flat_dist_call([param.data for param in model.parameters()], torch.distributed.broadcast, (0,) )
459
+ elif args.n_gpu > 1:
460
+ model = torch.nn.DataParallel(model)
461
+
462
+ criterion = BertPretrainingCriterion(config.vocab_size)
463
+
464
+ return model, optimizer, lr_scheduler, checkpoint, global_step, criterion
465
+
466
+ def update_tensors(grad_tensors, allreduced_views):
467
+ offset = 0
468
+ for grad in grad_tensors:
469
+ numel = grad.numel()
470
+ grad.copy_(allreduced_views.narrow(0, offset, numel).view_as(grad))
471
+ offset += numel
472
+ return allreduced_views
473
+
474
+ def take_optimizer_step(args, optimizer, model, overflow_buf, global_step):
475
+
476
+ global skipped_steps
477
+ if args.allreduce_post_accumulation:
478
+ # manually allreduce gradients after all accumulation steps
479
+ # check for Inf/NaN
480
+ # 1. allocate an uninitialized buffer for flattened gradient
481
+ loss_scale = _amp_state.loss_scalers[0].loss_scale() if args.fp16 else 1
482
+ master_grads = [p.grad for p in amp.master_params(optimizer) if p.grad is not None]
483
+ flat_grad_size = sum(p.numel() for p in master_grads)
484
+ allreduce_dtype = torch.float16 if args.allreduce_post_accumulation_fp16 else torch.float32
485
+ flat_raw = torch.empty(flat_grad_size, device='cuda', dtype=allreduce_dtype)
486
+ # 2. combine unflattening and predivision of unscaled 'raw' gradient
487
+ # The torch._C._nn.unflatten_dense_tensors, which apex_C.unflatten basing on,
488
+ # does not work correctly on HPU.
489
+ # Remove this change when SW-117256 and SW-120216 are solved
490
+ # allreduced_views = apex_C.unflatten(flat_raw, master_grads)
491
+ allreduced_views = torch.cat([t.contiguous().view(-1) for t in master_grads], dim=0)
492
+ allreduced_views.div_(float(get_world_size() * args.gradient_accumulation_steps))
493
+ overflow_buf.zero_()
494
+ amp_C.multi_tensor_scale(65536,
495
+ overflow_buf,
496
+ [master_grads, allreduced_views],
497
+ loss_scale / (get_world_size() * args.gradient_accumulation_steps))
498
+ # 3. sum gradient across ranks. Because of the predivision, this averages the gradient
499
+ torch.distributed.all_reduce(allreduced_views)
500
+ # 4. combine unscaling and unflattening of allreduced gradient
501
+ overflow_buf.zero_()
502
+ amp_C.multi_tensor_scale(65536,
503
+ overflow_buf,
504
+ [allreduced_views, master_grads],
505
+ 1. / loss_scale)
506
+ update_tensors(master_grads, allreduced_views)
507
+ # 5. update loss scale
508
+ if args.fp16:
509
+ scaler = _amp_state.loss_scalers[0]
510
+ old_overflow_buf = scaler._overflow_buf
511
+ scaler._overflow_buf = overflow_buf
512
+ had_overflow = scaler.update_scale()
513
+ scaler._overfloat_buf = old_overflow_buf
514
+ else:
515
+ had_overflow = 0
516
+ # 6. call optimizer step function
517
+ if had_overflow == 0:
518
+ optimizer.step()
519
+ global_step += 1
520
+ else:
521
+ # Overflow detected, print message and clear gradients
522
+ skipped_steps += 1
523
+ if is_main_process():
524
+ scaler = _amp_state.loss_scalers[0]
525
+ dllogger.log(step="PARAMETER", data={"loss_scale": scaler.loss_scale()})
526
+ if _amp_state.opt_properties.master_weights:
527
+ for param in optimizer._amp_stash.all_fp32_from_fp16_params:
528
+ param.grad = None
529
+ for param in model.parameters():
530
+ param.grad = None
531
+ else:
532
+ optimizer.step()
533
+ #optimizer.zero_grad()
534
+ for param in model.parameters():
535
+ param.grad = None
536
+ global_step += 1
537
+
538
+ return global_step
539
+
540
+ def get_metadata_file_path(input_dir : str) -> str:
541
+ norm_path = os.path.normpath(input_dir)
542
+ head_tail = os.path.split(norm_path)
543
+ metadata_file_name = head_tail[1]
544
+ metadata_file_name = metadata_file_name + '_metadata.json'
545
+ metadata_file_path = os.path.join(head_tail[0],metadata_file_name)
546
+ return metadata_file_path
547
+
548
+ def read_avg_seq_per_sample(input_dir : str, max_sequence_length) -> float:
549
+ metadata = None
550
+ metadata_file_path = get_metadata_file_path(input_dir)
551
+ print(f"Reading dataset metadata from: {metadata_file_path}")
552
+ if os.path.exists(metadata_file_path):
553
+ file_handle = open(metadata_file_path, mode='r')
554
+ json_content = file_handle.read()
555
+ metadata = json.loads(json_content)
556
+ else:
557
+ print("Packed dataset metadata file not accessible, falling back to default values of avg_seq_per_sample")
558
+ if max_sequence_length == 128:
559
+ return 1.2
560
+ elif max_sequence_length == 512:
561
+ return 2.0
562
+ else:
563
+ assert f"invalid max_sequence_length"
564
+ avg_seq_per_sample_key = "avg_seq_per_sample"
565
+ if metadata is not None and avg_seq_per_sample_key in metadata.keys():
566
+ avg_seq_per_sample = metadata[avg_seq_per_sample_key]
567
+ else:
568
+ assert False, f"Key {avg_seq_per_sample_key} not present in packed dataset metadata file: {metadata_file_path}"
569
+ print(f"AVG_SEQ_PER_SAMPLE: {avg_seq_per_sample}")
570
+ return avg_seq_per_sample
571
+
572
+ def main():
573
+ global timeout_sent
574
+ global avg_seq_per_pack
575
+
576
+ args = parse_arguments()
577
+
578
+ random.seed(args.seed + args.local_rank)
579
+ np.random.seed(args.seed + args.local_rank)
580
+ torch.manual_seed(args.seed + args.local_rank)
581
+ torch.cuda.manual_seed(args.seed + args.local_rank)
582
+ worker_init = WorkerInitObj(args.seed + args.local_rank)
583
+
584
+ if args.enable_packed_data_mode:
585
+ avg_seq_per_pack = read_avg_seq_per_sample(args.input_dir, args.max_seq_length)
586
+ else:
587
+ avg_seq_per_pack = 1.0
588
+ device, args = setup_training(args)
589
+ dllogger.log(step="PARAMETER", data={"Config": [str(args)]})
590
+
591
+ # Prepare optimizer
592
+ model, optimizer, lr_scheduler, checkpoint, global_step, criterion = prepare_model_and_optimizer(args, device)
593
+
594
+ if is_main_process():
595
+ dllogger.log(step="PARAMETER", data={"SEED": args.seed})
596
+
597
+ raw_train_start = None
598
+ if args.do_train:
599
+ if is_main_process():
600
+ dllogger.log(step="PARAMETER", data={"train_start": True})
601
+ dllogger.log(step="PARAMETER", data={"batch_size_per_gpu": args.train_batch_size})
602
+ dllogger.log(step="PARAMETER", data={"learning_rate": args.learning_rate})
603
+
604
+ model.train()
605
+ most_recent_ckpts_paths = []
606
+ average_loss = 0.0 # averaged loss every args.log_freq steps
607
+ epoch = 0
608
+ training_steps = 0
609
+ average_training_time_per_step = 0
610
+ average_perf_per_step = 0
611
+ loss_list = []
612
+
613
+ pool = ProcessPoolExecutor(1)
614
+
615
+ starting_time = time.time()
616
+
617
+ if args.use_torch_compile:
618
+ model = torch.compile(model, backend="inductor")
619
+
620
+ # Note: We loop infinitely over epochs, termination is handled via iteration count
621
+ while True:
622
+ thread = None
623
+ restored_data_loader = None
624
+ if not args.resume_from_checkpoint or epoch > 0 or (args.phase2 and global_step < 1) or args.init_checkpoint:
625
+ if args.enable_packed_data_mode:
626
+ files = [os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if
627
+ os.path.isfile(os.path.join(args.input_dir, f))] # Packed files have no 'training' pre/postfix.
628
+ else:
629
+ files = [os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if
630
+ os.path.isfile(os.path.join(args.input_dir, f)) and 'training' in f]
631
+ files.sort()
632
+ num_files = len(files)
633
+ random.Random(args.seed + epoch).shuffle(files)
634
+ f_start_id = 0
635
+ else:
636
+ f_start_id = checkpoint['files'][0]
637
+ files = checkpoint['files'][1:]
638
+ args.resume_from_checkpoint = False
639
+ num_files = len(files)
640
+ # may not exist in all checkpoints
641
+ epoch = checkpoint.get('epoch', 0)
642
+ restored_data_loader = checkpoint.get('data_loader', None)
643
+
644
+ shared_file_list = {}
645
+
646
+ if torch.distributed.is_initialized() and get_world_size() > num_files:
647
+ remainder = get_world_size() % num_files
648
+ data_file = files[(f_start_id*get_world_size()+get_rank() + remainder*f_start_id)%num_files]
649
+ else:
650
+ data_file = files[(f_start_id*get_world_size()+get_rank())%num_files]
651
+
652
+ previous_file = data_file
653
+
654
+ if restored_data_loader is None:
655
+ train_data = pretraining_dataset(data_file, args.max_predictions_per_seq, args.enable_packed_data_mode)
656
+ train_sampler = RandomSampler(train_data)
657
+ train_dataloader = DataLoader(train_data, sampler=train_sampler,
658
+ batch_size=args.train_batch_size * args.n_gpu,
659
+ num_workers=0, worker_init_fn=worker_init,
660
+ drop_last=True, pin_memory=True)
661
+ # shared_file_list["0"] = (train_dataloader, data_file)
662
+ else:
663
+ train_dataloader = restored_data_loader
664
+ restored_data_loader = None
665
+
666
+ overflow_buf = None
667
+ if args.allreduce_post_accumulation:
668
+ overflow_buf = torch.cuda.IntTensor([0])
669
+
670
+ for f_id in range(f_start_id + 1 , len(files)):
671
+
672
+
673
+ if get_world_size() > num_files:
674
+ data_file = files[(f_id*get_world_size()+get_rank() + remainder*f_id)%num_files]
675
+ else:
676
+ data_file = files[(f_id*get_world_size()+get_rank())%num_files]
677
+
678
+ previous_file = data_file
679
+
680
+ dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, shared_file_list, args, worker_init)
681
+
682
+ train_iter = tqdm(train_dataloader, desc="Iteration", disable=args.disable_progress_bar) if is_main_process() else train_dataloader
683
+
684
+ if raw_train_start is None:
685
+ raw_train_start = time.time()
686
+ for step, batch in enumerate(train_iter):
687
+
688
+ training_steps += 1
689
+
690
+ batch = [t.to(device) for t in batch]
691
+ if args.enable_packed_data_mode:
692
+ input_ids, segment_ids, input_mask, positions, masked_lm_labels, next_sentence_positions, next_sentence_labels = batch
693
+ else:
694
+ input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels = batch
695
+
696
+ if (args.local_rank != -1) and (training_steps % args.gradient_accumulation_steps == 0):
697
+ torch.distributed.barrier()
698
+
699
+ prediction_scores, seq_relationship_score = model(
700
+ input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, enable_packed_data_mode=args.enable_packed_data_mode,
701
+ positions=positions if args.enable_packed_data_mode else None,
702
+ next_sentence_positions=next_sentence_positions if args.enable_packed_data_mode else None)
703
+
704
+ loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels)
705
+ if args.n_gpu > 1:
706
+ loss = loss.mean() # mean() to average on multi-gpu.
