Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/dataset/README.md +5 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/dataset/download_books.sh +2 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/dataset/download_ckpt.sh +8 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/dataset/download_vocab.sh +2 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/fp16_deprecated/loss_scaler.py +26 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/__init__.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/bert_model.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/distributed.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/enums.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/fused_bias_gelu.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/fused_layer_norm.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/fused_softmax.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/gpt_model.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/language_model.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/llama_model.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/module.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/rmsnorm.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/rotary_pos_embedding.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/t5_model.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/transformer.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/utils.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/biencoder_model.py +329 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/classification.py +102 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/distributed.py +231 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/enums.py +21 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/fused_bias_gelu.py +43 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/fused_layer_norm.py +119 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/fused_softmax.py +213 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/gpt_model.py +437 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/language_model.py +723 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/llama_model.py +280 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/module.py +206 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/realm_model.py +204 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/rmsnorm.py +49 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/rotary_pos_embedding.py +82 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/__init__.py +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/__pycache__/__init__.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/__pycache__/knn_monitor.cpython-310.pyc +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/classification.py +86 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/dino.py +290 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/esvit_swin_backbone.py +849 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/inpainting.py +152 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/knn_monitor.py +129 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/mit_backbone.py +420 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/swin_backbone.py +625 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/utils.py +27 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/vit_backbone.py +245 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/mpu/tests/__init__.py +0 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/mpu/tests/commons.py +70 -0
- docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/mpu/tests/test_cross_entropy.py +96 -0
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/dataset/README.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Run the scripts below to setup dataset
|
2 |
+
|
3 |
+
bash download_books.sh
|
4 |
+
|
5 |
+
bash download_vocab.sh
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/dataset/download_books.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
wget https://the-eye.eu/public/AI/pile_neox/data/BookCorpusDataset_text_document.bin
|
2 |
+
wget https://the-eye.eu/public/AI/pile_neox/data/BookCorpusDataset_text_document.idx
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/dataset/download_ckpt.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mkdir -p checkpoints/gpt2_345m
|
2 |
+
|
3 |
+
cd checkpoints/gpt2_345m
|
4 |
+
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip
|
5 |
+
unzip megatron_lm_345m_v0.0.zip
|
6 |
+
rm megatron_lm_345m_v0.0.zip
|
7 |
+
cd ../..
|
8 |
+
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/dataset/download_vocab.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json
|
2 |
+
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/fp16_deprecated/loss_scaler.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
|
3 |
+
"""For backward compatibility, we need the class definitions to deserialize."""
|
4 |
+
|
5 |
+
class LossScaler:
|
6 |
+
def __init__(self, scale=1):
|
7 |
+
self.cur_scale = scale
|
8 |
+
|
9 |
+
class DynamicLossScaler:
|
10 |
+
def __init__(self,
|
11 |
+
init_scale=2**32,
|
12 |
+
scale_factor=2.,
|
13 |
+
scale_window=1000,
|
14 |
+
min_scale=1,
|
15 |
+
delayed_shift=1,
|
16 |
+
consecutive_hysteresis=False):
|
17 |
+
self.cur_scale = init_scale
|
18 |
+
self.cur_iter = 0
|
19 |
+
self.last_overflow_iter = -1
|
20 |
+
self.scale_factor = scale_factor
|
21 |
+
self.scale_window = scale_window
|
22 |
+
self.min_scale = min_scale
|
23 |
+
self.delayed_shift = delayed_shift
|
24 |
+
self.cur_hysteresis = delayed_shift
|
25 |
+
self.consecutive_hysteresis = consecutive_hysteresis
|
26 |
+
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (876 Bytes). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/bert_model.cpython-310.pyc
ADDED
Binary file (6.46 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/distributed.cpython-310.pyc
ADDED
Binary file (7.03 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/enums.cpython-310.pyc
ADDED
Binary file (889 Bytes). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/fused_bias_gelu.cpython-310.pyc
ADDED
Binary file (1.33 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/fused_layer_norm.cpython-310.pyc
ADDED
Binary file (3.09 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/fused_softmax.cpython-310.pyc
ADDED
Binary file (5.72 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/gpt_model.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/language_model.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/llama_model.cpython-310.pyc
ADDED
Binary file (7.45 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/module.cpython-310.pyc
ADDED
Binary file (6.65 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/rmsnorm.cpython-310.pyc
ADDED
Binary file (1.53 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/rotary_pos_embedding.cpython-310.pyc
ADDED
Binary file (2.5 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/t5_model.cpython-310.pyc
ADDED
Binary file (5.38 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/transformer.cpython-310.pyc
ADDED
Binary file (43.4 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (4.1 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/biencoder_model.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import sys
|
4 |
+
|
5 |
+
from megatron import get_args, print_rank_0, get_tokenizer
|
6 |
+
from megatron.core import mpu
|
7 |
+
from megatron.checkpointing import fix_query_key_value_ordering
|
8 |
+
from megatron.checkpointing import get_checkpoint_tracker_filename
|
9 |
+
from megatron.checkpointing import get_checkpoint_name
|
10 |
+
from megatron.model.bert_model import bert_position_ids
|
11 |
+
from megatron.model.enums import AttnMaskType
|
12 |
+
from megatron.model.language_model import get_language_model
|
13 |
+
from megatron.model.utils import get_linear_layer
|
14 |
+
from megatron.model.utils import init_method_normal
|
15 |
+
from megatron.model.utils import scaled_init_method_normal
|
16 |
+
from .module import MegatronModule
|
17 |
+
|
18 |
+
def get_model_provider(only_query_model=False, only_context_model=False,
|
19 |
+
biencoder_shared_query_context_model=False):
|
20 |
+
|
21 |
+
def model_provider(pre_process=True, post_process=True):
|
22 |
+
"""Build the model."""
|
23 |
+
|
24 |
+
print_rank_0('building Bienoder model ...')
|
25 |
+
model = biencoder_model_provider(only_query_model=only_query_model,
|
26 |
+
only_context_model = only_context_model,
|
27 |
+
biencoder_shared_query_context_model = \
|
28 |
+
biencoder_shared_query_context_model,
|
29 |
+
pre_process=pre_process, post_process=post_process)
|
30 |
+
|
31 |
+
return model
|
32 |
+
|
33 |
+
return model_provider
|
34 |
+
|
35 |
+
|
36 |
+
def biencoder_model_provider(only_query_model=False,
|
37 |
+
only_context_model=False,
|
38 |
+
biencoder_shared_query_context_model=False,
|
39 |
+
pre_process=True,
|
40 |
+
post_process=True):
|
41 |
+
"""Build the model."""
|
42 |
+
|
43 |
+
assert mpu.get_tensor_model_parallel_world_size() == 1 and \
|
44 |
+
mpu.get_pipeline_model_parallel_world_size() == 1, \
|
45 |
+
"Model parallel size > 1 not supported for ICT"
|
46 |
+
|
47 |
+
print_rank_0('building BiEncoderModel...')
|
48 |
+
|
49 |
+
# simpler to just keep using 2 tokentypes since
|
50 |
+
# the LM we initialize with has 2 tokentypes
|
51 |
+
model = BiEncoderModel(
|
52 |
+
num_tokentypes=2,
|
53 |
+
parallel_output=False,
|
54 |
+
only_query_model=only_query_model,
|
55 |
+
only_context_model=only_context_model,
|
56 |
+
biencoder_shared_query_context_model=\
|
57 |
+
biencoder_shared_query_context_model,
|
58 |
+
pre_process=pre_process,
|
59 |
+
post_process=post_process)
|
60 |
+
|
61 |
+
return model
|
62 |
+
|
63 |
+
|
64 |
+
class BiEncoderModel(MegatronModule):
|
65 |
+
"""Bert-based module for Biencoder model."""
|
66 |
+
|
67 |
+
def __init__(self,
|
68 |
+
num_tokentypes=1,
|
69 |
+
parallel_output=True,
|
70 |
+
only_query_model=False,
|
71 |
+
only_context_model=False,
|
72 |
+
biencoder_shared_query_context_model=False,
|
73 |
+
pre_process=True,
|
74 |
+
post_process=True):
|
75 |
+
super(BiEncoderModel, self).__init__()
|
76 |
+
args = get_args()
|
77 |
+
|
78 |
+
bert_kwargs = dict(
|
79 |
+
num_tokentypes=num_tokentypes,
|
80 |
+
parallel_output=parallel_output,
|
81 |
+
pre_process=pre_process,
|
82 |
+
post_process=post_process)
|
83 |
+
|
84 |
+
self.biencoder_shared_query_context_model = \
|
85 |
+
biencoder_shared_query_context_model
|
86 |
+
assert not (only_context_model and only_query_model)
|
87 |
+
self.use_context_model = not only_query_model
|
88 |
+
self.use_query_model = not only_context_model
|
89 |
+
self.biencoder_projection_dim = args.biencoder_projection_dim
|
90 |
+
|
91 |
+
if self.biencoder_shared_query_context_model:
|
92 |
+
self.model = PretrainedBertModel(**bert_kwargs)
|
93 |
+
self._model_key = 'shared_model'
|
94 |
+
self.query_model, self.context_model = self.model, self.model
|
95 |
+
else:
|
96 |
+
if self.use_query_model:
|
97 |
+
# this model embeds (pseudo-)queries - Embed_input in the paper
|
98 |
+
self.query_model = PretrainedBertModel(**bert_kwargs)
|
99 |
+
self._query_key = 'query_model'
|
100 |
+
|
101 |
+
if self.use_context_model:
|
102 |
+
# this model embeds evidence blocks - Embed_doc in the paper
|
103 |
+
self.context_model = PretrainedBertModel(**bert_kwargs)
|
104 |
+
self._context_key = 'context_model'
|
105 |
+
|
106 |
+
def set_input_tensor(self, input_tensor):
|
107 |
+
"""See megatron.model.transformer.set_input_tensor()"""
|
108 |
+
# this is just a placeholder and will be needed when model
|
109 |
+
# parallelism will be used
|
110 |
+
# self.language_model.set_input_tensor(input_tensor)
|
111 |
+
return
|
112 |
+
|
113 |
+
def forward(self, query_tokens, query_attention_mask, query_types,
|
114 |
+
context_tokens, context_attention_mask, context_types):
|
115 |
+
"""Run a forward pass for each of the models and
|
116 |
+
return the respective embeddings."""
|
117 |
+
|
118 |
+
if self.use_query_model:
|
119 |
+
query_logits = self.embed_text(self.query_model,
|
120 |
+
query_tokens,
|
121 |
+
query_attention_mask,
|
122 |
+
query_types)
|
123 |
+
else:
|
124 |
+
raise ValueError("Cannot embed query without the query model.")
|
125 |
+
if self.use_context_model:
|
126 |
+
context_logits = self.embed_text(self.context_model,
|
127 |
+
context_tokens,
|
128 |
+
context_attention_mask,
|
129 |
+
context_types)
|
130 |
+
else:
|
131 |
+
raise ValueError("Cannot embed block without the block model.")
|
132 |
+
return query_logits, context_logits
|
133 |
+
|
134 |
+
@staticmethod
|
135 |
+
def embed_text(model, tokens, attention_mask, token_types):
|
136 |
+
"""Embed a batch of tokens using the model"""
|
137 |
+
logits = model(tokens,
|
138 |
+
attention_mask,
|
139 |
+
token_types)
|
140 |
+
return logits
|
141 |
+
|
142 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
143 |
+
"""Save dict with state dicts of each of the models."""
|
144 |
+
state_dict_ = {}
|
145 |
+
if self.biencoder_shared_query_context_model:
|
146 |
+
state_dict_[self._model_key] = \
|
147 |
+
self.model.state_dict_for_save_checkpoint(
|
148 |
+
prefix=prefix, keep_vars=keep_vars)
|
149 |
+
else:
|
150 |
+
if self.use_query_model:
|
151 |
+
state_dict_[self._query_key] = \
|
152 |
+
self.query_model.state_dict_for_save_checkpoint(
|
153 |
+
prefix=prefix, keep_vars=keep_vars)
|
154 |
+
|
155 |
+
if self.use_context_model:
|
156 |
+
state_dict_[self._context_key] = \
|
157 |
+
self.context_model.state_dict_for_save_checkpoint(
|
158 |
+
prefix=prefix, keep_vars=keep_vars)
|
159 |
+
|
160 |
+
return state_dict_
|
161 |
+
|
162 |
+
def load_state_dict(self, state_dict, strict=True):
|
163 |
+
"""Load the state dicts of each of the models"""
|
164 |
+
if self.biencoder_shared_query_context_model:
|
165 |
+
print_rank_0("Loading shared query-context model")
|
166 |
+
self.model.load_state_dict(state_dict[self._model_key], \
|
167 |
+
strict=strict)
|
168 |
+
else:
|
169 |
+
if self.use_query_model:
|
170 |
+
print_rank_0("Loading query model")
|
171 |
+
self.query_model.load_state_dict( \
|
172 |
+
state_dict[self._query_key], strict=strict)
|
173 |
+
|
174 |
+
if self.use_context_model:
|
175 |
+
print_rank_0("Loading context model")
|
176 |
+
self.context_model.load_state_dict( \
|
177 |
+
state_dict[self._context_key], strict=strict)
|
178 |
+
|
179 |
+
def init_state_dict_from_bert(self):
|
180 |
+
"""Initialize the state from a pretrained BERT model
|
181 |
+
on iteration zero of ICT pretraining"""
|
182 |
+
args = get_args()
|
183 |
+
|
184 |
+
if args.bert_load is None:
|
185 |
+
print_rank_0("bert-load argument is None")
|
186 |
+
return
|
187 |
+
|
188 |
+
tracker_filename = get_checkpoint_tracker_filename(args.bert_load)
|
189 |
+
if not os.path.isfile(tracker_filename):
|
190 |
+
raise FileNotFoundError("Could not find BERT checkpoint")
|
191 |
+
with open(tracker_filename, 'r') as f:
|
192 |
+
iteration = int(f.read().strip())
|
193 |
+
assert iteration > 0
|
194 |
+
|
195 |
+
checkpoint_name = get_checkpoint_name(args.bert_load, iteration, False)
|
196 |
+
if mpu.get_data_parallel_rank() == 0:
|
197 |
+
print('global rank {} is loading BERT checkpoint {}'.format(
|
198 |
+
torch.distributed.get_rank(), checkpoint_name))
|
199 |
+
|
200 |
+
# Load the checkpoint.
|
201 |
+
try:
|
202 |
+
state_dict = torch.load(checkpoint_name, map_location='cpu')
|
203 |
+
except ModuleNotFoundError:
|
204 |
+
from megatron.fp16_deprecated import loss_scaler
|
205 |
+
# For backward compatibility.
|
206 |
+
print_rank_0(' > deserializing using the old code structure ...')