707
+
708
+ divisor = args.gradient_accumulation_steps
709
+ if args.gradient_accumulation_steps > 1:
710
+ if not args.allreduce_post_accumulation:
711
+ # this division was merged into predivision
712
+ loss = loss / args.gradient_accumulation_steps
713
+ divisor = 1.0
714
+ if args.fp16:
715
+ with amp.scale_loss(loss, optimizer, delay_overflow_check=args.allreduce_post_accumulation) as scaled_loss:
716
+ scaled_loss.backward()
717
+ else:
718
+ loss.backward()
719
+
720
+ htcore.mark_step()
721
+
722
+ loss_list.append(loss)
723
+
724
+ if training_steps % args.gradient_accumulation_steps == 0:
725
+ lr_scheduler.step() # learning rate warmup
726
+ global_step = take_optimizer_step(args, optimizer, model, overflow_buf, global_step)
727
+
728
+ htcore.mark_step()
729
+
730
+ if global_step >= args.steps_this_run or timeout_sent or training_steps % (args.log_freq * args.gradient_accumulation_steps) == 0:
731
+ for loss_t in loss_list:
732
+ average_loss += loss_t.item()
733
+ loss_list.clear()
734
+ train_time = time.time() - starting_time
735
+ starting_time = time.time()
736
+ average_training_time_per_step = train_time/(args.gradient_accumulation_steps * args.log_freq)
737
+ average_perf_per_step = args.train_batch_size*avg_seq_per_pack/average_training_time_per_step
738
+
739
+ if global_step >= args.steps_this_run or timeout_sent:
740
+ train_time_raw = time.time() - raw_train_start
741
+ last_num_steps = int(training_steps / args.gradient_accumulation_steps) % args.log_freq
742
+ last_num_steps = args.log_freq if last_num_steps == 0 else last_num_steps
743
+ average_loss = torch.tensor(average_loss, dtype=torch.float32).cuda()
744
+ average_loss = average_loss / (last_num_steps * divisor)
745
+ if (torch.distributed.is_initialized()):
746
+ average_loss /= get_world_size()
747
+ torch.distributed.all_reduce(average_loss)
748
+ final_loss = average_loss.item()
749
+ if is_main_process():
750
+ dllogger.log(step=(epoch, global_step, ), data={"final_loss": final_loss,
751
+ "average_training_time_step": average_training_time_per_step,
752
+ "average_perf_per_step": average_perf_per_step})
753
+ elif training_steps % (args.log_freq * args.gradient_accumulation_steps) == 0:
754
+ if is_main_process():
755
+ dllogger.log(step=(epoch, global_step, ), data={"average_loss": average_loss / (args.log_freq * divisor),
756
+ "step_loss": loss.item() * args.gradient_accumulation_steps / divisor,
757
+ "learning_rate": optimizer.param_groups[0]['lr'],
758
+ "average_training_time_step": average_training_time_per_step,
759
+ "average_perf_per_step": average_perf_per_step})
760
+ average_loss = 0
761
+
762
+
763
+ if global_step >= args.steps_this_run or training_steps % (
764
+ args.num_steps_per_checkpoint * args.gradient_accumulation_steps) == 0 or timeout_sent:
765
+ if is_main_process() and not args.skip_checkpoint:
766
+ # Save a trained model
767
+ dllogger.log(step="PARAMETER", data={"checkpoint_step": global_step})
768
+ model_to_save = model.module if hasattr(model,
769
+ 'module') else model # Only save the model it-self
770
+ if args.resume_step < 0 or not args.phase2:
771
+ output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step))
772
+ else:
773
+ output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step + args.phase1_end_step))
774
+ if args.do_train:
775
+ torch.save({'model': model_to_save.state_dict(),
776
+ 'optimizer': optimizer.state_dict(),
777
+ 'master params': list(amp.master_params(optimizer)),
778
+ 'files': [f_id] + files,
779
+ 'epoch': epoch,
780
+ 'data_loader': None if global_step >= args.max_steps else train_dataloader}, output_save_file)
781
+
782
+ most_recent_ckpts_paths.append(output_save_file)
783
+ if len(most_recent_ckpts_paths) > 3:
784
+ ckpt_to_be_removed = most_recent_ckpts_paths.pop(0)
785
+ os.remove(ckpt_to_be_removed)
786
+
787
+ # Exiting the training due to hitting max steps, or being sent a
788
+ # timeout from the cluster scheduler
789
+ if global_step >= args.steps_this_run or timeout_sent:
790
+ del train_dataloader
791
+ # thread.join()
792
+ return args, final_loss, train_time_raw, global_step
793
+
794
+ del train_dataloader
795
+ # thread.join()
796
+ # Make sure pool has finished and switch train_dataloader
797
+ # NOTE: Will block until complete
798
+ train_dataloader, data_file = dataset_future.result(timeout=None)
799
+
800
+ epoch += 1
801
+
802
+ if __name__ == "__main__":
803
+
804
+ now = time.time()
805
+ args, final_loss, train_time_raw, global_step = main()
806
+ gpu_count = args.n_gpu
807
+ global_step += args.phase1_end_step if (args.phase2 and args.resume_step > 0) else 0
808
+ if args.resume_step == -1:
809
+ args.resume_step = 0
810
+ if torch.distributed.is_initialized():
811
+ gpu_count = get_world_size()
812
+ if is_main_process():
813
+ e2e_time = time.time() - now
814
+ training_perf = args.train_batch_size * args.gradient_accumulation_steps * gpu_count * avg_seq_per_pack\
815
+ * (global_step - args.resume_step + skipped_steps) / train_time_raw
816
+ dllogger.log(step=tuple(), data={"e2e_train_time": e2e_time, "training_sequences_per_second": training_perf,
817
+ "final_loss": final_loss, "raw_train_time": train_time_raw })
818
+ dllogger.flush()
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/run_squad.py ADDED
@@ -0,0 +1,1200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
3
+ # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Run BERT on SQuAD."""
17
+
18
+ from __future__ import absolute_import, division, print_function
19
+
20
+ import argparse
21
+ import collections
22
+ import json
23
+ import logging
24
+ import math
25
+ import os
26
+ import random
27
+ import sys
28
+ from io import open
29
+
30
+ import numpy as np
31
+ import torch
32
+ from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
33
+ TensorDataset)
34
+ from torch.utils.data.distributed import DistributedSampler
35
+ from tqdm import tqdm, trange
36
+
37
+ from apex import amp
38
+ from schedulers import LinearWarmUpScheduler
39
+ from file_utils import PYTORCH_PRETRAINED_BERT_CACHE
40
+ import modeling
41
+ from optimization import BertAdam, warmup_linear
42
+ from tokenization import (BasicTokenizer, BertTokenizer, whitespace_tokenize)
43
+ from utils import is_main_process, format_step
44
+ import dllogger, time
45
+
46
+ torch._C._jit_set_profiling_mode(False)
47
+ torch._C._jit_set_profiling_executor(False)
48
+
49
+ if sys.version_info[0] == 2:
50
+ import cPickle as pickle
51
+ else:
52
+ import pickle
53
+
54
+ logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
55
+ datefmt='%m/%d/%Y %H:%M:%S',
56
+ level=logging.INFO)
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ class SquadExample(object):
61
+ """
62
+ A single training/test example for the Squad dataset.
63
+ For examples without an answer, the start and end position are -1.
64
+ """
65
+
66
+ def __init__(self,
67
+ qas_id,
68
+ question_text,
69
+ doc_tokens,
70
+ orig_answer_text=None,
71
+ start_position=None,
72
+ end_position=None,
73
+ is_impossible=None):
74
+ self.qas_id = qas_id
75
+ self.question_text = question_text
76
+ self.doc_tokens = doc_tokens
77
+ self.orig_answer_text = orig_answer_text
78
+ self.start_position = start_position
79
+ self.end_position = end_position
80
+ self.is_impossible = is_impossible
81
+
82
+ def __str__(self):
83
+ return self.__repr__()
84
+
85
+ def __repr__(self):
86
+ s = ""
87
+ s += "qas_id: %s" % (self.qas_id)
88
+ s += ", question_text: %s" % (
89
+ self.question_text)
90
+ s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
91
+ if self.start_position:
92
+ s += ", start_position: %d" % (self.start_position)
93
+ if self.end_position:
94
+ s += ", end_position: %d" % (self.end_position)
95
+ if self.is_impossible:
96
+ s += ", is_impossible: %r" % (self.is_impossible)
97
+ return s
98
+
99
+
100
+ class InputFeatures(object):
101
+ """A single set of features of data."""
102
+
103
+ def __init__(self,
104
+ unique_id,
105
+ example_index,
106
+ doc_span_index,
107
+ tokens,
108
+ token_to_orig_map,
109
+ token_is_max_context,
110
+ input_ids,
111
+ input_mask,
112
+ segment_ids,
113
+ start_position=None,
114
+ end_position=None,
115
+ is_impossible=None):
116
+ self.unique_id = unique_id
117
+ self.example_index = example_index
118
+ self.doc_span_index = doc_span_index
119
+ self.tokens = tokens
120
+ self.token_to_orig_map = token_to_orig_map
121
+ self.token_is_max_context = token_is_max_context
122
+ self.input_ids = input_ids
123
+ self.input_mask = input_mask
124
+ self.segment_ids = segment_ids
125
+ self.start_position = start_position
126
+ self.end_position = end_position
127
+ self.is_impossible = is_impossible
128
+
129
+
130
+ def read_squad_examples(input_file, is_training, version_2_with_negative):
131
+ """Read a SQuAD json file into a list of SquadExample."""
132
+ with open(input_file, "r", encoding='utf-8') as reader:
133
+ input_data = json.load(reader)["data"]
134
+
135
+ def is_whitespace(c):
136
+ if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
137
+ return True
138
+ return False
139
+
140
+ examples = []
141
+ for entry in input_data:
142
+ for paragraph in entry["paragraphs"]:
143
+ paragraph_text = paragraph["context"]
144
+ doc_tokens = []
145
+ char_to_word_offset = []
146
+ prev_is_whitespace = True
147
+ for c in paragraph_text:
148
+ if is_whitespace(c):
149
+ prev_is_whitespace = True
150
+ else:
151
+ if prev_is_whitespace:
152
+ doc_tokens.append(c)
153
+ else:
154
+ doc_tokens[-1] += c
155
+ prev_is_whitespace = False
156
+ char_to_word_offset.append(len(doc_tokens) - 1)
157
+
158
+ for qa in paragraph["qas"]:
159
+ qas_id = qa["id"]
160
+ question_text = qa["question"]
161
+ start_position = None
162
+ end_position = None
163
+ orig_answer_text = None
164
+ is_impossible = False
165
+ if is_training:
166
+ if version_2_with_negative:
167
+ is_impossible = qa["is_impossible"]
168
+ if (len(qa["answers"]) != 1) and (not is_impossible):
169
+ raise ValueError(
170
+ "For training, each question should have exactly 1 answer.")
171
+ if not is_impossible:
172
+ answer = qa["answers"][0]
173
+ orig_answer_text = answer["text"]
174
+ answer_offset = answer["answer_start"]
175
+ answer_length = len(orig_answer_text)
176
+ start_position = char_to_word_offset[answer_offset]
177
+ end_position = char_to_word_offset[answer_offset + answer_length - 1]
178
+ # Only add answers where the text can be exactly recovered from the
179
+ # document. If this CAN'T happen it's likely due to weird Unicode
180
+ # stuff so we will just skip the example.
181
+ #
182
+ # Note that this means for training mode, every example is NOT
183
+ # guaranteed to be preserved.
184
+ actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
185
+ cleaned_answer_text = " ".join(
186
+ whitespace_tokenize(orig_answer_text))
187
+ if actual_text.find(cleaned_answer_text) == -1:
188
+ logger.warning("Could not find answer: '%s' vs. '%s'",
189
+ actual_text, cleaned_answer_text)
190
+ continue
191
+ else:
192
+ start_position = -1
193
+ end_position = -1
194
+ orig_answer_text = ""
195
+
196
+ example = SquadExample(
197
+ qas_id=qas_id,
198
+ question_text=question_text,
199
+ doc_tokens=doc_tokens,
200
+ orig_answer_text=orig_answer_text,
201
+ start_position=start_position,
202
+ end_position=end_position,
203
+ is_impossible=is_impossible)
204
+ examples.append(example)
205
+ return examples
206
+
207
+
208
+ def convert_examples_to_features(examples, tokenizer, max_seq_length,
209
+ doc_stride, max_query_length, is_training):
210
+ """Loads a data file into a list of `InputBatch`s."""
211
+
212
+ unique_id = 1000000000
213
+
214
+ features = []
215
+ for (example_index, example) in enumerate(examples):
216
+ query_tokens = tokenizer.tokenize(example.question_text)
217
+
218
+ if len(query_tokens) > max_query_length:
219
+ query_tokens = query_tokens[0:max_query_length]
220
+
221
+ tok_to_orig_index = []
222
+ orig_to_tok_index = []
223
+ all_doc_tokens = []
224
+ for (i, token) in enumerate(example.doc_tokens):
225
+ orig_to_tok_index.append(len(all_doc_tokens))
226
+ sub_tokens = tokenizer.tokenize(token)
227
+ for sub_token in sub_tokens:
228
+ tok_to_orig_index.append(i)
229
+ all_doc_tokens.append(sub_token)
230
+
231
+ tok_start_position = None
232
+ tok_end_position = None
233
+ if is_training and example.is_impossible:
234
+ tok_start_position = -1
235
+ tok_end_position = -1
236
+ if is_training and not example.is_impossible:
237
+ tok_start_position = orig_to_tok_index[example.start_position]
238
+ if example.end_position < len(example.doc_tokens) - 1:
239
+ tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
240
+ else:
241
+ tok_end_position = len(all_doc_tokens) - 1
242
+ (tok_start_position, tok_end_position) = _improve_answer_span(
243
+ all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
244
+ example.orig_answer_text)
245
+
246
+ # The -3 accounts for [CLS], [SEP] and [SEP]
247
+ max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
248
+
249
+ # We can have documents that are longer than the maximum sequence length.
250
+ # To deal with this we do a sliding window approach, where we take chunks
251
+ # of the up to our max length with a stride of `doc_stride`.
252
+ _DocSpan = collections.namedtuple( # pylint: disable=invalid-name
253
+ "DocSpan", ["start", "length"])
254
+ doc_spans = []
255
+ start_offset = 0
256
+ while start_offset < len(all_doc_tokens):
257
+ length = len(all_doc_tokens) - start_offset
258
+ if length > max_tokens_for_doc:
259
+ length = max_tokens_for_doc
260
+ doc_spans.append(_DocSpan(start=start_offset, length=length))
261
+ if start_offset + length == len(all_doc_tokens):
262
+ break
263
+ start_offset += min(length, doc_stride)
264
+
265
+ for (doc_span_index, doc_span) in enumerate(doc_spans):
266
+ tokens = []
267
+ token_to_orig_map = {}
268
+ token_is_max_context = {}
269
+ segment_ids = []
270
+ tokens.append("[CLS]")
271
+ segment_ids.append(0)
272
+ for token in query_tokens:
273
+ tokens.append(token)
274
+ segment_ids.append(0)
275
+ tokens.append("[SEP]")
276
+ segment_ids.append(0)
277
+
278
+ for i in range(doc_span.length):
279
+ split_token_index = doc_span.start + i
280
+ token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
281
+
282
+ is_max_context = _check_is_max_context(doc_spans, doc_span_index,
283
+ split_token_index)
284
+ token_is_max_context[len(tokens)] = is_max_context
285
+ tokens.append(all_doc_tokens[split_token_index])
286
+ segment_ids.append(1)
287
+ tokens.append("[SEP]")
288
+ segment_ids.append(1)
289
+
290
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
291
+
292
+ # The mask has 1 for real tokens and 0 for padding tokens. Only real
293
+ # tokens are attended to.
294
+ input_mask = [1] * len(input_ids)
295
+
296
+ # Zero-pad up to the sequence length.
297
+ while len(input_ids) < max_seq_length:
298
+ input_ids.append(0)
299
+ input_mask.append(0)
300
+ segment_ids.append(0)
301
+
302
+ assert len(input_ids) == max_seq_length
303
+ assert len(input_mask) == max_seq_length
304
+ assert len(segment_ids) == max_seq_length
305
+
306
+ start_position = None
307
+ end_position = None
308
+ if is_training and not example.is_impossible:
309
+ # For training, if our document chunk does not contain an annotation
310
+ # we throw it out, since there is nothing to predict.
311
+ doc_start = doc_span.start
312
+ doc_end = doc_span.start + doc_span.length - 1
313
+ out_of_span = False
314
+ if not (tok_start_position >= doc_start and
315
+ tok_end_position <= doc_end):
316
+ out_of_span = True
317
+ if out_of_span:
318
+ start_position = 0
319
+ end_position = 0
320
+ else:
321
+ doc_offset = len(query_tokens) + 2
322
+ start_position = tok_start_position - doc_start + doc_offset
323
+ end_position = tok_end_position - doc_start + doc_offset
324
+ if is_training and example.is_impossible:
325
+ start_position = 0
326
+ end_position = 0
327
+
328
+ features.append(
329
+ InputFeatures(
330
+ unique_id=unique_id,
331
+ example_index=example_index,
332
+ doc_span_index=doc_span_index,
333
+ tokens=tokens,
334
+ token_to_orig_map=token_to_orig_map,
335
+ token_is_max_context=token_is_max_context,
336
+ input_ids=input_ids,
337
+ input_mask=input_mask,
338
+ segment_ids=segment_ids,
339
+ start_position=start_position,
340
+ end_position=end_position,
341
+ is_impossible=example.is_impossible))
342
+ unique_id += 1
343
+
344
+ return features
345
+
346
+
347
+ def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
348
+ orig_answer_text):
349
+ """Returns tokenized answer spans that better match the annotated answer."""
350
+
351
+ # The SQuAD annotations are character based. We first project them to
352
+ # whitespace-tokenized words. But then after WordPiece tokenization, we can
353
+ # often find a "better match". For example:
354
+ #
355
+ # Question: What year was John Smith born?
356
+ # Context: The leader was John Smith (1895-1943).
357
+ # Answer: 1895
358
+ #
359
+ # The original whitespace-tokenized answer will be "(1895-1943).". However
360
+ # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
361
+ # the exact answer, 1895.
362
+ #
363
+ # However, this is not always possible. Consider the following:
364
+ #
365
+ # Question: What country is the top exporter of electornics?
366
+ # Context: The Japanese electronics industry is the lagest in the world.
367
+ # Answer: Japan
368
+ #
369
+ # In this case, the annotator chose "Japan" as a character sub-span of
370
+ # the word "Japanese". Since our WordPiece tokenizer does not split
371
+ # "Japanese", we just use "Japanese" as the annotation. This is fairly rare
372
+ # in SQuAD, but does happen.
373
+ tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
374
+
375
+ for new_start in range(input_start, input_end + 1):
376
+ for new_end in range(input_end, new_start - 1, -1):
377
+ text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
378
+ if text_span == tok_answer_text:
379
+ return (new_start, new_end)
380
+
381
+ return (input_start, input_end)
382
+
383
+
384
+ def _check_is_max_context(doc_spans, cur_span_index, position):
385
+ """Check if this is the 'max context' doc span for the token."""
386
+
387
+ # Because of the sliding window approach taken to scoring documents, a single
388
+ # token can appear in multiple documents. E.g.
389
+ # Doc: the man went to the store and bought a gallon of milk
390
+ # Span A: the man went to the
391
+ # Span B: to the store and bought
392
+ # Span C: and bought a gallon of
393
+ # ...
394
+ #
395
+ # Now the word 'bought' will have two scores from spans B and C. We only
396
+ # want to consider the score with "maximum context", which we define as
397
+ # the *minimum* of its left and right context (the *sum* of left and
398
+ # right context will always be the same, of course).
399
+ #
400
+ # In the example the maximum context for 'bought' would be span C since
401
+ # it has 1 left context and 3 right context, while span B has 4 left context
402
+ # and 0 right context.