|
207 |
+
sys.modules['fp16.loss_scaler'] = sys.modules[
|
208 |
+
'megatron.fp16_deprecated.loss_scaler']
|
209 |
+
sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
|
210 |
+
'megatron.fp16_deprecated.loss_scaler']
|
211 |
+
state_dict = torch.load(checkpoint_name, map_location='cpu')
|
212 |
+
sys.modules.pop('fp16.loss_scaler', None)
|
213 |
+
sys.modules.pop('megatron.fp16.loss_scaler', None)
|
214 |
+
except BaseException:
|
215 |
+
print_rank_0('could not load the BERT checkpoint')
|
216 |
+
sys.exit()
|
217 |
+
|
218 |
+
checkpoint_version = state_dict.get('checkpoint_version', 0)
|
219 |
+
|
220 |
+
# load the LM state dict into each model
|
221 |
+
model_dict = state_dict['model']['language_model']
|
222 |
+
|
223 |
+
if self.biencoder_shared_query_context_model:
|
224 |
+
self.model.language_model.load_state_dict(model_dict)
|
225 |
+
fix_query_key_value_ordering(self.model, checkpoint_version)
|
226 |
+
else:
|
227 |
+
if self.use_query_model:
|
228 |
+
self.query_model.language_model.load_state_dict(model_dict)
|
229 |
+
# give each model the same ict_head to begin with as well
|
230 |
+
if self.biencoder_projection_dim > 0:
|
231 |
+
query_proj_state_dict = \
|
232 |
+
self.state_dict_for_save_checkpoint()\
|
233 |
+
[self._query_key]['projection_enc']
|
234 |
+
fix_query_key_value_ordering(self.query_model, checkpoint_version)
|
235 |
+
|
236 |
+
if self.use_context_model:
|
237 |
+
self.context_model.language_model.load_state_dict(model_dict)
|
238 |
+
if self.query_model is not None and \
|
239 |
+
self.biencoder_projection_dim > 0:
|
240 |
+
self.context_model.projection_enc.load_state_dict\
|
241 |
+
(query_proj_state_dict)
|
242 |
+
fix_query_key_value_ordering(self.context_model, checkpoint_version)
|
243 |
+
|
244 |
+
|
245 |
+
class PretrainedBertModel(MegatronModule):
|
246 |
+
"""BERT-based encoder for queries or contexts used for
|
247 |
+
learned information retrieval."""
|
248 |
+
|
249 |
+
def __init__(self, num_tokentypes=2,
|
250 |
+
parallel_output=True, pre_process=True, post_process=True):
|
251 |
+
super(PretrainedBertModel, self).__init__()
|
252 |
+
|
253 |
+
args = get_args()
|
254 |
+
tokenizer = get_tokenizer()
|
255 |
+
self.pad_id = tokenizer.pad
|
256 |
+
self.biencoder_projection_dim = args.biencoder_projection_dim
|
257 |
+
self.parallel_output = parallel_output
|
258 |
+
self.pre_process = pre_process
|
259 |
+
self.post_process = post_process
|
260 |
+
init_method = init_method_normal(args.init_method_std)
|
261 |
+
scaled_init_method = scaled_init_method_normal(
|
262 |
+
args.init_method_std, args.num_layers)
|
263 |
+
|
264 |
+
self.language_model, self._language_model_key = get_language_model(
|
265 |
+
num_tokentypes=num_tokentypes,
|
266 |
+
add_pooler=False,
|
267 |
+
encoder_attn_mask_type=AttnMaskType.padding,
|
268 |
+
init_method=init_method,
|
269 |
+
scaled_init_method=scaled_init_method,
|
270 |
+
pre_process=self.pre_process,
|
271 |
+
post_process=self.post_process)
|
272 |
+
|
273 |
+
if args.biencoder_projection_dim > 0:
|
274 |
+
self.projection_enc = get_linear_layer(args.hidden_size,
|
275 |
+
args.biencoder_projection_dim,
|
276 |
+
init_method,
|
277 |
+
gather_params_on_init=args.zero_stage == 3)
|
278 |
+
self._projection_enc_key = 'projection_enc'
|
279 |
+
|
280 |
+
def forward(self, input_ids, attention_mask, tokentype_ids=None):
|
281 |
+
extended_attention_mask = attention_mask.unsqueeze(1)
|
282 |
+
#extended_attention_mask = bert_extended_attention_mask(attention_mask)
|
283 |
+
position_ids = bert_position_ids(input_ids)
|
284 |
+
|
285 |
+
lm_output = self.language_model(input_ids,
|
286 |
+
position_ids,
|
287 |
+
extended_attention_mask,
|
288 |
+
tokentype_ids=tokentype_ids)
|
289 |
+
# This mask will be used in average-pooling and max-pooling
|
290 |
+
pool_mask = (input_ids == self.pad_id).unsqueeze(2)
|
291 |
+
|
292 |
+
# Taking the representation of the [CLS] token of BERT
|
293 |
+
pooled_output = lm_output[0, :, :]
|
294 |
+
|
295 |
+
# Converting to float16 dtype
|
296 |
+
pooled_output = pooled_output.to(lm_output.dtype)
|
297 |
+
|
298 |
+
# Output.
|
299 |
+
if self.biencoder_projection_dim:
|
300 |
+
pooled_output = self.projection_enc(pooled_output)
|
301 |
+
|
302 |
+
return pooled_output
|
303 |
+
|
304 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
305 |
+
"""For easy load when model is combined with other heads,
|
306 |
+
add an extra key."""
|
307 |
+
|
308 |
+
state_dict_ = {}
|
309 |
+
state_dict_[self._language_model_key] \
|
310 |
+
= self.language_model.state_dict_for_save_checkpoint(
|
311 |
+
prefix=prefix, keep_vars=keep_vars)
|
312 |
+
|
313 |
+
if self.biencoder_projection_dim > 0:
|
314 |
+
state_dict_[self._projection_enc_key] = \
|
315 |
+
self.projection_enc.state_dict(prefix=prefix,
|
316 |
+
keep_vars=keep_vars)
|
317 |
+
|
318 |
+
return state_dict_
|
319 |
+
|
320 |
+
def load_state_dict(self, state_dict, strict=True):
|
321 |
+
"""Customized load."""
|
322 |
+
print_rank_0("loading pretrained weights")
|
323 |
+
self.language_model.load_state_dict(
|
324 |
+
state_dict[self._language_model_key], strict=strict)
|
325 |
+
|
326 |
+
if self.biencoder_projection_dim > 0:
|
327 |
+
print_rank_0("loading projection head weights")
|
328 |
+
self.projection_enc.load_state_dict(
|
329 |
+
state_dict[self._projection_enc_key], strict=strict)
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/classification.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
|
3 |
+
"""Classification model."""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from megatron import get_args, print_rank_last
|
8 |
+
from megatron.model.enums import AttnMaskType
|
9 |
+
from megatron.model.bert_model import bert_extended_attention_mask, bert_position_ids
|
10 |
+
from megatron.model.language_model import get_language_model
|
11 |
+
from megatron.model.utils import get_linear_layer
|
12 |
+
from megatron.model.utils import init_method_normal
|
13 |
+
from megatron.model.utils import scaled_init_method_normal
|
14 |
+
from .module import MegatronModule
|
15 |
+
|
16 |
+
|
17 |
+
class Classification(MegatronModule):
|
18 |
+
|
19 |
+
def __init__(self,
|
20 |
+
config,
|
21 |
+
num_classes,
|
22 |
+
num_tokentypes=2,
|
23 |
+
pre_process=True,
|
24 |
+
post_process=True):
|
25 |
+
super().__init__(config=config, share_embeddings_and_output_weights=False)
|
26 |
+
args = get_args()
|
27 |
+
|
28 |
+
self.num_classes = num_classes
|
29 |
+
self.pre_process = pre_process
|
30 |
+
self.post_process = post_process
|
31 |
+
|
32 |
+
self.language_model, self._language_model_key = get_language_model(
|
33 |
+
config=config,
|
34 |
+
num_tokentypes=num_tokentypes,
|
35 |
+
add_pooler=True,
|
36 |
+
encoder_attn_mask_type=AttnMaskType.padding,
|
37 |
+
pre_process=self.pre_process,
|
38 |
+
post_process=self.post_process)
|
39 |
+
|
40 |
+
# Multi-choice head.
|
41 |
+
if self.post_process:
|
42 |
+
self.classification_dropout = torch.nn.Dropout(args.hidden_dropout)
|
43 |
+
self.classification_head = get_linear_layer(args.hidden_size,
|
44 |
+
self.num_classes,
|
45 |
+
init_method,
|
46 |
+
gather_params_on_init=args.zero_stage == 3)
|
47 |
+
self._classification_head_key = 'classification_head'
|
48 |
+
|
49 |
+
def set_input_tensor(self, input_tensor):
|
50 |
+
"""See megatron.model.transformer.set_input_tensor()"""
|
51 |
+
self.language_model.set_input_tensor(input_tensor)
|
52 |
+
|
53 |
+
def forward(self, model_input, attention_mask, tokentype_ids=None):
|
54 |
+
|
55 |
+
extended_attention_mask = bert_extended_attention_mask(attention_mask)
|
56 |
+
input_ids = model_input
|
57 |
+
position_ids = bert_position_ids(input_ids)
|
58 |
+
|
59 |
+
lm_output = self.language_model(
|
60 |
+
input_ids,
|
61 |
+
position_ids,
|
62 |
+
extended_attention_mask,
|
63 |
+
tokentype_ids=tokentype_ids
|
64 |
+
)
|
65 |
+
|
66 |
+
if self.post_process:
|
67 |
+
_, pooled_output = lm_output[0], lm_output[1]
|
68 |
+
classification_output = self.classification_dropout(pooled_output)
|
69 |
+
classification_logits = self.classification_head(classification_output)
|
70 |
+
|
71 |
+
# Reshape back to separate choices.
|
72 |
+
classification_logits = classification_logits.view(-1, self.num_classes)
|
73 |
+
|
74 |
+
return classification_logits
|
75 |
+
return lm_output
|
76 |
+
|
77 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
78 |
+
"""For easy load when model is combined with other heads,
|
79 |
+
add an extra key."""
|
80 |
+
|
81 |
+
state_dict_ = {}
|
82 |
+
state_dict_[self._language_model_key] \
|
83 |
+
= self.language_model.state_dict_for_save_checkpoint(prefix=prefix,
|
84 |
+
keep_vars=keep_vars)
|
85 |
+
if self.post_process:
|
86 |
+
state_dict_[self._classification_head_key] \
|
87 |
+
= self.classification_head.state_dict(prefix=prefix, keep_vars=keep_vars)
|
88 |
+
return state_dict_
|
89 |
+
|
90 |
+
def load_state_dict(self, state_dict, strict=True):
|
91 |
+
"""Customized load."""
|
92 |
+
|
93 |
+
self.language_model.load_state_dict(
|
94 |
+
state_dict[self._language_model_key], strict=strict)
|
95 |
+
if self.post_process:
|
96 |
+
if self._classification_head_key in state_dict:
|
97 |
+
self.classification_head.load_state_dict(
|
98 |
+
state_dict[self._classification_head_key], strict=strict)
|
99 |
+
else:
|
100 |
+
print_rank_last('***WARNING*** could not find {} in the checkpoint, '
|
101 |
+
'initializing to random'.format(
|
102 |
+
self._classification_head_key))
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/distributed.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
|
3 |
+
from abc import ABC
|
4 |
+
from abc import abstractmethod
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
|
9 |
+
|
10 |
+
from megatron import get_args
|
11 |
+
from megatron.core import mpu
|
12 |
+
from .module import MegatronModule
|
13 |
+
from deepspeed.accelerator import get_accelerator
|
14 |
+
|
15 |
+
class MemoryBuffer:
|
16 |
+
|
17 |
+
def __init__(self, numel, numel_padded, dtype):
|
18 |
+
self.numel = numel
|
19 |
+
self.numel_padded = numel_padded
|
20 |
+
self.dtype = dtype
|
21 |
+
self.data = torch.zeros(self.numel_padded,
|
22 |
+
dtype=self.dtype,
|
23 |
+
device=get_accelerator().current_device_name(),
|
24 |
+
requires_grad=False)
|
25 |
+
|
26 |
+
def zero(self):
|
27 |
+
"""Reset the buffer to zero."""
|
28 |
+
self.data.zero_()
|
29 |
+
|
30 |
+
|
31 |
+
def get(self, shape, start_index):
|
32 |
+
"""Return a tensor with the input `shape` as a view into the
|
33 |
+
1-D data starting at `start_index`."""
|
34 |
+
end_index = start_index + shape.numel()
|
35 |
+
assert end_index <= self.numel, \
|
36 |
+
'requested tensor is out of the buffer range.'
|
37 |
+
buffer_tensor = self.data[start_index:end_index]
|
38 |
+
buffer_tensor = buffer_tensor.view(shape)
|
39 |
+
return buffer_tensor
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
class DistributedDataParallelBase(MegatronModule, ABC):
|
44 |
+
"""Abstract class for DDP."""
|
45 |
+
|
46 |
+
def __init__(self, module):
|
47 |
+
super(DistributedDataParallelBase, self).__init__()
|
48 |
+
# Keep a pointer to the model.
|
49 |
+
self.module = module
|
50 |
+
|
51 |
+
|
52 |
+
@abstractmethod
|
53 |
+
def allreduce_gradients(self):
|
54 |
+
pass
|
55 |
+
|
56 |
+
|
57 |
+
def forward(self, *inputs, **kwargs):
|
58 |
+
return self.module(*inputs, **kwargs)
|
59 |
+
|
60 |
+
|
61 |
+
def state_dict(self, prefix='', keep_vars=False):
|
62 |
+
return self.module.state_dict(prefix=prefix, keep_vars=keep_vars)
|
63 |
+
|
64 |
+
|
65 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
66 |
+
return self.module.state_dict_for_save_checkpoint(prefix=prefix,
|
67 |
+
keep_vars=keep_vars)
|
68 |
+
|
69 |
+
|
70 |
+
def load_state_dict(self, state_dict, strict=True):
|
71 |
+
self.module.load_state_dict(state_dict, strict=strict)
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
class DistributedDataParallel(DistributedDataParallelBase):
|
76 |
+
"""DDP with contiguous buffers options to storre and accumulate gradients.
|
77 |
+
This class:
|
78 |
+
- has the potential to reduce memory fragmentation.
|
79 |
+
- provides the option to do the gradient accumulation
|
80 |
+
in a type other than the params type (for example fp32)
|
81 |
+
|
82 |
+
Arguments:
|
83 |
+
module: input model.
|
84 |
+
accumulate_allreduce_grads_in_fp32: if true do the gradient accumulation
|
85 |
+
and the gradient all-reduce all in in float32. If this option is
|
86 |
+
true, we require `use_contiguous_buffers` to be true too.
|
87 |
+
use_contiguous_buffers: if true, use a contiguous buffer to store the
|
88 |
+
gradients.