403
+ best_score = None
404
+ best_span_index = None
405
+ for (span_index, doc_span) in enumerate(doc_spans):
406
+ end = doc_span.start + doc_span.length - 1
407
+ if position < doc_span.start:
408
+ continue
409
+ if position > end:
410
+ continue
411
+ num_left_context = position - doc_span.start
412
+ num_right_context = end - position
413
+ score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
414
+ if best_score is None or score > best_score:
415
+ best_score = score
416
+ best_span_index = span_index
417
+
418
+ return cur_span_index == best_span_index
419
+
420
+
421
+ RawResult = collections.namedtuple("RawResult",
422
+ ["unique_id", "start_logits", "end_logits"])
423
+
424
+
425
+ def get_answers(examples, features, results, args):
426
+ predictions = collections.defaultdict(list) #it is possible that one example corresponds to multiple features
427
+ Prediction = collections.namedtuple('Prediction', ['text', 'start_logit', 'end_logit'])
428
+
429
+ if args.version_2_with_negative:
430
+ null_vals = collections.defaultdict(lambda: (float("inf"),0,0))
431
+ for ex, feat, result in match_results(examples, features, results):
432
+ start_indices = _get_best_indices(result.start_logits, args.n_best_size)
433
+ end_indices = _get_best_indices(result.end_logits, args.n_best_size)
434
+ prelim_predictions = get_valid_prelim_predictions(start_indices, end_indices, feat, result, args)
435
+ prelim_predictions = sorted(
436
+ prelim_predictions,
437
+ key=lambda x: (x.start_logit + x.end_logit),
438
+ reverse=True)
439
+ if args.version_2_with_negative:
440
+ score = result.start_logits[0] + result.end_logits[0]
441
+ if score < null_vals[ex.qas_id][0]:
442
+ null_vals[ex.qas_id] = (score, result.start_logits[0], result.end_logits[0])
443
+
444
+ curr_predictions = []
445
+ seen_predictions = []
446
+ for pred in prelim_predictions:
447
+ if len(curr_predictions) == args.n_best_size:
448
+ break
449
+ if pred.start_index > 0: # this is a non-null prediction TODO: this probably is irrelevant
450
+ final_text = get_answer_text(ex, feat, pred, args)
451
+ if final_text in seen_predictions:
452
+ continue
453
+ else:
454
+ final_text = ""
455
+
456
+ seen_predictions.append(final_text)
457
+ curr_predictions.append(Prediction(final_text, pred.start_logit, pred.end_logit))
458
+ predictions[ex.qas_id] += curr_predictions
459
+
460
+ #Add empty prediction
461
+ if args.version_2_with_negative:
462
+ for qas_id in predictions.keys():
463
+ predictions[qas_id].append(Prediction('',
464
+ null_vals[ex.qas_id][1],
465
+ null_vals[ex.qas_id][2]))
466
+
467
+
468
+ nbest_answers = collections.defaultdict(list)
469
+ answers = {}
470
+ for qas_id, preds in predictions.items():
471
+ nbest = sorted(
472
+ preds,
473
+ key=lambda x: (x.start_logit + x.end_logit),
474
+ reverse=True)[:args.n_best_size]
475
+
476
+ # In very rare edge cases we could only have single null prediction.
477
+ # So we just create a nonce prediction in this case to avoid failure.
478
+ if not nbest:
479
+ nbest.append(Prediction(text="empty", start_logit=0.0, end_logit=0.0))
480
+
481
+ total_scores = []
482
+ best_non_null_entry = None
483
+ for entry in nbest:
484
+ total_scores.append(entry.start_logit + entry.end_logit)
485
+ if not best_non_null_entry and entry.text:
486
+ best_non_null_entry = entry
487
+ probs = _compute_softmax(total_scores)
488
+ for (i, entry) in enumerate(nbest):
489
+ output = collections.OrderedDict()
490
+ output["text"] = entry.text
491
+ output["probability"] = probs[i]
492
+ output["start_logit"] = entry.start_logit
493
+ output["end_logit"] = entry.end_logit
494
+ nbest_answers[qas_id].append(output)
495
+ if args.version_2_with_negative:
496
+ score_diff = null_vals[qas_id][0] - best_non_null_entry.start_logit - best_non_null_entry.end_logit
497
+ if score_diff > args.null_score_diff_threshold:
498
+ answers[qas_id] = ""
499
+ else:
500
+ answers[qas_id] = best_non_null_entry.text
501
+ else:
502
+ answers[qas_id] = nbest_answers[qas_id][0]['text']
503
+
504
+ return answers, nbest_answers
505
+
506
+ def get_answer_text(example, feature, pred, args):
507
+ tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
508
+ orig_doc_start = feature.token_to_orig_map[pred.start_index]
509
+ orig_doc_end = feature.token_to_orig_map[pred.end_index]
510
+ orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
511
+ tok_text = " ".join(tok_tokens)
512
+
513
+ # De-tokenize WordPieces that have been split off.
514
+ tok_text = tok_text.replace(" ##", "")
515
+ tok_text = tok_text.replace("##", "")
516
+
517
+ # Clean whitespace
518
+ tok_text = tok_text.strip()
519
+ tok_text = " ".join(tok_text.split())
520
+ orig_text = " ".join(orig_tokens)
521
+
522
+ final_text = get_final_text(tok_text, orig_text, args.do_lower_case, args.verbose_logging)
523
+ return final_text
524
+
525
+ def get_valid_prelim_predictions(start_indices, end_indices, feature, result, args):
526
+
527
+ _PrelimPrediction = collections.namedtuple(
528
+ "PrelimPrediction",
529
+ ["start_index", "end_index", "start_logit", "end_logit"])
530
+ prelim_predictions = []
531
+ for start_index in start_indices:
532
+ for end_index in end_indices:
533
+ if start_index >= len(feature.tokens):
534
+ continue
535
+ if end_index >= len(feature.tokens):
536
+ continue
537
+ if start_index not in feature.token_to_orig_map:
538
+ continue
539
+ if end_index not in feature.token_to_orig_map:
540
+ continue
541
+ if not feature.token_is_max_context.get(start_index, False):
542
+ continue
543
+ if end_index < start_index:
544
+ continue
545
+ length = end_index - start_index + 1
546
+ if length > args.max_answer_length:
547
+ continue
548
+ prelim_predictions.append(
549
+ _PrelimPrediction(
550
+ start_index=start_index,
551
+ end_index=end_index,
552
+ start_logit=result.start_logits[start_index],
553
+ end_logit=result.end_logits[end_index]))
554
+ return prelim_predictions
555
+
556
+ def match_results(examples, features, results):
557
+ unique_f_ids = set([f.unique_id for f in features])
558
+ unique_r_ids = set([r.unique_id for r in results])
559
+ matching_ids = unique_f_ids & unique_r_ids
560
+ features = [f for f in features if f.unique_id in matching_ids]
561
+ results = [r for r in results if r.unique_id in matching_ids]
562
+ features.sort(key=lambda x: x.unique_id)
563
+ results.sort(key=lambda x: x.unique_id)
564
+
565
+ for f, r in zip(features, results): #original code assumes strict ordering of examples. TODO: rewrite this
566
+ yield examples[f.example_index], f, r
567
+
568
+ def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
569
+ """Project the tokenized prediction back to the original text."""
570
+
571
+ # When we created the data, we kept track of the alignment between original
572
+ # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
573
+ # now `orig_text` contains the span of our original text corresponding to the
574
+ # span that we predicted.
575
+ #
576
+ # However, `orig_text` may contain extra characters that we don't want in
577
+ # our prediction.
578
+ #
579
+ # For example, let's say:
580
+ # pred_text = steve smith
581
+ # orig_text = Steve Smith's
582
+ #
583
+ # We don't want to return `orig_text` because it contains the extra "'s".
584
+ #
585
+ # We don't want to return `pred_text` because it's already been normalized
586
+ # (the SQuAD eval script also does punctuation stripping/lower casing but
587
+ # our tokenizer does additional normalization like stripping accent
588
+ # characters).
589
+ #
590
+ # What we really want to return is "Steve Smith".
591
+ #
592
+ # Therefore, we have to apply a semi-complicated alignment heruistic between
593
+ # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
594
+ # can fail in certain cases in which case we just return `orig_text`.
595
+
596
+ def _strip_spaces(text):
597
+ ns_chars = []
598
+ ns_to_s_map = collections.OrderedDict()
599
+ for (i, c) in enumerate(text):
600
+ if c == " ":
601
+ continue
602
+ ns_to_s_map[len(ns_chars)] = i
603
+ ns_chars.append(c)
604
+ ns_text = "".join(ns_chars)
605
+ return (ns_text, ns_to_s_map)
606
+
607
+ # We first tokenize `orig_text`, strip whitespace from the result
608
+ # and `pred_text`, and check if they are the same length. If they are
609
+ # NOT the same length, the heuristic has failed. If they are the same
610
+ # length, we assume the characters are one-to-one aligned.
611
+
612
+ tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
613
+
614
+ tok_text = " ".join(tokenizer.tokenize(orig_text))
615
+
616
+ start_position = tok_text.find(pred_text)
617
+ if start_position == -1:
618
+ if verbose_logging:
619
+ logger.info(
620
+ "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
621
+ return orig_text
622
+ end_position = start_position + len(pred_text) - 1
623
+
624
+ (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
625
+ (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
626
+
627
+ if len(orig_ns_text) != len(tok_ns_text):
628
+ if verbose_logging:
629
+ logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
630
+ orig_ns_text, tok_ns_text)
631
+ return orig_text
632
+
633
+ # We then project the characters in `pred_text` back to `orig_text` using
634
+ # the character-to-character alignment.
635
+ tok_s_to_ns_map = {}
636
+ for (i, tok_index) in tok_ns_to_s_map.items():
637
+ tok_s_to_ns_map[tok_index] = i
638
+
639
+ orig_start_position = None
640
+ if start_position in tok_s_to_ns_map:
641
+ ns_start_position = tok_s_to_ns_map[start_position]
642
+ if ns_start_position in orig_ns_to_s_map:
643
+ orig_start_position = orig_ns_to_s_map[ns_start_position]
644
+
645
+ if orig_start_position is None:
646
+ if verbose_logging:
647
+ logger.info("Couldn't map start position")
648
+ return orig_text
649
+
650
+ orig_end_position = None
651
+ if end_position in tok_s_to_ns_map:
652
+ ns_end_position = tok_s_to_ns_map[end_position]
653
+ if ns_end_position in orig_ns_to_s_map:
654
+ orig_end_position = orig_ns_to_s_map[ns_end_position]
655
+
656
+ if orig_end_position is None:
657
+ if verbose_logging:
658
+ logger.info("Couldn't map end position")
659
+ return orig_text
660
+
661
+ output_text = orig_text[orig_start_position:(orig_end_position + 1)]
662
+ return output_text
663
+
664
+
665
+ def _get_best_indices(logits, n_best_size):
666
+ """Get the n-best logits from a list."""
667
+ index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
668
+
669
+ best_indices = []
670
+ for i in range(len(index_and_score)):
671
+ if i >= n_best_size:
672
+ break
673
+ best_indices.append(index_and_score[i][0])
674
+ return best_indices
675
+
676
+
677
+ def _compute_softmax(scores):
678
+ """Compute softmax probability over raw logits."""