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(self, module,
|
92 |
+
accumulate_allreduce_grads_in_fp32,
|
93 |
+
use_contiguous_buffers):
|
94 |
+
|
95 |
+
super(DistributedDataParallel, self).__init__(module)
|
96 |
+
|
97 |
+
self.accumulate_allreduce_grads_in_fp32 \
|
98 |
+
= accumulate_allreduce_grads_in_fp32
|
99 |
+
self.use_contiguous_buffers = use_contiguous_buffers
|
100 |
+
# If we are using fp32-accumulate-allreduce explicitly
|
101 |
+
# this means we need main grads in a continous buffer.
|
102 |
+
if self.accumulate_allreduce_grads_in_fp32:
|
103 |
+
assert self.use_contiguous_buffers
|
104 |
+
|
105 |
+
# ===================================
|
106 |
+
# Rest of this part applies only to
|
107 |
+
# the case we use continuous buffers.
|
108 |
+
# ===================================
|
109 |
+
self._grad_buffers = None
|
110 |
+
self._grad_buffer_param_index_map = None
|
111 |
+
if self.use_contiguous_buffers:
|
112 |
+
self._grad_buffers = {}
|
113 |
+
self._grad_buffer_param_index_map = {}
|
114 |
+
data_parallel_world_size = mpu.get_data_parallel_world_size()
|
115 |
+
|
116 |
+
# Simple function to define buffer type.
|
117 |
+
def _get_buffer_type(param):
|
118 |
+
return torch.float if \
|
119 |
+
self.accumulate_allreduce_grads_in_fp32 else param.dtype
|
120 |
+
|
121 |
+
# First calculate total number of elements per type.
|
122 |
+
type_num_elements = {}
|
123 |
+
for param in self.module.parameters():
|
124 |
+
if param.requires_grad:
|
125 |
+
dtype = _get_buffer_type(param)
|
126 |
+
type_num_elements[dtype] = type_num_elements.get(dtype, 0) \
|
127 |
+
+ param.data.nelement()
|
128 |
+
|
129 |
+
# Allocate the buffer.
|
130 |
+
for dtype, num_elements in type_num_elements.items():
|
131 |
+
|
132 |
+
# If using distributed optimizer, pad memory buffer to be
|
133 |
+
# multiple of data_parallel_world_size. (This padding is done
|
134 |
+
# due to a constraint with the reduce_scatter op, which requires
|
135 |
+
# all tensors have equal size. See: optimizer.py.)
|
136 |
+
num_elements_padded = data_parallel_world_size * \
|
137 |
+
int(math.ceil(num_elements / data_parallel_world_size))
|
138 |
+
|
139 |
+
# Allocate grad buffer.
|
140 |
+
self._grad_buffers[dtype] = MemoryBuffer(num_elements,
|
141 |
+
num_elements_padded,
|
142 |
+
dtype)
|
143 |
+
|
144 |
+
# Assume the back prop order is reverse the params order,
|
145 |
+
# store the start index for the gradients.
|
146 |
+
for param in self.module.parameters():
|
147 |
+
if param.requires_grad:
|
148 |
+
dtype = _get_buffer_type(param)
|
149 |
+
type_num_elements[dtype] -= param.data.nelement()
|
150 |
+
param.main_grad = self._grad_buffers[dtype].get(
|
151 |
+
param.data.shape, type_num_elements[dtype])
|
152 |
+
if dtype not in self._grad_buffer_param_index_map:
|
153 |
+
self._grad_buffer_param_index_map[dtype] = {}
|
154 |
+
self._grad_buffer_param_index_map[dtype][param] = (
|
155 |
+
type_num_elements[dtype],
|
156 |
+
type_num_elements[dtype] + param.data.nelement(),
|
157 |
+
)
|
158 |
+
|
159 |
+
# Backward hook.
|
160 |
+
# Accumalation function for the gradients. We need
|
161 |
+
# to store them so they don't go out of scope.
|
162 |
+
self.grad_accs = []
|
163 |
+
# Loop over all the parameters in the model.
|
164 |
+
for param in self.module.parameters():
|
165 |
+
if param.requires_grad:
|
166 |
+
# Expand so we get access to grad_fn.
|
167 |
+
param_tmp = param.expand_as(param)
|
168 |
+
# Get the gradient accumulator functtion.
|
169 |
+
grad_acc = param_tmp.grad_fn.next_functions[0][0]
|
170 |
+
grad_acc.register_hook(self._make_param_hook(param))
|
171 |
+
self.grad_accs.append(grad_acc)
|
172 |
+
|
173 |
+
|
174 |
+
def _make_param_hook(self, param):
|
175 |
+
"""Create the all-reduce hook for backprop."""
|
176 |
+
# Hook used for back-prop.
|
177 |
+
def param_hook(*unused):
|
178 |
+
# Add the gradient to the buffer.
|
179 |
+
if param.grad is not None:
|
180 |
+
# The gradient function of linear layers is fused with GEMMs
|
181 |
+
param.main_grad.add_(param.grad.data)
|
182 |
+
# Now we can deallocate grad memory.
|
183 |
+
param.grad = None
|
184 |
+
return param_hook
|
185 |
+
|
186 |
+
|
187 |
+
def zero_grad_buffer(self):
|
188 |
+
"""Set the grad buffer data to zero. Needs to be called at the
|
189 |
+
begining of each iteration."""
|
190 |
+
assert self._grad_buffers is not None, 'buffers are not initialized.'
|
191 |
+
for _, buffer_ in self._grad_buffers.items():
|
192 |
+
buffer_.zero()
|
193 |
+
|
194 |
+
|
195 |
+
def broadcast_params(self):
|
196 |
+
for param in self.module.parameters():
|
197 |
+
torch.distributed.broadcast(param.data,
|
198 |
+
src=mpu.get_data_parallel_src_rank(),
|
199 |
+
group=mpu.get_data_parallel_group())
|
200 |
+
|
201 |
+
|
202 |
+
def allreduce_gradients(self):
|
203 |
+
"""Reduce gradients across data parallel ranks."""
|
204 |
+
# If we have buffers, simply reduce the data in the buffer.
|
205 |
+
if self._grad_buffers is not None:
|
206 |
+
for _, buffer_ in self._grad_buffers.items():
|
207 |
+
buffer_.data /= mpu.get_data_parallel_world_size()
|
208 |
+
torch.distributed.all_reduce(
|
209 |
+
buffer_.data, group=mpu.get_data_parallel_group())
|
210 |
+
else:
|
211 |
+
# Otherwise, bucketize and all-reduce
|
212 |
+
buckets = {}
|
213 |
+
# Pack the buckets.
|
214 |
+
for param in self.module.parameters():
|
215 |
+
if param.requires_grad and param.grad is not None:
|
216 |
+
tp = param.data.type()
|
217 |
+
if tp not in buckets:
|
218 |
+
buckets[tp] = []
|
219 |
+
buckets[tp].append(param)
|
220 |
+
|
221 |
+
# For each bucket, all-reduce and copy all-reduced grads.
|
222 |
+
for tp in buckets:
|
223 |
+
bucket = buckets[tp]
|
224 |
+
grads = [param.grad.data for param in bucket]
|
225 |
+
coalesced = _flatten_dense_tensors(grads)
|
226 |
+
coalesced /= mpu.get_data_parallel_world_size()
|
227 |
+
torch.distributed.all_reduce(
|
228 |
+
coalesced, group=mpu.get_data_parallel_group())
|
229 |
+
for buf, synced in zip(grads, _unflatten_dense_tensors(
|
230 |
+
coalesced, grads)):
|
231 |
+
buf.copy_(synced)
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/enums.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
|
3 |
+
import enum
|
4 |
+
|
5 |
+
class LayerType(enum.Enum):
|
6 |
+
encoder = 1
|
7 |
+
decoder = 2
|
8 |
+
retro_encoder = 3
|
9 |
+
retro_decoder = 4
|
10 |
+
retro_decoder_with_retriever = 5
|
11 |
+
|
12 |
+
class AttnType(enum.Enum):
|
13 |
+
self_attn = 1
|
14 |
+
cross_attn = 2
|
15 |
+
|
16 |
+
class AttnMaskType(enum.Enum):
|
17 |
+
padding = 1
|
18 |
+
causal = 2
|
19 |
+
|
20 |
+
# For backward compatibility with old model checkpoints
|
21 |
+
from megatron.core.enums import ModelType
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/fused_bias_gelu.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
###### BIAS GELU FUSION/ NO AUTOGRAD ################
|
7 |
+
# 1/sqrt(2*pi)-> 0.3989423
|
8 |
+
# 1/sqrt(2) -> 0.70710678
|
9 |
+
# sqrt(2/pi) -> 0.79788456
|
10 |
+
# this function is tanh approximation of gelu
|
11 |
+
# actual gelu is:
|
12 |
+
# x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
|
13 |
+
|
14 |
+
@torch.jit.script
|
15 |
+
def bias_gelu(bias, y):
|
16 |
+
x = bias + y
|
17 |
+
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
|
18 |
+
|
19 |
+
# gradient of tanh approximation of gelu
|
20 |
+
# gradient of actual gelu is:
|
21 |
+
# 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
|
22 |
+
@torch.jit.script
|
23 |
+
def bias_gelu_back(g, bias, y):
|
24 |
+
x = bias + y
|
25 |
+
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
26 |
+
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
|
27 |
+
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
|
28 |
+
return ff*g
|
29 |
+
|
30 |
+
class GeLUFunction(torch.autograd.Function):
|
31 |
+
@staticmethod
|
32 |
+
# bias is an optional argument
|
33 |
+
def forward(ctx, input, bias):
|
34 |
+
ctx.save_for_backward(input, bias)
|
35 |
+
return bias_gelu(bias, input)
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def backward(ctx, grad_output):
|
39 |
+
input, bias = ctx.saved_tensors
|
40 |
+
tmp = bias_gelu_back(grad_output, bias, input)
|
41 |
+
return tmp, tmp
|
42 |
+
|
43 |
+
bias_gelu_impl = GeLUFunction.apply
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/fused_layer_norm.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
|
2 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
|
4 |
+
"""This code is copied fron NVIDIA apex:
|
5 |
+
https://github.com/NVIDIA/apex
|
6 |
+
with some changes. """
|
7 |
+
|
8 |
+
import numbers
|
9 |
+
import torch
|
10 |
+
from torch.nn.parameter import Parameter
|
11 |
+
from torch.nn import init
|
12 |
+
import importlib
|
13 |
+
from torch.nn import functional as F
|
14 |
+
import inspect
|
15 |
+
|
16 |
+
from megatron.core.utils import make_viewless_tensor
|
17 |
+
from megatron import get_args
|
18 |
+
|
19 |
+
from deepspeed.accelerator.real_accelerator import get_accelerator
|
20 |
+
|
21 |
+
try:
|
22 |
+
from apex.contrib.layer_norm.layer_norm import FastLayerNormFN
|
23 |
+
HAVE_PERSIST_LAYER_NORM = True
|
24 |
+
except:
|
25 |
+
HAVE_PERSIST_LAYER_NORM = False
|
26 |
+
|
27 |
+
try:
|
28 |
+
from apex.normalization.fused_layer_norm import FusedLayerNormAffineFunction
|
29 |
+
except ModuleNotFoundError:
|
30 |
+
pass
|
31 |
+
|
32 |
+
|
33 |
+
global fused_layer_norm_cuda
|
34 |
+
fused_layer_norm_cuda = None
|
35 |
+
|
36 |
+
|
37 |
+
class MixedFusedLayerNorm(torch.nn.Module):
|
38 |
+
|
39 |
+
def __init__(self, normalized_shape, eps=1e-5,
|
40 |
+
no_persist_layer_norm=True,
|
41 |
+
sequence_parallel=False,
|
42 |
+
apply_layernorm_1p=False,
|
43 |
+
mem_efficient_ln=True):
|
44 |
+
super(MixedFusedLayerNorm, self).__init__()
|
45 |
+
|
46 |
+
self.apply_layernorm_1p = apply_layernorm_1p
|
47 |
+
self.mem_efficient_ln = mem_efficient_ln
|
48 |
+
|
49 |
+
if get_accelerator().device_name() == 'cuda':
|
50 |
+
global fused_layer_norm_cuda
|
51 |
+
fused_layer_norm_cuda = importlib.import_module("fused_layer_norm_cuda")
|
52 |
+
|
53 |
+
# List of hiddens sizes supported in the persistent layer norm kernel
|
54 |
+
# If the hidden size is not supported, fall back to the non-persistent
|
55 |
+
# kernel.
|
56 |
+
persist_ln_hidden_sizes = [1024, 1536, 2048, 2304, 3072, 3840, 4096,
|
57 |
+
5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480,
|
58 |
+
24576, 25600, 30720, 32768, 40960, 49152, 65536]
|
59 |
+
if normalized_shape not in persist_ln_hidden_sizes or \
|
60 |
+
not HAVE_PERSIST_LAYER_NORM:
|
61 |
+
no_persist_layer_norm = True
|
62 |
+
|
63 |
+
if isinstance(normalized_shape, numbers.Integral):
|
64 |
+
normalized_shape = (normalized_shape,)
|
65 |
+
self.normalized_shape = torch.Size(normalized_shape)
|
66 |
+
self.eps = eps
|
67 |
+
self.weight = Parameter(torch.empty(*normalized_shape,
|
68 |
+
device=get_accelerator().current_device_name(),
|
69 |
+
dtype=get_args().params_dtype))
|
70 |
+
self.bias = Parameter(torch.empty(*normalized_shape,
|
71 |
+
device=get_accelerator().current_device_name(),
|
72 |
+
dtype=get_args().params_dtype))
|
73 |
+
self.reset_parameters()
|
74 |
+
self.no_persist_layer_norm = no_persist_layer_norm
|
75 |
+
self.sequence_parallel = sequence_parallel
|
76 |
+
|
77 |
+
# set sequence parallelism flag on weight and bias parameters
|
78 |
+
setattr(self.weight, 'sequence_parallel', self.sequence_parallel)
|
79 |
+
setattr(self.bias, 'sequence_parallel', self.sequence_parallel)
|
80 |
+
|
81 |
+
|
82 |
+
def reset_parameters(self):
|
83 |
+
|
84 |
+
if self.apply_layernorm_1p:
|
85 |
+
init.zeros_(self.weight)
|
86 |
+
init.zeros_(self.bias)
|
87 |
+
else:
|
88 |
+
init.ones_(self.weight)
|
89 |
+
init.zeros_(self.bias)
|
90 |
+
|
91 |
+
def forward(self, input):
|
92 |
+
|
93 |
+
weight = self.weight + 1 if self.apply_layernorm_1p else self.weight
|
94 |
+
# CPU path is here for unittest sake.
|
95 |
+
if not input.is_cuda:
|
96 |
+
if get_accelerator().device_name() == 'cuda':
|
97 |
+
print("WARNING! The input of FusedLayerNorm should be on the GPU."
|
98 |
+
"This warning should only be triggered in the FusedLayerNorm unit tests.")
|
99 |
+
return F.layer_norm(input, self.normalized_shape, weight, self.bias, self.eps)
|
100 |
+
|
101 |
+
if self.no_persist_layer_norm:
|
102 |
+
# Apex does not have versions yet (https://github.com/NVIDIA/apex/pull/1648), so we need to inspect
|
103 |
+
# the function manually on whether the extra arg introduced in https://github.com/NVIDIA/apex/pull/1715 exists yet
|
104 |
+
if 'memory_efficient' in inspect.getfullargspec(FusedLayerNormAffineFunction.forward).args:
|
105 |
+
return FusedLayerNormAffineFunction.apply(input, weight, self.bias, self.normalized_shape, self.eps, self.mem_efficient_ln)
|
106 |
+
else:
|
107 |
+
return FusedLayerNormAffineFunction.apply(input, weight, self.bias, self.normalized_shape, self.eps)
|
108 |
+
else:
|
109 |
+
output = FastLayerNormFN.apply(input, weight, self.bias, self.eps)
|
110 |
+
|
111 |
+
# Apex's fast layer norm function outputs a 'view' tensor (i.e., has
|
112 |
+
# a populated '_base' field). This will result in schedule.py's
|
113 |
+
# deallocate_output_tensor() throwing an error, so a viewless tensor is
|
114 |
+
# created to prevent this.
|
115 |
+
output = make_viewless_tensor(inp = output,
|
116 |
+
requires_grad = input.requires_grad,
|
117 |
+
keep_graph = True)
|
118 |
+
|
119 |
+
return output
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/fused_softmax.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from megatron.model.enums import AttnMaskType
|
7 |
+
|
8 |
+
|
9 |
+
class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function):
|
10 |
+
"""
|
11 |
+
Fused operation which performs following three operations in sequence
|
12 |
+
1. Scale the tensor.
|
13 |
+
2. Apply upper triangular mask (typically used in gpt models).
|
14 |
+
3. Perform softmax.
|
15 |
+
"""
|
16 |
+
|
17 |
+
@staticmethod
|
18 |
+
def forward(ctx, inputs, scale):
|
19 |
+
import scaled_upper_triang_masked_softmax_cuda
|
20 |
+
|
21 |
+
scale_t = torch.tensor([scale])
|
22 |
+
softmax_results = scaled_upper_triang_masked_softmax_cuda.forward(
|
23 |
+
inputs, scale_t[0]
|
24 |
+
)
|
25 |
+
|
26 |
+
ctx.save_for_backward(softmax_results, scale_t)
|
27 |
+
return softmax_results
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def backward(ctx, output_grads):
|
31 |
+
import scaled_upper_triang_masked_softmax_cuda
|
32 |
+
|
33 |
+
softmax_results, scale_t = ctx.saved_tensors
|
34 |
+
input_grads = scaled_upper_triang_masked_softmax_cuda.backward(
|
35 |
+
output_grads, softmax_results, scale_t[0]
|
36 |
+
)
|
37 |
+
|
38 |
+
return input_grads, None
|
39 |
+
|
40 |
+
|
41 |
+
class ScaledMaskedSoftmax(torch.autograd.Function):
|
42 |
+
"""
|
43 |
+
Fused operation which performs following three operations in sequence
|
44 |
+
1. Scale the tensor.
|
45 |
+
2. Apply the mask.
|
46 |
+
3. Perform softmax.
|
47 |
+
"""
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def forward(ctx, inputs, mask, scale):
|
51 |
+
import scaled_masked_softmax_cuda
|
52 |
+
|
53 |
+
scale_t = torch.tensor([scale])
|
54 |
+
|
55 |
+
softmax_results = scaled_masked_softmax_cuda.forward(inputs, mask, scale_t[0])
|
56 |
+
ctx.save_for_backward(softmax_results, scale_t)
|
57 |
+
return softmax_results
|
58 |
+
|
59 |
+
@staticmethod
|
60 |
+
def backward(ctx, output_grads):
|
61 |
+
import scaled_masked_softmax_cuda
|
62 |
+
|
63 |
+
softmax_results, scale_t = ctx.saved_tensors
|
64 |
+
|
65 |
+
input_grads = scaled_masked_softmax_cuda.backward(
|
66 |
+
output_grads, softmax_results, scale_t[0]
|
67 |
+
)
|
68 |
+
return input_grads, None, None
|
69 |
+
|
70 |
+
|
71 |
+
class ScaledSoftmax(torch.autograd.Function):
|
72 |
+
"""
|
73 |
+
Fused operation which performs following two operations in sequence
|
74 |
+
1. Scale the tensor.
|
75 |
+
2. Perform softmax.
|
76 |
+
"""
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def forward(ctx, inputs, scale):
|
80 |
+
import scaled_softmax_cuda
|
81 |
+
|
82 |
+
scale_t = torch.tensor([scale])
|
83 |
+
|
84 |
+
softmax_results = scaled_softmax_cuda.forward(
|
85 |
+
inputs, scale_t[0]
|
86 |
+
)
|
87 |
+
ctx.save_for_backward(softmax_results, scale_t)
|
88 |
+
return softmax_results
|
89 |
+
|
90 |
+
@staticmethod
|
91 |
+
def backward(ctx, output_grads):
|
92 |
+
import scaled_softmax_cuda
|
93 |
+
|
94 |
+
softmax_results, scale_t = ctx.saved_tensors
|
95 |
+
|
96 |
+
input_grads = scaled_softmax_cuda.backward(
|
97 |
+
output_grads, softmax_results, scale_t[0]
|
98 |
+
)
|
99 |
+
return input_grads, None, None
|
100 |
+
|
101 |
+
|
102 |
+
class FusedScaleMaskSoftmax(nn.Module):
|
103 |
+
"""
|
104 |
+
fused operation: scaling + mask + softmax
|
105 |
+
|
106 |
+
Arguments:
|
107 |
+
input_in_fp16: flag to indicate if input in fp16 data format.
|
108 |
+
input_in_bf16: flag to indicate if input in bf16 data format.
|
109 |
+
attn_mask_type: attention mask type (pad or causal)
|
110 |
+
scaled_masked_softmax_fusion: flag to indicate user want to use softmax fusion
|
111 |
+
mask_func: mask function to be applied.
|
112 |
+
softmax_in_fp32: if true, softmax in performed at fp32 precision.
|
113 |
+
scale: scaling factor used in input tensor scaling.
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
input_in_fp16,
|
119 |
+
input_in_bf16,
|
120 |
+
attn_mask_type,
|
121 |
+
scaled_masked_softmax_fusion,
|
122 |
+
mask_func,
|
123 |
+
softmax_in_fp32,
|
124 |
+
scale,
|
125 |
+
):
|
126 |
+
super(FusedScaleMaskSoftmax, self).__init__()
|
127 |
+
self.input_in_fp16 = input_in_fp16
|
128 |
+
self.input_in_bf16 = input_in_bf16
|
129 |
+
assert not (
|
130 |
+
self.input_in_fp16 and self.input_in_bf16
|
131 |
+
), "both fp16 and bf16 flags cannot be active at the same time."
|
132 |
+
self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16
|
133 |
+
self.attn_mask_type = attn_mask_type
|
134 |
+
self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion
|
135 |
+
self.mask_func = mask_func
|
136 |
+
self.softmax_in_fp32 = softmax_in_fp32
|
137 |
+
self.scale = scale
|
138 |
+
|
139 |
+
assert (
|
140 |
+
self.scale is None or softmax_in_fp32
|
141 |
+
), "softmax should be in fp32 when scaled"
|
142 |
+
|
143 |
+
def forward(self, input, mask):
|
144 |
+
# [b, np, sq, sk]
|
145 |
+
assert input.dim() == 4
|
146 |
+
|
147 |
+
if self.is_kernel_available(mask, *input.size()):
|
148 |
+
return self.forward_fused_softmax(input, mask)
|
149 |
+
else:
|
150 |
+
return self.forward_torch_softmax(input, mask)
|
151 |
+
|
152 |
+
def is_kernel_available(self, mask, b, np, sq, sk):
|
153 |
+
attn_batches = b * np
|
154 |
+
|
155 |
+
if (
|
156 |
+
self.scaled_masked_softmax_fusion # user want to fuse
|
157 |
+
and self.input_in_float16 # input must be fp16
|
158 |
+
and 16 < sk <= 4096 # sk must be 16 ~ 2048
|
159 |
+
and sq % 4 == 0 # sq must be divisor of 4
|
160 |
+
and sk % 4 == 0 # sk must be divisor of 4
|
161 |
+
and attn_batches % 4 == 0 # np * b must be divisor of 4
|
162 |
+
):
|
163 |
+
if 0 <= sk <= 4096:
|
164 |
+
batch_per_block = self.get_batch_per_block(sq, sk, b, np)
|
165 |
+
|
166 |
+
if self.attn_mask_type.value == AttnMaskType.causal.value:
|
167 |
+
if attn_batches % batch_per_block == 0:
|
168 |
+
return True
|
169 |
+
else:
|
170 |
+
if sq % batch_per_block == 0:
|
171 |
+
return True
|
172 |
+
return False
|
173 |
+
|
174 |
+
def forward_fused_softmax(self, input, mask):
|
175 |
+
b, np, sq, sk = input.size()
|
176 |
+
scale = self.scale if self.scale is not None else 1.0
|
177 |
+
|
178 |
+
if self.attn_mask_type.value == AttnMaskType.causal.value:
|
179 |
+
assert sq == sk, "causal mask is only for self attention"
|
180 |
+
|
181 |
+
# input is 3D tensor (attn_batches, sq, sk)
|
182 |
+
input = input.view(-1, sq, sk)
|
183 |
+
probs = ScaledUpperTriangMaskedSoftmax.apply(input, scale)
|
184 |
+
return probs.view(b, np, sq, sk)
|
185 |
+
else:
|
186 |
+
# input is 4D tensor (b, np, sq, sk)
|
187 |
+
if mask is not None:
|
188 |
+
return ScaledMaskedSoftmax.apply(input, mask, scale)
|
189 |
+
else:
|
190 |
+
return ScaledSoftmax.apply(input, scale)
|
191 |
+
|
192 |
+
def forward_torch_softmax(self, input, mask):
|
193 |
+
if self.input_in_float16 and self.softmax_in_fp32:
|
194 |
+
input = input.float()
|
195 |
+
|
196 |
+
if self.scale is not None:
|
197 |
+
input = input * self.scale
|
198 |
+
mask_output = self.mask_func(input, mask) if mask is not None else input
|
199 |
+
probs = torch.nn.Softmax(dim=-1)(mask_output)
|
200 |
+
|
201 |
+
if self.input_in_float16 and self.softmax_in_fp32:
|
202 |
+
if self.input_in_fp16:
|
203 |
+
probs = probs.half()
|
204 |
+
else:
|
205 |
+
probs = probs.bfloat16()
|
206 |
+
|
207 |
+
return probs
|
208 |
+
|
209 |
+
@staticmethod
|
210 |
+
def get_batch_per_block(sq, sk, b, np):
|
211 |
+
import scaled_masked_softmax_cuda
|
212 |
+
|
213 |
+
return scaled_masked_softmax_cuda.get_batch_per_block(sq, sk, b, np)
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/gpt_model.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
|
2 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
|
4 |
+
"""GPT-2 model."""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from megatron import get_args
|
9 |
+
from megatron.core import mpu, tensor_parallel, sequence_parallel
|
10 |
+
from .module import MegatronModule, fp32_to_float16, float16_to_fp32
|
11 |
+
|
12 |
+
from .enums import AttnMaskType
|
13 |
+
from .language_model import parallel_lm_logits
|
14 |
+
from .language_model import get_language_model
|
15 |
+
from .utils import init_method_normal
|
16 |
+
from .utils import scaled_init_method_normal
|
17 |
+
|
18 |
+
from megatron.model import LayerNorm
|
19 |
+
from .language_model import EmbeddingPipe
|
20 |
+
from .rmsnorm import RMSNorm
|
21 |
+
from .transformer import ParallelTransformerLayerPipe, LMHeadPipe
|
22 |
+
from deepspeed.pipe import PipelineModule, LayerSpec, TiedLayerSpec
|
23 |
+
|
24 |
+
try:
|
25 |
+
from apex.normalization import MixedFusedRMSNorm
|
26 |
+
except ImportError:
|
27 |
+
MixedFusedRMSNorm = RMSNorm
|
28 |
+
|
29 |
+
try:
|
30 |
+
from deepspeed.checkpoint import (
|
31 |
+
VOCABULARY_PARAMETER_PATTERNS,
|
32 |
+
PIPELINE_REPLICATED_PARAMETER_PATTERNS,
|
33 |
+
TP_REPLICATED_PARAMETER_PATTERNS,
|
34 |
+
PARAMETER_WITH_ROW_PARALLELISM_PATTERNS,
|
35 |
+
PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0,
|
36 |
+
)
|
37 |
+
DS_UNIVERSAL_CHECKPOINT_INFO = True
|
38 |
+
except ImportError:
|
39 |
+
DS_UNIVERSAL_CHECKPOINT_INFO = False
|
40 |
+
|
41 |
+
|
42 |
+
def post_language_model_processing(lm_output, labels, logit_weights,
|
43 |
+
parallel_output,
|
44 |
+
fp16_lm_cross_entropy):
|
45 |
+
|
46 |
+
# Output. Format [s b h]
|
47 |
+
output = parallel_lm_logits(
|
48 |
+
lm_output,
|
49 |
+
logit_weights,
|
50 |
+
parallel_output)
|
51 |
+
|
52 |
+
if labels is None:
|
53 |
+
# [s b h] => [b s h]
|
54 |
+
return output.transpose(0,1).contiguous()
|
55 |
+
else:
|
56 |
+
# [b s] => [s b]
|
57 |
+
labels = labels.transpose(0,1).contiguous()
|
58 |
+
cross_entropy = sequence_parallel.vocab_sequence_parallel_cross_entropy if mpu.get_sequence_parallel_world_size() > 1 \
|
59 |
+
else tensor_parallel.vocab_parallel_cross_entropy
|
60 |
+
if fp16_lm_cross_entropy:
|
61 |
+
assert output.dtype == torch.half
|
62 |
+
loss = cross_entropy(output, labels)
|
63 |
+
else:
|
64 |
+
loss = cross_entropy(output.float(), labels)
|
65 |
+
|
66 |
+
# [s b] => [b, s]
|
67 |
+
loss = loss.transpose(0,1).contiguous()
|
68 |
+
return loss
|
69 |
+
|
70 |
+
|
71 |
+
class GPTModel(MegatronModule):
|
72 |
+
"""GPT-2 Language model."""
|
73 |
+
|
74 |
+
def __init__(self,
|
75 |
+
config,
|
76 |
+
num_tokentypes=0,
|
77 |
+
parallel_output=True,
|
78 |
+
pre_process=True,
|
79 |
+
post_process=True,
|
80 |
+
return_moe_loss=True):
|
81 |
+
args = get_args()
|
82 |
+
super().__init__(config=config, share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights)
|
83 |
+
|
84 |
+
self.parallel_output = parallel_output
|
85 |
+
self.pre_process = pre_process
|
86 |
+
self.post_process = post_process
|
87 |
+
self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
|
88 |
+
self.return_moe_loss = return_moe_loss
|
89 |
+
self.untie_embeddings_and_output_weights = args.untie_embeddings_and_output_weights
|
90 |
+
|
91 |
+
self.language_model, self._language_model_key = get_language_model(
|
92 |
+
config=config,
|
93 |
+
num_tokentypes=num_tokentypes,
|
94 |
+
add_pooler=False,
|
95 |
+
encoder_attn_mask_type=AttnMaskType.causal,
|
96 |
+
pre_process=self.pre_process,
|
97 |
+
post_process=self.post_process,
|
98 |
+
num_experts=args.num_experts)
|
99 |
+
|
100 |
+
if not args.untie_embeddings_and_output_weights:
|
101 |
+
self.initialize_word_embeddings()
|
102 |
+
|
103 |
+
def set_input_tensor(self, input_tensor):
|
104 |
+
"""See megatron.model.transformer.set_input_tensor()"""
|
105 |
+
self.language_model.set_input_tensor(input_tensor)
|
106 |
+
|
107 |
+
def forward(self, input_ids, position_ids, attention_mask,
|
108 |
+
retriever_input_ids=None,
|
109 |
+
retriever_position_ids=None,
|
110 |
+
retriever_attn_mask=None,
|
111 |
+
labels=None, tokentype_ids=None, inference_params=None,
|
112 |
+
curriculum_seqlen=None):
|
113 |
+
args = get_args()
|
114 |
+
if curriculum_seqlen is not None:
|
115 |
+
args.curriculum_seqlen = curriculum_seqlen
|
116 |
+
if curriculum_seqlen < input_ids.size()[1]:
|
117 |
+
# seqlen-based curriculum learning
|
118 |
+
# input_ids, position_ids, labels have size [batch size, seqlen]
|
119 |
+
input_ids = input_ids[:, :curriculum_seqlen].contiguous()
|
120 |
+
position_ids = position_ids[:, :curriculum_seqlen].contiguous()
|
121 |
+
if labels is not None:
|
122 |
+
labels = labels[:, :curriculum_seqlen].contiguous()
|
123 |
+
|
124 |
+
# attention_mask has size [1, 1, seqlen, seqlen]
|
125 |
+
attention_mask = attention_mask[:, :, :curriculum_seqlen, :curriculum_seqlen].contiguous()
|
126 |
+
else:
|
127 |
+
if args.curriculum_learning_legacy:
|
128 |
+
# If got a None input, need to reset curriculum_seqlen on user side
|
129 |
+
args.curriculum_seqlen = args.seq_length
|
130 |
+
|
131 |
+
lm_output, moe_losses = self.language_model(
|
132 |
+
input_ids,
|
133 |
+
position_ids,
|
134 |
+
attention_mask,
|
135 |
+
retriever_input_ids=retriever_input_ids,
|
136 |
+
retriever_position_ids=retriever_position_ids,
|
137 |
+
retriever_attn_mask=retriever_attn_mask,
|
138 |
+
inference_params=inference_params)
|
139 |
+
|
140 |
+
if self.post_process:
|
141 |
+
lm_output = post_language_model_processing(
|
142 |
+
lm_output, labels,
|
143 |
+
self.language_model.output_layer.weight if self.untie_embeddings_and_output_weights else self.shared_embedding_or_output_weight(),
|
144 |
+
self.parallel_output,
|
145 |
+
self.fp16_lm_cross_entropy)
|
146 |
+
|
147 |
+
return lm_output, moe_losses if self.return_moe_loss else lm_output
|
148 |
+
|
149 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
150 |
+
|
151 |
+
state_dict_ = {}
|
152 |
+
language_model_state_dict = self.language_model.state_dict_for_save_checkpoint(
|
153 |
+
prefix=prefix, keep_vars=keep_vars)
|
154 |
+
# MoE states need to be handled separately by DeepSpeed engine, thus
|
155 |
+
# moving them to the top level dictionary
|
156 |
+
if "moe_state_dict" in language_model_state_dict:
|
157 |
+
for key in list(language_model_state_dict["moe_state_dict"].keys()):
|
158 |
+
state_dict_[key] = language_model_state_dict["moe_state_dict"].pop(key)
|
159 |
+
del language_model_state_dict["moe_state_dict"]
|
160 |
+
state_dict_[self._language_model_key] = language_model_state_dict
|
161 |
+
# Save word_embeddings.
|
162 |
+
if self.post_process and not self.pre_process and not self.untie_embeddings_and_output_weights:
|
163 |
+
state_dict_[self._word_embeddings_for_head_key] \
|
164 |
+
= self.word_embeddings.state_dict(prefix=prefix,
|
165 |
+
keep_vars=keep_vars)
|
166 |
+
return state_dict_
|
167 |
+
|
168 |
+
def load_state_dict(self, state_dict, strict=True):
|
169 |
+
"""Customized load."""