679
+ if not scores:
680
+ return []
681
+
682
+ max_score = None
683
+ for score in scores:
684
+ if max_score is None or score > max_score:
685
+ max_score = score
686
+
687
+ exp_scores = []
688
+ total_sum = 0.0
689
+ for score in scores:
690
+ x = math.exp(score - max_score)
691
+ exp_scores.append(x)
692
+ total_sum += x
693
+
694
+ probs = []
695
+ for score in exp_scores:
696
+ probs.append(score / total_sum)
697
+ return probs
698
+
699
+
700
+
701
+ from apex.multi_tensor_apply import multi_tensor_applier
702
+ class GradientClipper:
703
+ """
704
+ Clips gradient norm of an iterable of parameters.
705
+ """
706
+ def __init__(self, max_grad_norm):
707
+ self.max_norm = max_grad_norm
708
+ if multi_tensor_applier.available:
709
+ import amp_C
710
+ self._overflow_buf = torch.cuda.IntTensor([0])
711
+ self.multi_tensor_l2norm = amp_C.multi_tensor_l2norm
712
+ self.multi_tensor_scale = amp_C.multi_tensor_scale
713
+ else:
714
+ raise RuntimeError('Gradient clipping requires cuda extensions')
715
+
716
+ def step(self, parameters):
717
+ l = [p.grad for p in parameters if p.grad is not None]
718
+ total_norm, _ = multi_tensor_applier(self.multi_tensor_l2norm, self._overflow_buf, [l], False)
719
+ total_norm = total_norm.item()
720
+ if (total_norm == float('inf')): return
721
+ clip_coef = self.max_norm / (total_norm + 1e-6)
722
+ if clip_coef < 1:
723
+ multi_tensor_applier(self.multi_tensor_scale, self._overflow_buf, [l, l], clip_coef)
724
+
725
+
726
+ def main():
727
+ parser = argparse.ArgumentParser()
728
+
729
+ ## Required parameters
730
+ parser.add_argument("--bert_model", default=None, type=str, required=True,
731
+ help="Bert pre-trained model selected in the list: bert-base-uncased, "
732
+ "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
733
+ "bert-base-multilingual-cased, bert-base-chinese.")
734
+ parser.add_argument("--output_dir", default=None, type=str, required=True,
735
+ help="The output directory where the model checkpoints and predictions will be written.")
736
+ parser.add_argument("--init_checkpoint",
737
+ default=None,
738
+ type=str,
739
+ required=True,
740
+ help="The checkpoint file from pretraining")
741
+
742
+ ## Other parameters
743
+ parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
744
+ parser.add_argument("--predict_file", default=None, type=str,
745
+ help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
746
+ parser.add_argument("--max_seq_length", default=384, type=int,
747
+ help="The maximum total input sequence length after WordPiece tokenization. Sequences "
748
+ "longer than this will be truncated, and sequences shorter than this will be padded.")
749
+ parser.add_argument("--doc_stride", default=128, type=int,
750
+ help="When splitting up a long document into chunks, how much stride to take between chunks.")
751
+ parser.add_argument("--max_query_length", default=64, type=int,
752
+ help="The maximum number of tokens for the question. Questions longer than this will "
753
+ "be truncated to this length.")
754
+ parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
755
+ parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
756
+ parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
757
+ parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
758
+ parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
759
+ parser.add_argument("--num_train_epochs", default=3.0, type=float,
760
+ help="Total number of training epochs to perform.")
761
+ parser.add_argument("--max_steps", default=-1.0, type=float,
762
+ help="Total number of training steps to perform.")
763
+ parser.add_argument("--warmup_proportion", default=0.1, type=float,
764
+ help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
765
+ "of training.")
766
+ parser.add_argument("--n_best_size", default=20, type=int,
767
+ help="The total number of n-best predictions to generate in the nbest_predictions.json "
768
+ "output file.")
769
+ parser.add_argument("--max_answer_length", default=30, type=int,
770
+ help="The maximum length of an answer that can be generated. This is needed because the start "
771
+ "and end predictions are not conditioned on one another.")
772
+ parser.add_argument("--verbose_logging", action='store_true',
773
+ help="If true, all of the warnings related to data processing will be printed. "
774
+ "A number of warnings are expected for a normal SQuAD evaluation.")
775
+ parser.add_argument("--no_cuda",
776
+ action='store_true',
777
+ help="Whether not to use CUDA when available")
778
+ parser.add_argument('--seed',
779
+ type=int,
780
+ default=42,
781
+ help="random seed for initialization")
782
+ parser.add_argument('--gradient_accumulation_steps',
783
+ type=int,
784
+ default=1,
785
+ help="Number of updates steps to accumulate before performing a backward/update pass.")
786
+ parser.add_argument("--do_lower_case",
787
+ action='store_true',
788
+ help="Whether to lower case the input text. True for uncased models, False for cased models.")
789
+ parser.add_argument("--local_rank",
790
+ type=int,
791
+ default=os.getenv('LOCAL_RANK', -1),
792
+ help="local_rank for distributed training on gpus")
793
+ parser.add_argument('--fp16',
794
+ default=False,
795
+ action='store_true',
796
+ help="Mixed precision training")
797
+ parser.add_argument('--amp',
798
+ default=False,
799
+ action='store_true',
800
+ help="Mixed precision training")
801
+ parser.add_argument('--loss_scale',
802
+ type=float, default=0,
803
+ help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
804
+ "0 (default value): dynamic loss scaling.\n"
805
+ "Positive power of 2: static loss scaling value.\n")
806
+ parser.add_argument('--version_2_with_negative',
807
+ action='store_true',
808
+ help='If true, the SQuAD examples contain some that do not have an answer.')
809
+ parser.add_argument('--null_score_diff_threshold',
810
+ type=float, default=0.0,
811
+ help="If null_score - best_non_null is greater than the threshold predict null.")
812
+ parser.add_argument('--vocab_file',
813
+ type=str, default=None, required=True,
814
+ help="Vocabulary mapping/file BERT was pretrainined on")
815
+ parser.add_argument("--config_file",
816
+ default=None,
817
+ type=str,
818
+ required=True,
819
+ help="The BERT model config")
820
+ parser.add_argument('--log_freq',
821
+ type=int, default=50,
822
+ help='frequency of logging loss.')
823
+ parser.add_argument('--json-summary', type=str, default="results/dllogger.json",
824
+ help='If provided, the json summary will be written to'
825
+ 'the specified file.')
826
+ parser.add_argument("--eval_script",
827
+ help="Script to evaluate squad predictions",
828
+ default="evaluate.py",
829
+ type=str)
830
+ parser.add_argument("--do_eval",
831
+ action='store_true',
832
+ help="Whether to use evaluate accuracy of predictions")
833
+ parser.add_argument("--use_env",
834
+ action='store_true',
835
+ help="Whether to read local rank from ENVVAR")
836
+ parser.add_argument('--skip_checkpoint',
837
+ default=False,
838
+ action='store_true',
839
+ help="Whether to save checkpoints")
840
+ parser.add_argument('--disable-progress-bar',
841
+ default=False,
842
+ action='store_true',
843
+ help='Disable tqdm progress bar')
844
+ parser.add_argument("--skip_cache",
845
+ default=False,
846
+ action='store_true',
847
+ help="Whether to cache train features")
848
+ parser.add_argument("--cache_dir",
849
+ default=None,
850
+ type=str,
851
+ help="Location to cache train feaures. Will default to the dataset directory")
852
+
853
+ args = parser.parse_args()
854
+ args.fp16 = args.fp16 or args.amp
855
+
856
+ if args.local_rank == -1 or args.no_cuda:
857
+ device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
858
+ n_gpu = torch.cuda.device_count()
859
+ else:
860
+ torch.cuda.set_device(args.local_rank)
861
+ device = torch.device("cuda", args.local_rank)
862
+ # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
863
+ torch.distributed.init_process_group(backend='nccl', init_method='env://')
864
+ n_gpu = 1
865
+
866
+ if is_main_process():
867
+ dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE,
868
+ filename=args.json_summary),
869
+ dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step)])
870
+ else:
871
+ dllogger.init(backends=[])
872
+
873
+ print("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
874
+ device, n_gpu, bool(args.local_rank != -1), args.fp16))
875
+
876
+ dllogger.log(step="PARAMETER", data={"Config": [str(args)]})
877
+
878
+ if args.gradient_accumulation_steps < 1:
879
+ raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
880
+ args.gradient_accumulation_steps))
881
+
882
+ args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
883
+
884
+ random.seed(args.seed)
885
+ np.random.seed(args.seed)
886
+ torch.manual_seed(args.seed)
887
+ dllogger.log(step="PARAMETER", data={"SEED": args.seed})
888
+
889
+ if n_gpu > 0:
890
+ torch.cuda.manual_seed_all(args.seed)
891
+
892
+ if not args.do_train and not args.do_predict:
893
+ raise ValueError("At least one of `do_train` or `do_predict` must be True.")
894
+
895
+ if args.do_train:
896
+ if not args.train_file:
897
+ raise ValueError(
898
+ "If `do_train` is True, then `train_file` must be specified.")
899
+ if args.do_predict:
900
+ if not args.predict_file:
901
+ raise ValueError(
902
+ "If `do_predict` is True, then `predict_file` must be specified.")
903
+
904
+ if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and os.listdir(args.output_dir)!=['logfile.txt']:
905
+ print("WARNING: Output directory {} already exists and is not empty.".format(args.output_dir), os.listdir(args.output_dir))
906
+ if not os.path.exists(args.output_dir) and is_main_process():
907
+ os.makedirs(args.output_dir)
908
+
909
+ tokenizer = BertTokenizer(args.vocab_file, do_lower_case=args.do_lower_case, max_len=512) # for bert large
910
+ # tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
911
+
912
+ train_examples = None
913
+ num_train_optimization_steps = None
914
+ if args.do_train:
915
+ train_examples = read_squad_examples(
916
+ input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
917
+ num_train_optimization_steps = int(
918
+ len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
919
+ if args.local_rank != -1:
920
+ num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
921
+
922
+ # Prepare model
923
+ config = modeling.BertConfig.from_json_file(args.config_file)
924
+ # Padding for divisibility by 8
925
+ if config.vocab_size % 8 != 0:
926
+ config.vocab_size += 8 - (config.vocab_size % 8)
927
+
928
+ modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
929
+ model = modeling.BertForQuestionAnswering(config)
930
+ # model = modeling.BertForQuestionAnswering.from_pretrained(args.bert_model,
931
+ # cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)))
932
+ dllogger.log(step="PARAMETER", data={"loading_checkpoint": True})
933
+ model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu')["model"], strict=False)
934
+ dllogger.log(step="PARAMETER", data={"loaded_checkpoint": True})
935
+ model.to(device)
936
+ num_weights = sum([p.numel() for p in model.parameters() if p.requires_grad])
937
+ dllogger.log(step="PARAMETER", data={"model_weights_num":num_weights})
938
+
939
+ # Prepare optimizer
940
+ param_optimizer = list(model.named_parameters())
941
+
942
+ # hack to remove pooler, which is not used
943
+ # thus it produce None grad that break apex
944
+ param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
945
+
946
+ no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
947
+ optimizer_grouped_parameters = [
948
+ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
949
+ {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
950
+ ]
951
+ if args.do_train:
952
+ if args.fp16:
953
+ try:
954
+ from apex.optimizers import FusedAdam
955
+ except ImportError:
956
+ raise ImportError(
957
+ "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
958
+ optimizer = FusedAdam(optimizer_grouped_parameters,
959
+ lr=args.learning_rate,
960
+ bias_correction=False)
961
+
962
+ if args.loss_scale == 0:
963
+ model, optimizer = amp.initialize(model, optimizer, opt_level="O2", keep_batchnorm_fp32=False,
964
+ loss_scale="dynamic")
965
+ else:
966
+ model, optimizer = amp.initialize(model, optimizer, opt_level="O2", keep_batchnorm_fp32=False, loss_scale=args.loss_scale)
967
+ if args.do_train:
968
+ scheduler = LinearWarmUpScheduler(optimizer, warmup=args.warmup_proportion, total_steps=num_train_optimization_steps)
969
+
970
+ else:
971
+ optimizer = BertAdam(optimizer_grouped_parameters,
972
+ lr=args.learning_rate,
973
+ warmup=args.warmup_proportion,
974
+ t_total=num_train_optimization_steps)
975
+
976
+ if args.local_rank != -1:
977
+ try:
978
+ from apex.parallel import DistributedDataParallel as DDP
979
+ except ImportError:
980
+ raise ImportError(
981
+ "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
982
+
983
+ model = DDP(model)
984
+ elif n_gpu > 1:
985
+ model = torch.nn.DataParallel(model)
986
+
987
+ global_step = 0
988
+ if args.do_train:
989
+
990
+ if args.cache_dir is None:
991
+ cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}'.format(
992
+ list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride),
993
+ str(args.max_query_length))
994
+ else:
995
+ cached_train_features_file = args.cache_dir.strip('/') + '/' + args.train_file.split('/')[-1] + '_{0}_{1}_{2}_{3}'.format(
996
+ list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride),
997
+ str(args.max_query_length))
998
+
999
+ train_features = None
1000
+ try:
1001
+ with open(cached_train_features_file, "rb") as reader:
1002
+ train_features = pickle.load(reader)
1003
+ except:
1004
+ train_features = convert_examples_to_features(
1005
+ examples=train_examples,
1006
+ tokenizer=tokenizer,
1007
+ max_seq_length=args.max_seq_length,
1008
+ doc_stride=args.doc_stride,
1009
+ max_query_length=args.max_query_length,
1010
+ is_training=True)
1011
+
1012
+ if not args.skip_cache and is_main_process():
1013
+ dllogger.log(step="PARAMETER", data={"Cached_train features_file": cached_train_features_file})
1014
+ with open(cached_train_features_file, "wb") as writer:
1015
+ pickle.dump(train_features, writer)
1016
+
1017
+ dllogger.log(step="PARAMETER", data={"train_start": True})
1018
+ dllogger.log(step="PARAMETER", data={"training_samples": len(train_examples)})
1019
+ dllogger.log(step="PARAMETER", data={"training_features": len(train_features)})
1020
+ dllogger.log(step="PARAMETER", data={"train_batch_size":args.train_batch_size})
1021
+ dllogger.log(step="PARAMETER", data={"steps":num_train_optimization_steps})
1022
+ all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
1023
+ all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
1024
+ all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
1025
+ all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
1026
+ all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
1027
+ train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
1028
+ all_start_positions, all_end_positions)
1029
+ if args.local_rank == -1:
1030
+ train_sampler = RandomSampler(train_data)
1031
+ else:
1032
+ train_sampler = DistributedSampler(train_data)
1033
+ train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size * n_gpu)
1034
+
1035
+ model.train()
1036
+ gradClipper = GradientClipper(max_grad_norm=1.0)
1037
+ final_loss = None
1038
+ train_start = time.time()
1039
+ for epoch in range(int(args.num_train_epochs)):
1040
+ train_iter = tqdm(train_dataloader, desc="Iteration", disable=args.disable_progress_bar) if is_main_process() else train_dataloader
1041
+ for step, batch in enumerate(train_iter):
1042
+ # Terminate early for benchmarking
1043
+
1044
+ if args.max_steps > 0 and global_step > args.max_steps:
1045
+ break
1046
+
1047
+ if n_gpu == 1:
1048
+ batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
1049
+ input_ids, input_mask, segment_ids, start_positions, end_positions = batch
1050
+ start_logits, end_logits = model(input_ids, segment_ids, input_mask)
1051
+ # If we are on multi-GPU, split add a dimension
1052
+ if len(start_positions.size()) > 1:
1053
+ start_positions = start_positions.squeeze(-1)
1054
+ if len(end_positions.size()) > 1:
1055
+ end_positions = end_positions.squeeze(-1)
1056
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1057
+ ignored_index = start_logits.size(1)
1058
+ start_positions.clamp_(0, ignored_index)
1059
+ end_positions.clamp_(0, ignored_index)
1060
+
1061
+ loss_fct = torch.nn.CrossEntropyLoss(ignore_index=ignored_index)
1062
+ start_loss = loss_fct(start_logits, start_positions)
1063
+ end_loss = loss_fct(end_logits, end_positions)
1064
+ loss = (start_loss + end_loss) / 2
1065
+ if n_gpu > 1:
1066
+ loss = loss.mean() # mean() to average on multi-gpu.
1067
+ if args.gradient_accumulation_steps > 1:
1068
+ loss = loss / args.gradient_accumulation_steps
1069
+ if args.fp16:
1070
+ with amp.scale_loss(loss, optimizer) as scaled_loss:
1071
+ scaled_loss.backward()
1072
+ else:
1073
+ loss.backward()
1074
+
1075
+ # gradient clipping
1076
+ gradClipper.step(amp.master_params(optimizer))
1077
+
1078
+ if (step + 1) % args.gradient_accumulation_steps == 0:
1079
+ if args.fp16 :
1080
+ # modify learning rate with special warm up for BERT which FusedAdam doesn't do
1081
+ scheduler.step()
1082
+ optimizer.step()
1083
+ optimizer.zero_grad()
1084
+ global_step += 1
1085
+
1086
+ final_loss = loss.item()
1087
+ if step % args.log_freq == 0:
1088
+ dllogger.log(step=(epoch, global_step,), data={"step_loss": final_loss,
1089
+ "learning_rate": optimizer.param_groups[0]['lr']})
1090
+
1091
+ time_to_train = time.time() - train_start
1092
+
1093
+ if args.do_train and is_main_process() and not args.skip_checkpoint:
1094
+ # Save a trained model and the associated configuration
1095
+ model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
1096
+ output_model_file = os.path.join(args.output_dir, modeling.WEIGHTS_NAME)
1097
+ torch.save({"model":model_to_save.state_dict()}, output_model_file)
1098
+ output_config_file = os.path.join(args.output_dir, modeling.CONFIG_NAME)
1099
+ with open(output_config_file, 'w') as f:
1100
+ f.write(model_to_save.config.to_json_string())
1101
+
1102
+ if args.do_predict and (args.local_rank == -1 or is_main_process()):
1103
+
1104
+ if not args.do_train and args.fp16:
1105
+ model.half()
1106
+
1107
+ eval_examples = read_squad_examples(
1108
+ input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
1109
+ eval_features = convert_examples_to_features(
1110
+ examples=eval_examples,
1111
+ tokenizer=tokenizer,
1112
+ max_seq_length=args.max_seq_length,
1113
+ doc_stride=args.doc_stride,
1114
+ max_query_length=args.max_query_length,
1115
+ is_training=False)
1116
+
1117
+ dllogger.log(step="PARAMETER", data={"infer_start": True})
1118
+ dllogger.log(step="PARAMETER", data={"eval_samples": len(eval_examples)})
1119
+ dllogger.log(step="PARAMETER", data={"eval_features": len(eval_features)})
1120
+ dllogger.log(step="PARAMETER", data={"predict_batch_size": args.predict_batch_size})
1121
+
1122
+ all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
1123
+ all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
1124
+ all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
1125
+ all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
1126
+ eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
1127
+ # Run prediction for full data
1128
+ eval_sampler = SequentialSampler(eval_data)
1129
+ eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
1130
+
1131
+ infer_start = time.time()
1132
+ model.eval()
1133
+ all_results = []
1134
+ dllogger.log(step="PARAMETER", data={"eval_start": True})
1135
+ for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.disable_progress_bar):
1136
+ if len(all_results) % 1000 == 0:
1137
+ dllogger.log(step="PARAMETER", data={"sample_number": len(all_results)})
1138
+ input_ids = input_ids.to(device)
1139
+ input_mask = input_mask.to(device)
1140
+ segment_ids = segment_ids.to(device)
1141
+ with torch.no_grad():
1142
+ batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
1143
+ for i, example_index in enumerate(example_indices):
1144
+ start_logits = batch_start_logits[i].detach().cpu().tolist()
1145
+ end_logits = batch_end_logits[i].detach().cpu().tolist()
1146
+ eval_feature = eval_features[example_index.item()]
1147
+ unique_id = int(eval_feature.unique_id)
1148
+ all_results.append(RawResult(unique_id=unique_id,
1149
+ start_logits=start_logits,
1150
+ end_logits=end_logits))
1151
+
1152
+ time_to_infer = time.time() - infer_start
1153
+ output_prediction_file = os.path.join(args.output_dir, "predictions.json")
1154
+ output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
1155
+
1156
+ answers, nbest_answers = get_answers(eval_examples, eval_features, all_results, args)
1157
+ with open(output_prediction_file, "w") as f:
1158
+ f.write(json.dumps(answers, indent=4) + "\n")
1159
+ with open(output_nbest_file, "w") as f:
1160
+ f.write(json.dumps(nbest_answers, indent=4) + "\n")
1161
+
1162
+ # output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
1163
+ # write_predictions(eval_examples, eval_features, all_results,
1164
+ # args.n_best_size, args.max_answer_length,
1165
+ # args.do_lower_case, output_prediction_file,
1166
+ # output_nbest_file, output_null_log_odds_file, args.verbose_logging,
1167
+ # args.version_2_with_negative, args.null_score_diff_threshold)
1168
+
1169
+ if args.do_eval and is_main_process():
1170
+ import sys
1171
+ import subprocess
1172
+ eval_out = subprocess.check_output([sys.executable, args.eval_script,
1173
+ args.predict_file, args.output_dir + "/predictions.json"])
1174
+ scores = str(eval_out).strip()
1175
+ exact_match = float(scores.split(":")[1].split(",")[0])
1176
+ f1 = float(scores.split(":")[2].split("}")[0])
1177
+
1178
+ if args.do_train:
1179
+ gpu_count = n_gpu
1180
+ if torch.distributed.is_initialized():
1181
+ gpu_count = torch.distributed.get_world_size()
1182
+
1183
+ if args.max_steps == -1:
1184
+ dllogger.log(step=tuple(), data={"e2e_train_time": time_to_train,
1185
+ "training_sequences_per_second": len(train_features) * args.num_train_epochs / time_to_train,
1186
+ "final_loss": final_loss})
1187
+ else:
1188
+ dllogger.log(step=tuple(), data={"e2e_train_time": time_to_train,
1189
+ "training_sequences_per_second": args.train_batch_size * args.gradient_accumulation_steps \
1190
+ * args.max_steps * gpu_count / time_to_train,
1191
+ "final_loss": final_loss})
1192
+ if args.do_predict and is_main_process():
1193
+ dllogger.log(step=tuple(), data={"e2e_inference_time": time_to_infer,
1194
+ "inference_sequences_per_second": len(eval_features) / time_to_infer})
1195
+ if args.do_eval and is_main_process():
1196
+ dllogger.log(step=tuple(), data={"exact_match": exact_match, "F1": f1})
1197
+
1198
+ if __name__ == "__main__":
1199
+ main()
1200
+ dllogger.flush()
docker/intel_code/llama13b/Model-References/PyTorch/examples/gpu_migration/nlp/bert/run_swag.py ADDED
@@ -0,0 +1,570 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
3
+ # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """BERT finetuning runner."""