|
170 |
+
|
171 |
+
# Load word_embeddings.
|
172 |
+
if self.post_process and not self.pre_process and not self.untie_embeddings_and_output_weights:
|
173 |
+
self.word_embeddings.load_state_dict(
|
174 |
+
state_dict[self._word_embeddings_for_head_key], strict=strict)
|
175 |
+
# Gather MoE states and move under language model
|
176 |
+
moe_state_dict = {}
|
177 |
+
for key in list(state_dict.keys()):
|
178 |
+
if 'expert' in key and 'moe.gate.wg.weight' not in key:
|
179 |
+
moe_state_dict[key] = state_dict.pop(key)
|
180 |
+
if self._language_model_key in state_dict:
|
181 |
+
state_dict = state_dict[self._language_model_key]
|
182 |
+
if len(moe_state_dict) > 0:
|
183 |
+
state_dict["moe_state_dict"] = moe_state_dict
|
184 |
+
self.language_model.load_state_dict(state_dict, strict=strict)
|
185 |
+
|
186 |
+
def universal_checkpoint_info(self):
|
187 |
+
info = dict()
|
188 |
+
if DS_UNIVERSAL_CHECKPOINT_INFO:
|
189 |
+
# Vocabulary parameters (embeddings) that require special handling due to padding.
|
190 |
+
info[VOCABULARY_PARAMETER_PATTERNS] = [
|
191 |
+
r"tied_modules.embed.word_embeddings.weight"
|
192 |
+
]
|
193 |
+
|
194 |
+
# Parameter slices that should be averaged not concatenated.
|
195 |
+
info[TP_REPLICATED_PARAMETER_PATTERNS] = [
|
196 |
+
r"tied_modules.embed.position_embeddings.weight",
|
197 |
+
r"\d+.input_layernorm.weight",
|
198 |
+
r"\d+.input_layernorm.bias",
|
199 |
+
r"\d+.post_attention_layernorm.weight",
|
200 |
+
r"\d+.post_attention_layernorm.bias",
|
201 |
+
r"\d+.self_attention.dense.bias",
|
202 |
+
r"\d+.mlp.dense_4h_to_h.bias",
|
203 |
+
r"\d+.weight",
|
204 |
+
r"\d+.bias",
|
205 |
+
]
|
206 |
+
|
207 |
+
# Parameter that are sliced on the row dimension
|
208 |
+
info[PARAMETER_WITH_ROW_PARALLELISM_PATTERNS] = [
|
209 |
+
r"\d+.mlp.dense_4h_to_h.weight",
|
210 |
+
r"\d+.self_attention.dense.weight",
|
211 |
+
]
|
212 |
+
|
213 |
+
return info
|
214 |
+
|
215 |
+
def CrossEntropy(output, labels):
|
216 |
+
labels, loss_mask = labels[0], labels[1]
|
217 |
+
|
218 |
+
args = get_args()
|
219 |
+
|
220 |
+
# [b s] => [s b]
|
221 |
+
labels = labels.transpose(0, 1).contiguous()
|
222 |
+
losses = tensor_parallel.vocab_parallel_cross_entropy(output.contiguous().float(), labels)
|
223 |
+
# [s b] => [b, s]
|
224 |
+
losses = losses.transpose(0, 1).contiguous()
|
225 |
+
loss_mask = loss_mask.view(-1)
|
226 |
+
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
|
227 |
+
return loss
|
228 |
+
|
229 |
+
|
230 |
+
class GPTModelPipe(PipelineModule,MegatronModule):
|
231 |
+
"""GPT-2 Language model."""
|
232 |
+
|
233 |
+
def __init__(self,
|
234 |
+
config,
|
235 |
+
num_tokentypes=0,
|
236 |
+
parallel_output=True):
|
237 |
+
args = get_args()
|
238 |
+
self.parallel_output = parallel_output
|
239 |
+
|
240 |
+
if config.init_method is None:
|
241 |
+
config.init_method = init_method_normal(config.init_method_std)
|
242 |
+
|
243 |
+
if config.output_layer_init_method is None:
|
244 |
+
config.output_layer_init_method = scaled_init_method_normal(config.init_method_std,
|
245 |
+
config.num_layers)
|
246 |
+
|
247 |
+
self.specs = []
|
248 |
+
|
249 |
+
def _to_float16(inputs):
|
250 |
+
if args.fp16:
|
251 |
+
return fp32_to_float16(inputs, lambda v: v.half())
|
252 |
+
elif args.bf16:
|
253 |
+
return fp32_to_float16(inputs, lambda v: v.bfloat16())
|
254 |
+
else:
|
255 |
+
return inputs
|
256 |
+
|
257 |
+
self.specs.append(_to_float16)
|
258 |
+
|
259 |
+
# Embedding layer
|
260 |
+
if args.untie_embeddings_and_output_weights:
|
261 |
+
self.specs.append(LayerSpec(EmbeddingPipe,
|
262 |
+
args.hidden_size,
|
263 |
+
args.padded_vocab_size,
|
264 |
+
args.max_position_embeddings,
|
265 |
+
args.hidden_dropout,
|
266 |
+
config,
|
267 |
+
add_position_embedding=args.add_position_embedding,
|
268 |
+
num_tokentypes=num_tokentypes,
|
269 |
+
embedding_weights_in_fp32=args.embedding_weights_in_fp32,))
|
270 |
+
else:
|
271 |
+
self.specs.append(TiedLayerSpec('embed',
|
272 |
+
EmbeddingPipe,
|
273 |
+
args.hidden_size,
|
274 |
+
args.padded_vocab_size,
|
275 |
+
args.max_position_embeddings,
|
276 |
+
args.hidden_dropout,
|
277 |
+
config,
|
278 |
+
add_position_embedding=args.add_position_embedding,
|
279 |
+
num_tokentypes=num_tokentypes,
|
280 |
+
embedding_weights_in_fp32=args.embedding_weights_in_fp32,
|
281 |
+
tied_weight_attr='word_embeddings_weight'))
|
282 |
+
|
283 |
+
for layer_idx in range(args.num_layers):
|
284 |
+
self.specs.append(
|
285 |
+
LayerSpec(ParallelTransformerLayerPipe,
|
286 |
+
config,
|
287 |
+
layer_number=layer_idx,
|
288 |
+
self_attn_mask_type=AttnMaskType.causal))
|
289 |
+
|
290 |
+
# Final layernorm after transformer layers
|
291 |
+
if args.normalization == 'layernorm':
|
292 |
+
self.specs.append(LayerSpec(LayerNorm,
|
293 |
+
args.hidden_size,
|
294 |
+
eps=args.layernorm_epsilon,
|
295 |
+
sequence_parallel=args.sequence_parallel))
|
296 |
+
else:
|
297 |
+
self.specs.append(LayerSpec(MixedFusedRMSNorm, args.hidden_size,
|
298 |
+
args.layernorm_epsilon,
|
299 |
+
sequence_parallel=args.sequence_parallel))
|
300 |
+
|
301 |
+
def _logits_helper(embedding, lm_output):
|
302 |
+
"""A wrapper to massage inputs/outputs from pipeline. """
|
303 |
+
return parallel_lm_logits(
|
304 |
+
lm_output,
|
305 |
+
embedding.word_embeddings_weight,
|
306 |
+
self.parallel_output)
|
307 |
+
if args.untie_embeddings_and_output_weights:
|
308 |
+
self.specs.append(
|
309 |
+
LayerSpec(LMHeadPipe, args.hidden_size, args.padded_vocab_size, config)
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
self.specs.append(
|
313 |
+
TiedLayerSpec('embed',
|
314 |
+
EmbeddingPipe,
|
315 |
+
args.hidden_size,
|
316 |
+
args.padded_vocab_size,
|
317 |
+
args.max_position_embeddings,
|
318 |
+
args.hidden_dropout,
|
319 |
+
config,
|
320 |
+
add_position_embedding=(args.add_position_embedding and (not args.fix_position_emb_redundant_alloc)),
|
321 |
+
num_tokentypes=num_tokentypes,
|
322 |
+
embedding_weights_in_fp32=args.embedding_weights_in_fp32,
|
323 |
+
forward_fn=_logits_helper,
|
324 |
+
tied_weight_attr='word_embeddings_weight')
|
325 |
+
)
|
326 |
+
|
327 |
+
# Convert to fp32 if needed
|
328 |
+
if args.fp16 or args.bf16:
|
329 |
+
self.specs.append(float16_to_fp32)
|
330 |
+
|
331 |
+
# for selective, use --recompute-activations or --recompute-granularity='selective'
|
332 |
+
# for full, use --recompute-granularity='full' --recompute-method='uniform' or
|
333 |
+
# --checkpoint-activations
|
334 |
+
if args.checkpoint_activations:
|
335 |
+
interval = args.checkpoint_num_layers
|
336 |
+
elif args.recompute_granularity == "full" and args.recompute_method == 'uniform':
|
337 |
+
# deepspeed's pipeline doesn't support the block recompute method
|
338 |
+
interval = args.recompute_num_layers
|
339 |
+
else:
|
340 |
+
interval = 0
|
341 |
+
|
342 |
+
from deepspeed.runtime.pipe.topology import PipeModelDataParallelTopology
|
343 |
+
topo = PipeModelDataParallelTopology(num_pp=mpu.get_pipeline_model_parallel_world_size(),
|
344 |
+
num_mp=mpu.get_tensor_model_parallel_world_size(),
|
345 |
+
num_dp=mpu.get_data_parallel_world_size())
|
346 |
+
|
347 |
+
super().__init__(layers=self.specs,
|
348 |
+
loss_fn=CrossEntropy,
|
349 |
+
topology=topo,
|
350 |
+
activation_checkpoint_interval=interval,
|
351 |
+
partition_method='type:transformer')
|
352 |
+
|
353 |
+
@staticmethod
|
354 |
+
def _get_vocab_param_patterns():
|
355 |
+
args = get_args()
|
356 |
+
if args.untie_embeddings_and_output_weights:
|
357 |
+
patterns = [
|
358 |
+
r"\d+.word_embeddings.weight",
|
359 |
+
r"\d+.lm_head.weight"
|
360 |
+
]
|
361 |
+
else:
|
362 |
+
patterns = [
|
363 |
+
r"tied_modules.embed.word_embeddings.weight"
|
364 |
+
]
|
365 |
+
return patterns
|
366 |
+
|
367 |
+
def _get_pp_replicated_param_patterns(self):
|
368 |
+
args = get_args()
|
369 |
+
if args.untie_embeddings_and_output_weights:
|
370 |
+
return []
|
371 |
+
patterns = self._get_vocab_param_patterns()
|
372 |
+
if args.add_position_embedding:
|
373 |
+
patterns.append(r"tied_modules.embed.position_embeddings.weight")
|
374 |
+
return patterns
|
375 |
+
|
376 |
+
@staticmethod
|
377 |
+
def _get_tp_replicated_param_patterns():
|
378 |
+
args = get_args()
|
379 |
+
patterns = [
|
380 |
+
r"\d+.input_layernorm.weight",
|
381 |
+
r"\d+.post_attention_layernorm.weight",
|
382 |
+
r"\d+.weight",
|
383 |
+
]
|
384 |
+
if args.add_position_embedding:
|
385 |
+
patterns.append(r"tied_modules.embed.position_embeddings.weight")
|
386 |
+
if args.add_bias_linear:
|
387 |
+
patterns.extend([
|
388 |
+
r"\d+.self_attention.dense.bias",
|
389 |
+
r"\d+.mlp.dense_4h_to_h.bias",
|
390 |
+
])
|
391 |
+
if args.normalization == 'layernorm':
|
392 |
+
patterns.extend([
|
393 |
+
r"\d+.input_layernorm.bias",
|
394 |
+
r"\d+.post_attention_layernorm.bias",
|
395 |
+
r"\d+.bias",
|
396 |
+
])
|
397 |
+
return patterns
|
398 |
+
|
399 |
+
@staticmethod
|
400 |
+
def _get_row_parallel_param_patterns():
|
401 |
+
return [
|
402 |
+
r"\d+.mlp.dense_4h_to_h.weight",
|
403 |
+
r"\d+.self_attention.dense.weight",
|
404 |
+
]
|
405 |
+
|
406 |
+
@staticmethod
|
407 |
+
def _get_swiglu_col_parallel_param_patterns():
|
408 |
+
args = get_args()
|
409 |
+
if not args.swiglu:
|
410 |
+
return []
|
411 |
+
patterns = [
|
412 |
+
r"\d+.mlp.dense_h_to_4h.weight",
|
413 |
+
]
|
414 |
+
if args.add_bias_linear:
|
415 |
+
patterns.append(r"\d+.mlp.dense_h_to_4h.bias")
|
416 |
+
return patterns
|
417 |
+
|
418 |
+
|
419 |
+
def universal_checkpoint_info(self):
|
420 |
+
info = dict()
|
421 |
+
if DS_UNIVERSAL_CHECKPOINT_INFO:
|
422 |
+
# Vocabulary parameters (embeddings) that require special handling due to padding.
|
423 |
+
info[VOCABULARY_PARAMETER_PATTERNS] = self._get_vocab_param_patterns()
|
424 |
+
|
425 |
+
# Replicated (shared) parameters on the pipeline dimension
|
426 |
+
info[PIPELINE_REPLICATED_PARAMETER_PATTERNS] = self._get_pp_replicated_param_patterns()
|
427 |
+
|
428 |
+
# Parameter slices that should be averaged not concatenated.
|
429 |
+
info[TP_REPLICATED_PARAMETER_PATTERNS] = self._get_tp_replicated_param_patterns()
|
430 |
+
|
431 |
+
# Parameter that are sliced on the row dimension
|
432 |
+
info[PARAMETER_WITH_ROW_PARALLELISM_PATTERNS] = self._get_row_parallel_param_patterns()
|
433 |
+
|
434 |
+
# SWIGLU parameters are first sliced on dim=0 to tp slices
|
435 |
+
# Then, each tp slice is chunked into 2 to create the linear layers L1, L2 used for silu(L1(x)) * L2(x))
|
436 |
+
info[PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0] = self._get_swiglu_col_parallel_param_patterns()
|
437 |
+
return info
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/language_model.py
ADDED
@@ -0,0 +1,723 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
|
2 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
|
4 |
+
"""Transformer based language model."""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from megatron import get_args
|
10 |
+
from megatron.core import mpu, tensor_parallel
|
11 |
+
from megatron.core.enums import ModelType
|
12 |
+
|
13 |
+
from .enums import AttnMaskType, LayerType
|
14 |
+
from .module import MegatronModule
|
15 |
+
from .rotary_pos_embedding import apply_rotary_pos_emb, RotaryEmbedding
|
16 |
+
from .transformer import ParallelTransformer
|
17 |
+
from .utils import get_linear_layer
|
18 |
+
from .utils import init_method_normal, scaled_init_method_normal, gather_and_init
|
19 |
+
|
20 |
+
|
21 |
+
def parallel_lm_logits(input_, word_embeddings_weight, parallel_output,
|
22 |
+
bias=None):
|
23 |
+
"""LM logits using word embedding weights."""