17
+
18
+ import argparse
19
+ import csv
20
+ import logging
21
+ import os
22
+ import random
23
+ import sys
24
+ from io import open
25
+
26
+ import numpy as np
27
+ import torch
28
+ from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
29
+ TensorDataset)
30
+ from torch.utils.data.distributed import DistributedSampler
31
+ from tqdm import tqdm, trange
32
+
33
+ from file_utils import PYTORCH_PRETRAINED_BERT_CACHE
34
+ from modeling import BertForMultipleChoice, BertConfig, WEIGHTS_NAME, CONFIG_NAME
35
+ from optimization import BertAdam, warmup_linear
36
+ from tokenization import BertTokenizer
37
+
38
+ torch._C._jit_set_profiling_mode(False)
39
+ torch._C._jit_set_profiling_executor(False)
40
+
41
+ logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
42
+ datefmt = '%m/%d/%Y %H:%M:%S',
43
+ level = logging.INFO)
44
+ logger = logging.getLogger(__name__)
45
+
46
+
47
+ class SwagExample(object):
48
+ """A single training/test example for the SWAG dataset."""
49
+ def __init__(self,
50
+ swag_id,
51
+ context_sentence,
52
+ start_ending,
53
+ ending_0,
54
+ ending_1,
55
+ ending_2,
56
+ ending_3,
57
+ label = None):
58
+ self.swag_id = swag_id
59
+ self.context_sentence = context_sentence
60
+ self.start_ending = start_ending
61
+ self.endings = [
62
+ ending_0,
63
+ ending_1,
64
+ ending_2,
65
+ ending_3,
66
+ ]
67
+ self.label = label
68
+
69
+ def __str__(self):
70
+ return self.__repr__()
71
+
72
+ def __repr__(self):
73
+ l = [
74
+ "swag_id: {}".format(self.swag_id),
75
+ "context_sentence: {}".format(self.context_sentence),
76
+ "start_ending: {}".format(self.start_ending),
77
+ "ending_0: {}".format(self.endings[0]),
78
+ "ending_1: {}".format(self.endings[1]),
79
+ "ending_2: {}".format(self.endings[2]),
80
+ "ending_3: {}".format(self.endings[3]),
81
+ ]
82
+
83
+ if self.label is not None:
84
+ l.append("label: {}".format(self.label))
85
+
86
+ return ", ".join(l)
87
+
88
+
89
+ class InputFeatures(object):
90
+ def __init__(self,
91
+ example_id,
92
+ choices_features,
93
+ label
94
+
95
+ ):
96
+ self.example_id = example_id
97
+ self.choices_features = [
98
+ {
99
+ 'input_ids': input_ids,
100
+ 'input_mask': input_mask,
101
+ 'segment_ids': segment_ids
102
+ }
103
+ for _, input_ids, input_mask, segment_ids in choices_features
104
+ ]
105
+ self.label = label
106
+
107
+
108
+ def read_swag_examples(input_file, is_training):
109
+ with open(input_file, 'r', encoding='utf-8') as f:
110
+ reader = csv.reader(f)
111
+ lines = []
112
+ for line in reader:
113
+ if sys.version_info[0] == 2:
114
+ line = list(unicode(cell, 'utf-8') for cell in line)
115
+ lines.append(line)
116
+
117
+ if is_training and lines[0][-1] != 'label':
118
+ raise ValueError(
119
+ "For training, the input file must contain a label column."
120
+ )
121
+
122
+ examples = [
123
+ SwagExample(
124
+ swag_id = line[2],
125
+ context_sentence = line[4],
126
+ start_ending = line[5], # in the swag dataset, the
127
+ # common beginning of each
128
+ # choice is stored in "sent2".
129
+ ending_0 = line[7],
130
+ ending_1 = line[8],
131
+ ending_2 = line[9],
132
+ ending_3 = line[10],
133
+ label = int(line[11]) if is_training else None
134
+ ) for line in lines[1:] # we skip the line with the column names
135
+ ]
136
+
137
+ return examples
138
+
139
+ def convert_examples_to_features(examples, tokenizer, max_seq_length,
140
+ is_training):
141
+ """Loads a data file into a list of `InputBatch`s."""
142
+
143
+ # Swag is a multiple choice task. To perform this task using Bert,
144
+ # we will use the formatting proposed in "Improving Language
145
+ # Understanding by Generative Pre-Training" and suggested by
146
+ # @jacobdevlin-google in this issue
147
+ # https://github.com/google-research/bert/issues/38.
148
+ #
149
+ # Each choice will correspond to a sample on which we run the
150
+ # inference. For a given Swag example, we will create the 4
151
+ # following inputs:
152
+ # - [CLS] context [SEP] choice_1 [SEP]
153
+ # - [CLS] context [SEP] choice_2 [SEP]
154
+ # - [CLS] context [SEP] choice_3 [SEP]
155
+ # - [CLS] context [SEP] choice_4 [SEP]
156
+ # The model will output a single value for each input. To get the
157
+ # final decision of the model, we will run a softmax over these 4
158
+ # outputs.
159
+ features = []
160
+ for example_index, example in enumerate(examples):
161
+ context_tokens = tokenizer.tokenize(example.context_sentence)
162
+ start_ending_tokens = tokenizer.tokenize(example.start_ending)
163
+
164
+ choices_features = []
165
+ for ending_index, ending in enumerate(example.endings):
166
+ # We create a copy of the context tokens in order to be
167
+ # able to shrink it according to ending_tokens
168
+ context_tokens_choice = context_tokens[:]
169
+ ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
170
+ # Modifies `context_tokens_choice` and `ending_tokens` in
171
+ # place so that the total length is less than the
172
+ # specified length. Account for [CLS], [SEP], [SEP] with
173
+ # "- 3"
174
+ _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)
175
+
176
+ tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
177
+ segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)
178
+
179
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
180
+ input_mask = [1] * len(input_ids)
181
+
182
+ # Zero-pad up to the sequence length.
183
+ padding = [0] * (max_seq_length - len(input_ids))
184
+ input_ids += padding
185
+ input_mask += padding
186
+ segment_ids += padding
187
+
188
+ assert len(input_ids) == max_seq_length
189
+ assert len(input_mask) == max_seq_length
190
+ assert len(segment_ids) == max_seq_length
191
+
192
+ choices_features.append((tokens, input_ids, input_mask, segment_ids))
193
+
194
+ label = example.label
195
+ if example_index < 5:
196
+ logger.info("*** Example ***")
197
+ logger.info("swag_id: {}".format(example.swag_id))
198
+ for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
199
+ logger.info("choice: {}".format(choice_idx))
200
+ logger.info("tokens: {}".format(' '.join(tokens)))
201
+ logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
202
+ logger.info("input_mask: {}".format(' '.join(map(str, input_mask))))
203
+ logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids))))
204
+ if is_training:
205
+ logger.info("label: {}".format(label))
206
+
207
+ features.append(
208
+ InputFeatures(
209
+ example_id = example.swag_id,
210
+ choices_features = choices_features,
211
+ label = label
212
+ )
213
+ )
214
+
215
+ return features
216
+
217
+ def _truncate_seq_pair(tokens_a, tokens_b, max_length):
218
+ """Truncates a sequence pair in place to the maximum length."""
219
+
220
+ # This is a simple heuristic which will always truncate the longer sequence
221
+ # one token at a time. This makes more sense than truncating an equal percent
222
+ # of tokens from each, since if one sequence is very short then each token
223
+ # that's truncated likely contains more information than a longer sequence.
224
+ while True:
225
+ total_length = len(tokens_a) + len(tokens_b)
226
+ if total_length <= max_length:
227
+ break
228
+ if len(tokens_a) > len(tokens_b):
229
+ tokens_a.pop()
230
+ else:
231
+ tokens_b.pop()
232
+
233
+ def accuracy(out, labels):
234
+ outputs = np.argmax(out, axis=1)
235
+ return np.sum(outputs == labels)
236
+
237
+ def select_field(features, field):
238
+ return [
239
+ [
240
+ choice[field]
241
+ for choice in feature.choices_features
242
+ ]
243
+ for feature in features
244
+ ]
245
+
246
+ def main():
247
+ parser = argparse.ArgumentParser()
248
+
249
+ ## Required parameters
250
+ parser.add_argument("--data_dir",
251
+ default=None,
252
+ type=str,
253
+ required=True,
254
+ help="The input data dir. Should contain the .csv files (or other data files) for the task.")
255
+ parser.add_argument("--bert_model", default=None, type=str, required=True,
256
+ help="Bert pre-trained model selected in the list: bert-base-uncased, "
257
+ "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
258
+ "bert-base-multilingual-cased, bert-base-chinese.")
259
+ parser.add_argument("--output_dir",
260
+ default=None,
261
+ type=str,
262
+ required=True,
263
+ help="The output directory where the model checkpoints will be written.")
264
+ parser.add_argument("--init_checkpoint",
265
+ default=None,
266
+ type=str,
267
+ required=True,
268
+ help="The checkpoint file from pretraining")
269
+
270
+ ## Other parameters
271
+ parser.add_argument("--max_seq_length",
272
+ default=128,
273
+ type=int,
274
+ help="The maximum total input sequence length after WordPiece tokenization. \n"
275
+ "Sequences longer than this will be truncated, and sequences shorter \n"
276
+ "than this will be padded.")
277
+ parser.add_argument("--do_train",
278
+ action='store_true',
279
+ help="Whether to run training.")