|
24 |
+
args = get_args()
|
25 |
+
# Parallel logits.
|
26 |
+
if args.async_tensor_model_parallel_allreduce or\
|
27 |
+
args.sequence_parallel:
|
28 |
+
input_parallel = input_
|
29 |
+
model_parallel = mpu.get_tensor_model_parallel_world_size() > 1
|
30 |
+
async_grad_allreduce = args.async_tensor_model_parallel_allreduce and \
|
31 |
+
model_parallel and not args.sequence_parallel
|
32 |
+
else:
|
33 |
+
input_parallel = tensor_parallel.copy_to_tensor_model_parallel_region(input_)
|
34 |
+
async_grad_allreduce = False
|
35 |
+
|
36 |
+
# Matrix multiply.
|
37 |
+
logits_parallel = tensor_parallel.linear_with_grad_accumulation_and_async_allreduce(
|
38 |
+
input=input_parallel,
|
39 |
+
weight=word_embeddings_weight,
|
40 |
+
bias=bias,
|
41 |
+
gradient_accumulation_fusion=args.gradient_accumulation_fusion,
|
42 |
+
async_grad_allreduce=async_grad_allreduce,
|
43 |
+
sequence_parallel=args.sequence_parallel)
|
44 |
+
# Gather if needed.
|
45 |
+
|
46 |
+
if parallel_output:
|
47 |
+
return logits_parallel
|
48 |
+
|
49 |
+
return tensor_parallel.gather_from_tensor_model_parallel_region(logits_parallel)
|
50 |
+
|
51 |
+
|
52 |
+
def get_language_model(config, num_tokentypes, add_pooler,
|
53 |
+
encoder_attn_mask_type,
|
54 |
+
add_encoder=True,
|
55 |
+
add_decoder=False,
|
56 |
+
decoder_attn_mask_type=AttnMaskType.causal,
|
57 |
+
pre_process=True, post_process=True, num_experts=[1]):
|
58 |
+
"""Build language model and return along with the key to save."""
|
59 |
+
args = get_args()
|
60 |
+
if config.init_method is None:
|
61 |
+
config.init_method = init_method_normal(config.init_method_std)
|
62 |
+
|
63 |
+
if config.output_layer_init_method is None:
|
64 |
+
config.output_layer_init_method = scaled_init_method_normal(config.init_method_std,
|
65 |
+
config.num_layers)
|
66 |
+
|
67 |
+
# Language model.
|
68 |
+
language_model = TransformerLanguageModel(
|
69 |
+
config,
|
70 |
+
encoder_attn_mask_type,
|
71 |
+
num_tokentypes=num_tokentypes,
|
72 |
+
add_encoder=add_encoder,
|
73 |
+
add_decoder=add_decoder,
|
74 |
+
decoder_attn_mask_type=decoder_attn_mask_type,
|
75 |
+
add_pooler=add_pooler,
|
76 |
+
pre_process=pre_process,
|
77 |
+
post_process=post_process,
|
78 |
+
num_experts=num_experts)
|
79 |
+
# key used for checkpoints.
|
80 |
+
language_model_key = 'language_model'
|
81 |
+
|
82 |
+
return language_model, language_model_key
|
83 |
+
|
84 |
+
|
85 |
+
class Pooler(MegatronModule):
|
86 |
+
"""Pooler layer.
|
87 |
+
|
88 |
+
Pool hidden states of a specific token (for example start of the
|
89 |
+
sequence) and add a linear transformation followed by a tanh.
|
90 |
+
|
91 |
+
Arguments:
|
92 |
+
hidden_size: hidden size
|
93 |
+
init_method: weight initialization method for the linear layer.
|
94 |
+
bias is set to zero.
|
95 |
+
"""
|
96 |
+
|
97 |
+
def __init__(self, hidden_size, init_method):
|
98 |
+
super(Pooler, self).__init__()
|
99 |
+
args = get_args()
|
100 |
+
self.dense = get_linear_layer(hidden_size, hidden_size, init_method, gather_params_on_init=args.zero_stage == 3)
|
101 |
+
self.sequence_parallel = args.sequence_parallel
|
102 |
+
|
103 |
+
|
104 |
+
def forward(self, hidden_states, sequence_index=0):
|
105 |
+
# hidden_states: [s, b, h]
|
106 |
+
# sequence_index: index of the token to pool.
|
107 |
+
|
108 |
+
# gather data along sequence dimensions
|
109 |
+
# same pooler is run on all tensor parallel nodes
|
110 |
+
if self.sequence_parallel:
|
111 |
+
hidden_states = tensor_parallel.gather_from_sequence_parallel_region(
|
112 |
+
hidden_states,
|
113 |
+
tensor_parallel_output_grad=False)
|
114 |
+
|
115 |
+
pooled = hidden_states[sequence_index, :, :]
|
116 |
+
pooled = self.dense(pooled)
|
117 |
+
pooled = torch.tanh(pooled)
|
118 |
+
return pooled
|
119 |
+
|
120 |
+
|
121 |
+
class Embedding(MegatronModule):
|
122 |
+
"""Language model embeddings.
|
123 |
+
|
124 |
+
Arguments:
|
125 |
+
hidden_size: hidden size
|
126 |
+
vocab_size: vocabulary size
|
127 |
+
max_sequence_length: maximum size of sequence. This
|
128 |
+
is used for positional embedding
|
129 |
+
embedding_dropout_prob: dropout probability for embeddings
|
130 |
+
init_method: weight initialization method
|
131 |
+
num_tokentypes: size of the token-type embeddings. 0 value
|
132 |
+
will ignore this embedding
|
133 |
+
embedding_weights_in_fp32: casts word embedding weights to
|
134 |
+
fp32 before sampling. Required to
|
135 |
+
maintain reproducibility when
|
136 |
+
training in bf16.
|
137 |
+
"""
|
138 |
+
|
139 |
+
def __init__(self,
|
140 |
+
hidden_size,
|
141 |
+
vocab_size,
|
142 |
+
max_sequence_length,
|
143 |
+
embedding_dropout_prob,
|
144 |
+
config,
|
145 |
+
add_position_embedding=True,
|
146 |
+
num_tokentypes=0,
|
147 |
+
embedding_weights_in_fp32=False):
|
148 |
+
super(Embedding, self).__init__()
|
149 |
+
|
150 |
+
self.hidden_size = hidden_size
|
151 |
+
self.init_method = config.init_method
|
152 |
+
self.num_tokentypes = num_tokentypes
|
153 |
+
|
154 |
+
args = get_args()
|
155 |
+
|
156 |
+
# Word embeddings (parallel).
|
157 |
+
self.embedding_weights_in_fp32 = embedding_weights_in_fp32
|
158 |
+
self.params_dtype = args.params_dtype
|
159 |
+
self.word_embeddings = tensor_parallel.VocabParallelEmbedding(
|
160 |
+
vocab_size, self.hidden_size, config=config, init_method=config.init_method)
|
161 |
+
self._word_embeddings_key = 'word_embeddings'
|
162 |
+
|
163 |
+
# Position embedding (serial).
|
164 |
+
self.add_position_embedding = add_position_embedding
|
165 |
+
if self.add_position_embedding:
|
166 |
+
self._position_embeddings_key = 'position_embeddings'
|
167 |
+
if args.sequence_parallel:
|
168 |
+
self.position_embeddings = tensor_parallel.layers.SequenceParallelPositionEmbedding(
|
169 |
+
max_sequence_length, self.hidden_size)
|
170 |
+
# Initialize the position embeddings.
|
171 |
+
self.init_method(self.position_embeddings.local_embeddings.weight)
|
172 |
+
else:
|
173 |
+
self.position_embeddings = torch.nn.Embedding(
|
174 |
+
max_sequence_length, self.hidden_size)
|
175 |
+
# Initialize the position embeddings.
|
176 |
+
if args.perform_initialization:
|
177 |
+
if args.zero_stage == 3:
|
178 |
+
gather_and_init(self.position_embeddings.weight, self.init_method)
|
179 |
+
else:
|
180 |
+
self.init_method(self.position_embeddings.weight)
|
181 |
+
|
182 |
+
# Token type embedding.
|
183 |
+
# Add this as an optional field that can be added through
|
184 |
+
# method call so we can load a pretrain model without
|
185 |
+
# token types and add them as needed.
|
186 |
+
self._tokentype_embeddings_key = 'tokentype_embeddings'
|
187 |
+
if self.num_tokentypes > 0:
|
188 |
+
self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
|
189 |
+
self.hidden_size)
|
190 |
+
# Initialize the token-type embeddings.
|
191 |
+
if args.perform_initialization:
|
192 |
+
if args.zero_stage == 3:
|
193 |
+
gather_and_init(self.tokentype_embeddings.weight, self.init_method)
|
194 |
+
else:
|
195 |
+
self.init_method(self.tokentype_embeddings.weight)
|
196 |
+
else:
|
197 |
+
self.tokentype_embeddings = None
|
198 |
+
|
199 |
+
self.fp32_residual_connection = args.fp32_residual_connection
|
200 |
+
self.sequence_parallel = args.sequence_parallel
|
201 |
+
# Embeddings dropout
|
202 |
+
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
|
203 |
+
|
204 |
+
def zero_parameters(self):
|
205 |
+
"""Zero out all parameters in embedding."""
|
206 |
+
self.word_embeddings.weight.data.fill_(0)
|
207 |
+
self.word_embeddings.weight.shared = True
|
208 |
+
if self.add_position_embedding:
|
209 |
+
self.position_embeddings.weight.data.fill_(0)
|
210 |
+
self.position_embeddings.weight.shared = True
|
211 |
+
if self.num_tokentypes > 0:
|
212 |
+
self.tokentype_embeddings.weight.data.fill_(0)
|
213 |
+
self.tokentype_embeddings.weight.shared = True
|
214 |
+
|
215 |
+
def add_tokentype_embeddings(self, num_tokentypes):
|
216 |
+
"""Add token-type embedding. This function is provided so we can add
|
217 |
+
token-type embeddings in case the pretrained model does not have it.
|
218 |
+
This allows us to load the model normally and then add this embedding.
|
219 |
+
"""
|
220 |
+
if self.tokentype_embeddings is not None:
|
221 |
+
raise Exception('tokentype embeddings is already initialized')
|
222 |
+
if torch.distributed.get_rank() == 0:
|
223 |
+
print('adding embedding for {} tokentypes'.format(num_tokentypes),
|
224 |
+
flush=True)
|
225 |
+
self.num_tokentypes = num_tokentypes
|
226 |
+
self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
|
227 |
+
self.hidden_size)
|
228 |
+
# Initialize the token-type embeddings.
|
229 |
+
args = get_args()
|
230 |
+
self.init_method(self.tokentype_embeddings.weight)
|
231 |
+
|
232 |
+
def forward(self, input_ids, position_ids, tokentype_ids=None):
|
233 |
+
# Embeddings.
|
234 |
+
if self.embedding_weights_in_fp32:
|
235 |
+
self.word_embeddings = self.word_embeddings.to(torch.float32)
|
236 |
+
words_embeddings = self.word_embeddings(input_ids)
|
237 |
+
if self.embedding_weights_in_fp32:
|
238 |
+
words_embeddings = words_embeddings.to(self.params_dtype)
|
239 |
+
self.word_embeddings = self.word_embeddings.to(self.params_dtype)
|
240 |
+
if self.add_position_embedding:
|
241 |
+
position_embeddings = self.position_embeddings(position_ids)
|
242 |
+
embeddings = words_embeddings + position_embeddings
|
243 |
+
else:
|
244 |
+
embeddings = words_embeddings
|
245 |
+
|
246 |
+
if tokentype_ids is not None:
|
247 |
+
assert self.tokentype_embeddings is not None
|
248 |
+
embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
|
249 |
+
else:
|
250 |
+
assert self.tokentype_embeddings is None
|
251 |
+
|
252 |
+
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
|
253 |
+
embeddings = embeddings.transpose(0, 1).contiguous()
|
254 |
+
|
255 |
+
# If the input flag for fp32 residual connection is set, convert for float.
|
256 |
+
if self.fp32_residual_connection:
|
257 |
+
embeddings = embeddings.float()
|
258 |
+
|
259 |
+
# Dropout.
|
260 |
+
if self.sequence_parallel:
|
261 |
+
# already partition sequence, do not need scatter_to_sequence_parallel_region ?
|
262 |
+
embeddings = tensor_parallel.scatter_to_sequence_parallel_region(embeddings)
|
263 |
+
with tensor_parallel.get_cuda_rng_tracker().fork():
|
264 |
+
embeddings = self.embedding_dropout(embeddings)
|
265 |
+
else:
|
266 |
+
embeddings = self.embedding_dropout(embeddings)
|
267 |
+
|
268 |
+
return embeddings
|
269 |
+
|
270 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
271 |
+
"""For easy load."""
|
272 |
+
|
273 |
+
state_dict_ = {}
|
274 |
+
state_dict_[self._word_embeddings_key] \
|
275 |
+
= self.word_embeddings.state_dict(prefix=prefix,
|
276 |
+
keep_vars=keep_vars)
|
277 |
+
if self.add_position_embedding:
|
278 |
+
state_dict_[self._position_embeddings_key] \
|
279 |
+
= self.position_embeddings.state_dict(prefix=prefix,
|
280 |
+
keep_vars=keep_vars)
|
281 |
+
if self.num_tokentypes > 0:
|
282 |
+
state_dict_[self._tokentype_embeddings_key] \
|
283 |
+
= self.tokentype_embeddings.state_dict(prefix=prefix,
|
284 |
+
keep_vars=keep_vars)
|
285 |
+
|
286 |
+
return state_dict_
|
287 |
+
|
288 |
+
def load_state_dict(self, state_dict, strict=True):
|
289 |
+
"""Customized load."""