280
+ parser.add_argument("--do_eval",
281
+ action='store_true',
282
+ help="Whether to run eval on the dev set.")
283
+ parser.add_argument("--do_lower_case",
284
+ action='store_true',
285
+ help="Set this flag if you are using an uncased model.")
286
+ parser.add_argument("--train_batch_size",
287
+ default=32,
288
+ type=int,
289
+ help="Total batch size for training.")
290
+ parser.add_argument("--eval_batch_size",
291
+ default=8,
292
+ type=int,
293
+ help="Total batch size for eval.")
294
+ parser.add_argument("--learning_rate",
295
+ default=5e-5,
296
+ type=float,
297
+ help="The initial learning rate for Adam.")
298
+ parser.add_argument("--num_train_epochs",
299
+ default=3.0,
300
+ type=float,
301
+ help="Total number of training epochs to perform.")
302
+ parser.add_argument("--max_steps", default=-1.0, type=float,
303
+ help="Total number of training steps to perform.")
304
+ parser.add_argument("--warmup_proportion",
305
+ default=0.1,
306
+ type=float,
307
+ help="Proportion of training to perform linear learning rate warmup for. "
308
+ "E.g., 0.1 = 10%% of training.")
309
+ parser.add_argument("--no_cuda",
310
+ action='store_true',
311
+ help="Whether not to use CUDA when available")
312
+ parser.add_argument("--local_rank",
313
+ type=int,
314
+ default=-1,
315
+ help="local_rank for distributed training on gpus")
316
+ parser.add_argument('--seed',
317
+ type=int,
318
+ default=42,
319
+ help="random seed for initialization")
320
+ parser.add_argument('--gradient_accumulation_steps',
321
+ type=int,
322
+ default=1,
323
+ help="Number of updates steps to accumulate before performing a backward/update pass.")
324
+ parser.add_argument('--fp16',
325
+ default=False,
326
+ action='store_true',
327
+ help="Mixed precision training")
328
+ parser.add_argument('--amp',
329
+ default=False,
330
+ action='store_true',
331
+ help="Mixed precision training")
332
+ parser.add_argument('--loss_scale',
333
+ type=float, default=0,
334
+ help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
335
+ "0 (default value): dynamic loss scaling.\n"
336
+ "Positive power of 2: static loss scaling value.\n")
337
+
338
+ args = parser.parse_args()
339
+ args.fp16 = args.fp16 or args.amp
340
+
341
+ if args.local_rank == -1 or args.no_cuda:
342
+ device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
343
+ n_gpu = torch.cuda.device_count()
344
+ else:
345
+ torch.cuda.set_device(args.local_rank)
346
+ device = torch.device("cuda", args.local_rank)
347
+ n_gpu = 1
348
+ # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
349
+ torch.distributed.init_process_group(backend='nccl')
350
+ logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
351
+ device, n_gpu, bool(args.local_rank != -1), args.fp16))
352
+
353
+ if args.gradient_accumulation_steps < 1:
354
+ raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
355
+ args.gradient_accumulation_steps))
356
+
357
+ args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
358
+
359
+ random.seed(args.seed)
360
+ np.random.seed(args.seed)
361
+ torch.manual_seed(args.seed)
362
+ if n_gpu > 0:
363
+ torch.cuda.manual_seed_all(args.seed)
364
+
365
+ if not args.do_train and not args.do_eval:
366
+ raise ValueError("At least one of `do_train` or `do_eval` must be True.")
367
+
368
+ if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
369
+ print("WARNING: Output directory ({}) already exists and is not empty.".format(args.output_dir))
370
+ if not os.path.exists(args.output_dir):
371
+ os.makedirs(args.output_dir)
372
+
373
+ tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
374
+
375
+ train_examples = None
376
+ num_train_optimization_steps = None
377
+ if args.do_train:
378
+ train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True)
379
+ num_train_optimization_steps = int(
380
+ len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
381
+ if args.local_rank != -1:
382
+ num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
383
+
384
+ # Prepare model
385
+ model = BertForMultipleChoice.from_pretrained(args.bert_model,
386
+ cache_dir=os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank)),
387
+ num_choices=4)
388
+ model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'), strict=False)
389
+
390
+ if args.fp16:
391
+ model.half()
392
+ model.to(device)
393
+ if args.local_rank != -1:
394
+ try:
395
+ from apex.parallel import DistributedDataParallel as DDP
396
+ except ImportError:
397
+ raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
398
+
399
+ model = DDP(model)
400
+ elif n_gpu > 1:
401
+ model = torch.nn.DataParallel(model)
402
+
403
+ # Prepare optimizer
404
+ param_optimizer = list(model.named_parameters())
405
+
406
+ # hack to remove pooler, which is not used
407
+ # thus it produce None grad that break apex
408
+ param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
409
+
410
+ no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
411
+ optimizer_grouped_parameters = [
412
+ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
413
+ {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
414
+ ]
415
+ if args.fp16:
416
+ try:
417
+ from apex.contrib.optimizers import FP16_Optimizer
418
+ from apex.optimizers import FusedAdam
419
+ except ImportError:
420
+ raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
421
+
422
+ optimizer = FusedAdam(optimizer_grouped_parameters,
423
+ lr=args.learning_rate,
424
+ bias_correction=False,
425
+ max_grad_norm=1.0)
426
+ if args.loss_scale == 0:
427
+ optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
428
+ else:
429
+ optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
430
+ else:
431
+ optimizer = BertAdam(optimizer_grouped_parameters,
432
+ lr=args.learning_rate,
433
+ warmup=args.warmup_proportion,
434
+ t_total=num_train_optimization_steps)
435
+
436
+ global_step = 0
437
+ if args.do_train:
438
+ train_features = convert_examples_to_features(
439
+ train_examples, tokenizer, args.max_seq_length, True)
440
+ logger.info("***** Running training *****")
441
+ logger.info(" Num examples = %d", len(train_examples))
442
+ logger.info(" Batch size = %d", args.train_batch_size)
443
+ logger.info(" Num steps = %d", num_train_optimization_steps)
444
+ all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
445
+ all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
446
+ all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
447
+ all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
448
+ train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
449
+ if args.local_rank == -1:
450
+ train_sampler = RandomSampler(train_data)
451
+ else:
452
+ train_sampler = DistributedSampler(train_data)
453
+ train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
454
+
455
+ model.train()
456
+ for _ in trange(int(args.num_train_epochs), desc="Epoch"):
457
+ tr_loss = 0
458
+ nb_tr_examples, nb_tr_steps = 0, 0
459
+ for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
460
+ # Terminate early for benchmarking
461
+ if args.max_steps > 0 and global_step > args.max_steps:
462
+ break
463
+
464
+ batch = tuple(t.to(device) for t in batch)
465
+ input_ids, input_mask, segment_ids, label_ids = batch
466
+ loss = model(input_ids, segment_ids, input_mask, label_ids)
467
+ if n_gpu > 1:
468
+ loss = loss.mean() # mean() to average on multi-gpu.
469
+ if args.fp16 and args.loss_scale != 1.0:
470
+ # rescale loss for fp16 training
471
+ # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
472
+ loss = loss * args.loss_scale
473
+ if args.gradient_accumulation_steps > 1:
474
+ loss = loss / args.gradient_accumulation_steps
475
+ tr_loss += loss.item()
476
+ nb_tr_examples += input_ids.size(0)
477
+ nb_tr_steps += 1
478
+
479
+ if args.fp16:
480
+ optimizer.backward(loss)
481
+ else:
482
+ loss.backward()
483
+ if (step + 1) % args.gradient_accumulation_steps == 0:
484
+ if args.fp16:
485
+ # modify learning rate with special warm up BERT uses
486
+ # if args.fp16 is False, BertAdam is used that handles this automatically
487
+ lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
488
+ for param_group in optimizer.param_groups:
489
+ param_group['lr'] = lr_this_step
490
+ optimizer.step()
491
+ optimizer.zero_grad()
492
+ global_step += 1
493
+
494
+
495
+ if args.do_train:
496
+ # Save a trained model and the associated configuration
497
+ model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
498
+ output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
499
+ torch.save(model_to_save.state_dict(), output_model_file)
500
+ output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
501
+ with open(output_config_file, 'w') as f:
502
+ f.write(model_to_save.config.to_json_string())
503
+
504
+ # Load a trained model and config that you have fine-tuned
505
+ config = BertConfig(output_config_file)
506
+ model = BertForMultipleChoice(config, num_choices=4)
507
+ model.load_state_dict(torch.load(output_model_file))
508
+ else:
509
+ model = BertForMultipleChoice.from_pretrained(args.bert_model, num_choices=4)
510
+ model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'), strict=False)
511
+ model.to(device)
512
+
513
+
514
+ if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
515
+ eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True)
516
+ eval_features = convert_examples_to_features(
517
+ eval_examples, tokenizer, args.max_seq_length, True)
518
+ logger.info("***** Running evaluation *****")
519
+ logger.info(" Num examples = %d", len(eval_examples))
520
+ logger.info(" Batch size = %d", args.eval_batch_size)
521
+ all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
522
+ all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
523
+ all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
524
+ all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
525
+ eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
526
+ # Run prediction for full data
527
+ eval_sampler = SequentialSampler(eval_data)
528
+ eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
529
+
530
+ model.eval()
531
+ eval_loss, eval_accuracy = 0, 0
532
+ nb_eval_steps, nb_eval_examples = 0, 0
533
+ for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
534
+ input_ids = input_ids.to(device)
535
+ input_mask = input_mask.to(device)
536
+ segment_ids = segment_ids.to(device)
537
+ label_ids = label_ids.to(device)
538
+
539
+ with torch.no_grad():
540
+ tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
541
+ logits = model(input_ids, segment_ids, input_mask)
542
+
543
+ logits = logits.detach().cpu().numpy()
544
+ label_ids = label_ids.to('cpu').numpy()
545
+ tmp_eval_accuracy = accuracy(logits, label_ids)
546
+
547
+ eval_loss += tmp_eval_loss.mean().item()
548
+ eval_accuracy += tmp_eval_accuracy
549
+
550
+ nb_eval_examples += input_ids.size(0)
551
+ nb_eval_steps += 1
552
+
553
+ eval_loss = eval_loss / nb_eval_steps
554
+ eval_accuracy = eval_accuracy / nb_eval_examples
555
+
556
+ result = {'eval_loss': eval_loss,
557
+ 'eval_accuracy': eval_accuracy,
558
+ 'global_step': global_step,
559
+ 'loss': tr_loss/nb_tr_steps}
560
+
561
+ output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
562
+ with open(output_eval_file, "w") as writer:
563
+ logger.info("***** Eval results *****")
564
+ for key in sorted(result.keys()):
565
+ logger.info(" %s = %s", key, str(result[key]))
566
+ writer.write("%s = %s\n" % (key, str(result[key])))
567
+
568
+
569
+ if __name__ == "__main__":
570
+ main()