|
290 |
+
|
291 |
+
# Word embedding.
|
292 |
+
if self._word_embeddings_key in state_dict:
|
293 |
+
state_dict_ = state_dict[self._word_embeddings_key]
|
294 |
+
else:
|
295 |
+
# for backward compatibility.
|
296 |
+
state_dict_ = {}
|
297 |
+
for key in state_dict.keys():
|
298 |
+
if 'word_embeddings' in key:
|
299 |
+
state_dict_[key.split('word_embeddings.')[1]] \
|
300 |
+
= state_dict[key]
|
301 |
+
self.word_embeddings.load_state_dict(state_dict_, strict=strict)
|
302 |
+
|
303 |
+
# Position embedding.
|
304 |
+
if self.add_position_embedding:
|
305 |
+
if self._position_embeddings_key in state_dict:
|
306 |
+
state_dict_ = state_dict[self._position_embeddings_key]
|
307 |
+
else:
|
308 |
+
# for backward compatibility.
|
309 |
+
state_dict_ = {}
|
310 |
+
for key in state_dict.keys():
|
311 |
+
if 'position_embeddings' in key:
|
312 |
+
state_dict_[key.split('position_embeddings.')[1]] \
|
313 |
+
= state_dict[key]
|
314 |
+
self.position_embeddings.load_state_dict(state_dict_, strict=strict)
|
315 |
+
|
316 |
+
# Tokentype embedding.
|
317 |
+
if self.num_tokentypes > 0:
|
318 |
+
state_dict_ = {}
|
319 |
+
if self._tokentype_embeddings_key in state_dict:
|
320 |
+
state_dict_ = state_dict[self._tokentype_embeddings_key]
|
321 |
+
else:
|
322 |
+
# for backward compatibility.
|
323 |
+
for key in state_dict.keys():
|
324 |
+
if 'tokentype_embeddings' in key:
|
325 |
+
state_dict_[key.split('tokentype_embeddings.')[1]] \
|
326 |
+
= state_dict[key]
|
327 |
+
if len(state_dict_.keys()) > 0:
|
328 |
+
self.tokentype_embeddings.load_state_dict(state_dict_,
|
329 |
+
strict=strict)
|
330 |
+
else:
|
331 |
+
print('***WARNING*** expected tokentype embeddings in the '
|
332 |
+
'checkpoint but could not find it', flush=True)
|
333 |
+
|
334 |
+
|
335 |
+
class EmbeddingPipe(Embedding):
|
336 |
+
|
337 |
+
def forward(self, inputs, **kwargs):
|
338 |
+
if not hasattr(self, '_args'):
|
339 |
+
self._args = get_args()
|
340 |
+
|
341 |
+
input_ids = inputs[0]
|
342 |
+
position_ids = inputs[1]
|
343 |
+
if hasattr(self._args, 'attn_mask'):
|
344 |
+
attention_mask = None
|
345 |
+
else:
|
346 |
+
attention_mask = inputs[2]
|
347 |
+
|
348 |
+
if len(inputs) == 4:
|
349 |
+
tokentype_ids = inputs[3]
|
350 |
+
else:
|
351 |
+
tokentype_ids = None
|
352 |
+
|
353 |
+
embeddings = super().forward(input_ids, position_ids, tokentype_ids=tokentype_ids)
|
354 |
+
|
355 |
+
# If cmd args has attn_mask, we don't forward it as an activation.
|
356 |
+
if hasattr(self._args, 'attn_mask'):
|
357 |
+
return embeddings
|
358 |
+
else:
|
359 |
+
assert False
|
360 |
+
return embeddings, attention_mask
|
361 |
+
|
362 |
+
|
363 |
+
@property
|
364 |
+
def word_embeddings_weight(self):
|
365 |
+
"""Easy accessory for the DeepSpeed pipeline engine to tie embeddings across stages."""
|
366 |
+
return self.word_embeddings.weight
|
367 |
+
|
368 |
+
|
369 |
+
class TransformerLanguageModel(MegatronModule):
|
370 |
+
"""Transformer language model.
|
371 |
+
|
372 |
+
Arguments:
|
373 |
+
transformer_hparams: transformer hyperparameters
|
374 |
+
vocab_size: vocabulary size
|
375 |
+
max_sequence_length: maximum size of sequence. This
|
376 |
+
is used for positional embedding
|
377 |
+
embedding_dropout_prob: dropout probability for embeddings
|
378 |
+
num_tokentypes: size of the token-type embeddings. 0 value
|
379 |
+
will ignore this embedding
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self,
|
383 |
+
config,
|
384 |
+
encoder_attn_mask_type,
|
385 |
+
num_tokentypes=0,
|
386 |
+
add_encoder=True,
|
387 |
+
add_decoder=False,
|
388 |
+
decoder_attn_mask_type=AttnMaskType.causal,
|
389 |
+
add_pooler=False,
|
390 |
+
pre_process=True,
|
391 |
+
post_process=True,
|
392 |
+
num_experts=[1]):
|
393 |
+
args = get_args()
|
394 |
+
# TODO: passing share_embeddings_and_output_weights=False will not work correctly for T5 and embeddings will not be synced. Fix later for T5.
|
395 |
+
if args.untie_embeddings_and_output_weights: assert not add_decoder
|
396 |
+
super(TransformerLanguageModel, self).__init__(share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights)
|
397 |
+
|
398 |
+
self.pre_process = pre_process
|
399 |
+
self.post_process = post_process
|
400 |
+
self.hidden_size = config.hidden_size
|
401 |
+
self.num_tokentypes = num_tokentypes
|
402 |
+
self.init_method = config.init_method
|
403 |
+
self.add_encoder = add_encoder
|
404 |
+
self.encoder_attn_mask_type = encoder_attn_mask_type
|
405 |
+
self.add_decoder = add_decoder
|
406 |
+
self.decoder_attn_mask_type = decoder_attn_mask_type
|
407 |
+
self.add_pooler = add_pooler
|
408 |
+
self.encoder_hidden_state = None
|
409 |
+
self.add_retriever = args.retro_add_retriever
|
410 |
+
self.untie_embeddings_and_output_weights = args.untie_embeddings_and_output_weights
|
411 |
+
self.num_experts = num_experts
|
412 |
+
|
413 |
+
# Embeddings.
|
414 |
+
if self.pre_process:
|
415 |
+
self.embedding = Embedding(self.hidden_size,
|
416 |
+
args.padded_vocab_size,
|
417 |
+
args.max_position_embeddings,
|
418 |
+
args.hidden_dropout,
|
419 |
+
config,
|
420 |
+
args.add_position_embedding,
|
421 |
+
self.num_tokentypes,
|
422 |
+
args.embedding_weights_in_fp32)
|
423 |
+
self._embedding_key = 'embedding'
|
424 |
+
|
425 |
+
# Rotary positional embeddings
|
426 |
+
self.use_rotary_position_embeddings = \
|
427 |
+
args.use_rotary_position_embeddings
|
428 |
+
if args.use_rotary_position_embeddings:
|
429 |
+
self.seq_length = args.seq_length
|
430 |
+
rotary_dim = args.hidden_size // args.num_attention_heads \
|
431 |
+
if args.kv_channels is None else args.kv_channels
|
432 |
+
|
433 |
+
if args.rotary_percent < 1.0:
|
434 |
+
rotary_dim = int(rotary_dim * args.rotary_percent)
|
435 |
+
|
436 |
+
# partial rotary embeddings, which is better than full rotary
|
437 |
+
# Wang and Komatsuzaki et al
|
438 |
+
# https://github.com/kingoflolz/mesh-transformer-jax/
|
439 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_dim)
|
440 |
+
|
441 |
+
# Encoder (usually set to True, False if part of an encoder-decoder
|
442 |
+
# architecture and in encoder-only stage).
|
443 |
+
if self.add_encoder:
|
444 |
+
self.encoder = ParallelTransformer(
|
445 |
+
config,
|
446 |
+
model_type=args.model_type if not args.retro_add_retriever \
|
447 |
+
else ModelType.retro_decoder,
|
448 |
+
self_attn_mask_type=self.encoder_attn_mask_type,
|
449 |
+
pre_process=self.pre_process,
|
450 |
+
post_process=self.post_process,
|
451 |
+
num_experts=self.num_experts
|
452 |
+
)
|
453 |
+
self._encoder_key = 'encoder'
|
454 |
+
else:
|
455 |
+
self.encoder = None
|
456 |
+
|
457 |
+
# Decoder (usually set to False, True if part of an encoder-decoder
|
458 |
+
# architecture and in decoder-only stage).
|
459 |
+
if self.add_decoder:
|
460 |
+
self.decoder = ParallelTransformer(
|
461 |
+
config,
|
462 |
+
model_type=args.model_type,
|
463 |
+
layer_type=LayerType.decoder,
|
464 |
+
self_attn_mask_type=self.decoder_attn_mask_type,
|
465 |
+
pre_process=self.pre_process,
|
466 |
+
post_process=self.post_process,
|
467 |
+
num_experts=self.num_experts)
|
468 |
+
self._decoder_key = 'decoder'
|
469 |
+
else:
|
470 |
+
self.decoder = None
|
471 |
+
|
472 |
+
if self.post_process:
|
473 |
+
# Pooler.
|
474 |
+
if self.add_pooler:
|
475 |
+
self.pooler = Pooler(self.hidden_size, self.init_method)
|
476 |
+
self._pooler_key = 'pooler'
|
477 |
+
|
478 |
+
if self.untie_embeddings_and_output_weights:
|
479 |
+
self.output_layer = tensor_parallel.ColumnParallelLinear(
|
480 |
+
args.hidden_size,
|
481 |
+
args.padded_vocab_size,
|
482 |
+
config=config,
|
483 |
+
init_method=self.init_method,
|
484 |
+
bias=False) # Setting bias to False always to keep it consistent with embedding tying that also does not have a bias.
|
485 |
+
self._output_layer_key = 'output_layer'
|
486 |
+
|
487 |
+
def set_input_tensor(self, input_tensor):
|
488 |
+
""" See megatron.model.transformer.set_input_tensor()"""
|
489 |
+
|
490 |
+
# This is usually handled in schedules.py but some inference code still
|
491 |
+
# gives us non-lists or None
|
492 |
+
if not isinstance(input_tensor, list):
|
493 |
+
input_tensor = [input_tensor]
|
494 |
+
|
495 |
+
if self.add_encoder and self.add_decoder:
|
496 |
+
assert len(input_tensor) == 1, \
|
497 |
+
'input_tensor should only be length 1 for stage with both encoder and decoder'
|
498 |
+
self.encoder.set_input_tensor(input_tensor[0])
|
499 |
+
elif self.add_encoder:
|
500 |
+
assert len(input_tensor) == 1, \
|
501 |
+
'input_tensor should only be length 1 for stage with only encoder'
|
502 |
+
self.encoder.set_input_tensor(input_tensor[0])
|
503 |
+
elif self.add_decoder:
|
504 |
+
if len(input_tensor) == 2:
|
505 |
+
self.decoder.set_input_tensor(input_tensor[0])
|
506 |
+
self.encoder_hidden_state = input_tensor[1]
|
507 |
+
elif len(input_tensor) == 1:
|
508 |
+
self.decoder.set_input_tensor(None)
|
509 |
+
self.encoder_hidden_state = input_tensor[0]
|
510 |
+
else:
|
511 |
+
raise Exception('input_tensor must have either length 1 or 2')
|
512 |
+
else:
|
513 |
+
raise Exception('Stage must have at least either encoder or decoder')
|
514 |
+
|
515 |
+
def forward(self, enc_input_ids, enc_position_ids, enc_attn_mask,
|
516 |
+
dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None,
|
517 |
+
retriever_input_ids=None,
|
518 |
+
retriever_position_ids=None,
|
519 |
+
retriever_attn_mask=None,
|
520 |
+
enc_dec_attn_mask=None, tokentype_ids=None,
|
521 |
+
inference_params=None,
|
522 |
+
pooling_sequence_index=0,
|
523 |
+
enc_hidden_states=None, output_enc_hidden=False):
|
524 |
+
args = get_args()
|
525 |
+
# Encoder embedding.
|
526 |
+
if self.pre_process:
|
527 |
+
encoder_input = self.embedding(enc_input_ids, enc_position_ids,
|
528 |
+
tokentype_ids=tokentype_ids)
|
529 |
+
else:
|
530 |
+
encoder_input = None
|
531 |
+
|
532 |
+
# Retriever embedding.
|
533 |
+
if self.add_retriever and self.pre_process:
|
534 |
+
retriever_input = self.embedding(retriever_input_ids,
|
535 |
+
retriever_position_ids,
|
536 |
+
tokentype_ids=tokentype_ids)
|
537 |
+
else:
|
538 |
+
retriever_input = None
|
539 |
+
|
540 |
+
# Rotary positional embeddings
|
541 |
+
rotary_pos_emb = None
|
542 |
+
if self.use_rotary_position_embeddings:
|
543 |
+
if inference_params is not None:
|
544 |
+
rotary_pos_emb = \
|
545 |
+
self.rotary_pos_emb(inference_params.max_sequence_len)
|
546 |
+
else:
|
547 |
+
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning:
|
548 |
+
rotary_pos_emb = self.rotary_pos_emb(args.curriculum_seqlen)
|
549 |
+
else:
|
550 |
+
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
551 |
+
|
552 |
+
# Run encoder.
|
553 |
+
if enc_hidden_states is None:
|
554 |
+
if self.encoder is not None:
|
555 |
+
encoder_output, *encoder_moe_losses = self.encoder(
|
556 |
+
encoder_input,
|
557 |
+
enc_attn_mask,
|
558 |
+
retriever_input=retriever_input,
|
559 |
+
retriever_attn_mask=retriever_attn_mask,
|
560 |
+
inference_params=inference_params,
|
561 |
+
rotary_pos_emb=rotary_pos_emb)
|
562 |
+
else:
|
563 |
+
encoder_output = self.encoder_hidden_state
|
564 |
+
else:
|
565 |
+
encoder_output, encoder_moe_losses = enc_hidden_states.to(encoder_input.dtype), []
|
566 |
+
|
567 |
+
if self.post_process:
|
568 |
+
if self.add_pooler:
|
569 |
+
pooled_output = self.pooler(encoder_output,
|
570 |
+
pooling_sequence_index)
|
571 |
+
|
572 |
+
# output_enc_hidden refers to when we just need the encoder's
|
573 |
+
# output. For example, it is helpful to compute
|
574 |
+
# similarity between two sequences by average pooling
|
575 |
+
if not self.add_decoder or output_enc_hidden:
|
576 |
+
if self.add_pooler and self.post_process:
|
577 |
+
return encoder_output, pooled_output, encoder_moe_losses
|
578 |
+
else:
|
579 |
+
return encoder_output, encoder_moe_losses
|
580 |
+
|
581 |
+
# Decoder embedding.
|
582 |
+
if self.pre_process:
|
583 |
+
decoder_input = self.embedding(dec_input_ids,
|
584 |
+
dec_position_ids)
|
585 |
+
else:
|
586 |
+
decoder_input = None
|
587 |
+
|
588 |
+
# Run decoder.
|
589 |
+
decoder_output, *decoder_moe_losses = self.decoder(
|
590 |
+
decoder_input,
|
591 |
+
dec_attn_mask,
|
592 |
+
encoder_output=encoder_output,
|
593 |
+
enc_dec_attn_mask=enc_dec_attn_mask,
|
594 |
+
inference_params=inference_params,
|
595 |
+
rotary_pos_emb=rotary_pos_emb)
|
596 |
+
|
597 |
+
if self.add_pooler and self.post_process:
|
598 |
+
return decoder_output, encoder_output, pooled_output, decoder_moe_losses, encoder_moe_losses
|
599 |
+
else:
|
600 |
+
return decoder_output, encoder_output, decoder_moe_losses, encoder_moe_losses
|
601 |
+
|
602 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
603 |
+
"""For easy load."""
|
604 |
+
args = get_args()
|
605 |
+
state_dict_ = {}
|
606 |
+
moe_state_dict = {}
|
607 |
+
if self.pre_process:
|
608 |
+
state_dict_[self._embedding_key] \
|
609 |
+
= self.embedding.state_dict_for_save_checkpoint(prefix=prefix,
|
610 |
+
keep_vars=keep_vars)
|
611 |
+
if self.add_encoder:
|
612 |
+
encoder_state_dict = self.encoder.state_dict_for_save_checkpoint(
|
613 |
+
prefix=prefix, keep_vars=keep_vars)
|
614 |
+
if args.random_ltd:
|
615 |
+
# When using random-LTD, it is required to call remove_random_ltd_state_dict
|
616 |
+
# during model checkpoint saving to transfer the random-LTD-wrapped
|
617 |
+
# layers back to original layers. This will help to remove the dependency
|
618 |
+
# to random-LTD inside the checkpoint, so that during evaluation or
|
619 |
+
# finetuning of the checkpoint there is no need to depend on random-LTD
|
620 |
+
# again.
|
621 |
+
from deepspeed.runtime.data_pipeline.data_routing.helper import remove_random_ltd_state_dict
|
622 |
+
encoder_state_dict = remove_random_ltd_state_dict(encoder_state_dict)
|
623 |
+
# MoE states need to be handled separately by DeepSpeed engine, thus
|
624 |
+
# moving them to the top level dictionary
|
625 |
+
# If components other than encoder may contain MoE states, need to add
|
626 |
+
# the same logic
|
627 |
+
for key in list(encoder_state_dict.keys()):
|
628 |
+
if 'expert' in key and 'moe.gate.wg.weight' not in key:
|
629 |
+
moe_state_dict[self._encoder_key+key] = encoder_state_dict.pop(key)
|
630 |
+
state_dict_[self._encoder_key] = encoder_state_dict
|
631 |
+
|
632 |
+
if self.post_process:
|
633 |
+
if self.add_pooler:
|
634 |
+
state_dict_[self._pooler_key] \
|
635 |
+
= self.pooler.state_dict_for_save_checkpoint(prefix=prefix,
|
636 |
+
keep_vars=keep_vars)
|
637 |
+
if self.untie_embeddings_and_output_weights:
|
638 |
+
state_dict_[self._output_layer_key] \
|
639 |
+
= self.output_layer.state_dict(prefix=prefix, keep_vars=keep_vars)
|
640 |
+
|
641 |
+
if self.add_decoder:
|
642 |
+
state_dict_[self._decoder_key] \
|
643 |
+
= self.decoder.state_dict_for_save_checkpoint(prefix=prefix,
|
644 |
+
keep_vars=keep_vars)
|
645 |
+
|
646 |
+
state_dict_["moe_state_dict"] = moe_state_dict
|
647 |
+
return state_dict_
|
648 |
+
|
649 |
+
def load_state_dict(self, state_dict, strict=True):
|
650 |
+
"""Customized load."""
|
651 |
+
|
652 |
+
# Embedding.
|
653 |
+
if self.pre_process:
|
654 |
+
if self._embedding_key in state_dict:
|
655 |
+
state_dict_ = state_dict[self._embedding_key]
|
656 |
+
else:
|
657 |
+
# for backward compatibility.
|
658 |
+
state_dict_ = {}
|
659 |
+
for key in state_dict.keys():
|
660 |
+
if '_embeddings' in key:
|
661 |
+
state_dict_[key] = state_dict[key]
|
662 |
+
self.embedding.load_state_dict(state_dict_, strict=strict)
|
663 |
+
|
664 |
+
# Encoder.
|
665 |
+
if self.add_encoder:
|
666 |
+
if self._encoder_key in state_dict:
|
667 |
+
state_dict_ = state_dict[self._encoder_key]
|
668 |
+
# For backward compatibility.
|
669 |
+
elif 'transformer' in state_dict:
|
670 |
+
state_dict_ = state_dict['transformer']
|
671 |
+
else:
|
672 |
+
# For backward compatibility.
|
673 |
+
state_dict_ = {}
|
674 |
+
for key in state_dict.keys():
|
675 |
+
if 'transformer.' in key:
|
676 |
+
state_dict_[key.split('transformer.')[1]] = state_dict[key]
|
677 |
+
|
678 |
+
# For backward compatibility.
|
679 |
+
# Somehow this backward compatibility could be wrong: sometimes
|
680 |
+
# '.attention.' is the actual key used so should not be replaced. Thus
|
681 |
+
# added another logic to only replace if the key does not match
|
682 |
+
state_dict_self_attention = {}
|
683 |
+
encoder_state_dict_keys = list(self.encoder.state_dict().keys())
|
684 |
+
for key in state_dict_.keys():
|
685 |
+
if '.attention.' in key and key not in encoder_state_dict_keys:
|
686 |
+
state_dict_self_attention[key.replace(".attention.",
|
687 |
+
".self_attention.")] = state_dict_[key]
|
688 |
+
else:
|
689 |
+
state_dict_self_attention[key] = state_dict_[key]
|
690 |
+
state_dict_ = state_dict_self_attention
|
691 |
+
|
692 |
+
# Gather encoder MoE states
|
693 |
+
if "moe_state_dict" in state_dict:
|
694 |
+
for key in list(state_dict["moe_state_dict"].keys()):
|
695 |
+
if self._encoder_key in key:
|
696 |
+
key_list = key.split('.')
|
697 |
+
while key_list[0] != 'encoder':
|
698 |
+
key_list.pop(0)
|
699 |
+
key_list.pop(0)
|
700 |
+
actual_key = '.'.join(key_list)
|
701 |
+
state_dict_[actual_key] = state_dict["moe_state_dict"].pop(key)
|
702 |
+
if len(state_dict["moe_state_dict"]) == 0:
|
703 |
+
del state_dict["moe_state_dict"]
|
704 |
+
self.encoder.load_state_dict(state_dict_, strict=strict)
|
705 |
+
|
706 |
+
# Pooler.
|
707 |
+
if self.post_process:
|
708 |
+
if self.add_pooler:
|
709 |
+
assert 'pooler' in state_dict, \
|
710 |
+
'could not find data for pooler in the checkpoint'
|
711 |
+
self.pooler.load_state_dict(state_dict[self._pooler_key],
|
712 |
+
strict=strict)
|
713 |
+
if self.untie_embeddings_and_output_weights:
|
714 |
+
assert 'output_layer' in state_dict, \
|
715 |
+
'could not find data for output_layer in the checkpoint'
|
716 |
+
self.output_layer.load_state_dict(state_dict[self._output_layer_key],
|
717 |
+
strict=strict)
|
718 |
+
# Decoder.
|
719 |
+
if self.add_decoder:
|
720 |
+
assert 'decoder' in state_dict, \
|
721 |
+
'could not find data for pooler in the checkpoint'
|
722 |
+
self.decoder.load_state_dict(state_dict[self._decoder_key],
|
723 |
+
strict=strict)
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/llama_model.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) 2023 Habana Labs, Ltd. an Intel Company.
|
3 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""LLaMA model."""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from megatron import get_args
|
22 |
+
from megatron import mpu
|
23 |
+
from .module import MegatronModule, fp32_to_float16
|
24 |
+
|
25 |
+
from .enums import AttnMaskType
|
26 |
+
from megatron.enums import PositionEmbeddingType
|
27 |
+
from .language_model import parallel_lm_logits
|
28 |
+
from .language_model import get_language_model
|
29 |
+
from .utils import init_method_normal, scaled_init_method_normal, WrapName
|
30 |
+
|
31 |
+
from deepspeed.pipe import PipelineModule, LayerSpec, TiedLayerSpec
|
32 |
+
from megatron.model import RMSNorm, LayerNorm, CrossEntropy
|
33 |
+
from megatron.model.module import float16_to_fp32
|
34 |
+
from .language_model import EmbeddingPipe
|
35 |
+
from .transformer import ParallelTransformerLayerPipe
|
36 |
+
|
37 |
+
|
38 |
+
def logits_loss(lm_output, labels, fp16_lm_cross_entropy):
|
39 |
+
|
40 |
+
if labels is None:
|
41 |
+
return lm_output
|
42 |
+
else:
|
43 |
+
if fp16_lm_cross_entropy:
|
44 |
+
assert lm_output.dtype == torch.half
|
45 |
+
loss = mpu.vocab_parallel_cross_entropy(lm_output, labels)
|
46 |
+
else:
|
47 |
+
loss = mpu.vocab_parallel_cross_entropy(lm_output.float(), labels)
|
48 |
+
return loss
|
49 |
+
|
50 |
+
|
51 |
+
class LLaMAModel(MegatronModule):
|
52 |
+
"""LLaMA Language model."""
|
53 |
+
|
54 |
+
def __init__(self,
|
55 |
+
num_tokentypes=0,
|
56 |
+
parallel_output=True,
|
57 |
+
pre_process=True,
|
58 |
+
post_process=True,
|
59 |
+
return_moe_loss=True):
|
60 |
+
super(LLaMAModel, self).__init__()
|
61 |
+
args = get_args()
|
62 |
+
|
63 |
+
self.parallel_output = parallel_output
|
64 |
+
self.pre_process = pre_process
|
65 |
+
self.post_process = post_process
|
66 |
+
self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
|
67 |
+
self.return_moe_loss = return_moe_loss
|
68 |
+
if args.no_scaled_init:
|
69 |
+
scaled_init_method = init_method_normal(args.init_method_std)
|
70 |
+
else:
|
71 |
+
scaled_init_method = scaled_init_method_normal(args.init_method_std, args.num_layers)
|
72 |
+
assert args.position_embedding_type == PositionEmbeddingType.rotary, 'LLaMA should use rotary positional embeddings'
|
73 |
+
self.language_model, self._language_model_key = get_language_model(
|
74 |
+
num_tokentypes=num_tokentypes,
|
75 |
+
add_pooler=False,
|
76 |
+
encoder_attn_mask_type=AttnMaskType.causal,
|
77 |
+
init_method=init_method_normal(args.init_method_std),
|
78 |
+
scaled_init_method=scaled_init_method,
|
79 |
+
num_experts=args.num_experts,
|
80 |
+
pre_process=self.pre_process,
|
81 |
+
post_process=self.post_process,
|
82 |
+
use_position=False)
|
83 |
+
|
84 |
+
self.vocab_projection = mpu.layers.VocabParallelProjection(
|
85 |
+
args.padded_vocab_size,
|
86 |
+
args.hidden_size,
|
87 |
+
parallel_output=True,
|
88 |
+
init_method=init_method_normal(args.init_method_std)
|
89 |
+
)
|
90 |
+
|
91 |
+
def set_input_tensor(self, input_tensor):
|
92 |
+
"""See megatron.model.transformer.set_input_tensor()"""
|
93 |
+
self.language_model.set_input_tensor(input_tensor)
|
94 |
+
|
95 |
+
def forward(self, input_ids, position_ids, attention_mask, labels=None,
|
96 |
+
tokentype_ids=None, layer_past=None, get_key_value=False,
|
97 |
+
forward_method_parallel_output=None, curriculum_seqlen=None):
|
98 |
+
args = get_args()
|
99 |
+
if curriculum_seqlen is not None:
|
100 |
+
args.curriculum_seqlen = curriculum_seqlen
|
101 |
+
if curriculum_seqlen < input_ids.size()[1]:
|
102 |
+
# seqlen-based curriculum learning
|
103 |
+
# input_ids, position_ids, labels have size [batch size, seqlen]
|
104 |
+
input_ids = input_ids[:, :curriculum_seqlen].contiguous()
|
105 |
+
position_ids = position_ids[:, :curriculum_seqlen].contiguous()
|
106 |
+
if labels is not None:
|
107 |
+
labels = labels[:, :curriculum_seqlen].contiguous()
|
108 |
+
|
109 |
+
# attention_mask has size [1, 1, seqlen, seqlen]
|
110 |
+
attention_mask = attention_mask[:, :, :curriculum_seqlen, :curriculum_seqlen].contiguous()
|
111 |
+
else:
|
112 |
+
if args.curriculum_learning:
|
113 |
+
# If got a None input, need to reset curriculum_seqlen on user side
|
114 |
+
args.curriculum_seqlen = args.seq_length
|
115 |
+
|
116 |
+
lm_output, *moe_losses = self.language_model(
|
117 |
+
input_ids,
|
118 |
+
position_ids,
|
119 |
+
attention_mask,
|
120 |
+
layer_past=layer_past,
|
121 |
+
get_key_value=get_key_value)
|
122 |
+
|
123 |
+
if self.post_process:
|
124 |
+
if get_key_value:
|
125 |
+
lm_output, presents = lm_output
|
126 |
+
lm_output = self.vocab_projection(lm_output)
|
127 |
+
lm_output = logits_loss(lm_output, labels, self.fp16_lm_cross_entropy)
|
128 |
+
if get_key_value:
|
129 |
+
lm_output = [lm_output, presents]
|
130 |
+
|
131 |
+
if self.return_moe_loss:
|
132 |
+
return (lm_output, *moe_losses)
|
133 |
+
else:
|
134 |
+
return lm_output
|
135 |
+
|
136 |
+
def state_dict_for_save_checkpoint(self, destination=None, prefix='',
|
137 |
+
keep_vars=False):
|
138 |
+
|
139 |
+
state_dict_ = {}
|
140 |
+
language_model_state_dict = self.language_model.state_dict_for_save_checkpoint(
|
141 |
+
destination, prefix, keep_vars)
|
142 |
+
# MoE states need to be handled separately by DeepSpeed engine, thus
|
143 |
+
# moving them to the top level dictionary
|
144 |
+
if "moe_state_dict" in language_model_state_dict:
|
145 |
+
for key in list(language_model_state_dict["moe_state_dict"].keys()):
|
146 |
+
state_dict_[key] = language_model_state_dict["moe_state_dict"].pop(key)
|
147 |
+
del language_model_state_dict["moe_state_dict"]
|
148 |
+
state_dict_[self._language_model_key] = language_model_state_dict
|
149 |
+
# Save word_embeddings.
|
150 |
+
if self.post_process and not self.pre_process:
|
151 |
+
state_dict_[self._word_embeddings_for_head_key] \
|
152 |
+
= self.word_embeddings.state_dict(destination, prefix, keep_vars)
|
153 |
+
return state_dict_
|
154 |
+
|
155 |
+
def load_state_dict(self, state_dict, strict=True):
|
156 |
+
"""Customized load."""
|
157 |
+
|
158 |
+
# Load word_embeddings.
|
159 |
+
if self.post_process and not self.pre_process:
|
160 |
+
self.word_embeddings.load_state_dict(
|
161 |
+
state_dict[self._word_embeddings_for_head_key], strict=strict)
|
162 |
+
# Gather MoE states and move under language model
|
163 |
+
moe_state_dict = {}
|
164 |
+
for key in list(state_dict.keys()):
|
165 |
+
if 'expert' in key and 'moe.gate.wg.weight' not in key:
|
166 |
+
moe_state_dict[key] = state_dict.pop(key)
|
167 |
+
if self._language_model_key in state_dict:
|
168 |
+
state_dict = state_dict[self._language_model_key]
|
169 |
+
if len(moe_state_dict) > 0:
|
170 |
+
state_dict["moe_state_dict"] = moe_state_dict
|
171 |
+
self.language_model.load_state_dict(state_dict, strict=strict)
|
172 |
+
|
173 |
+
|
174 |
+
class LLaMAModelPipe(PipelineModule,MegatronModule):
|
175 |
+
"""LLaMA Language model."""
|
176 |
+
|
177 |
+
def __init__(self,
|
178 |
+
num_tokentypes=0,
|
179 |
+
parallel_output=True):
|
180 |
+
args = get_args()
|
181 |
+
self.parallel_output = parallel_output
|
182 |
+
|
183 |
+
init_method = init_method_normal(args.init_method_std)
|
184 |
+
|
185 |
+
if args.no_scaled_init:
|
186 |
+
scaled_init_method = init_method_normal(args.init_method_std)
|
187 |
+
else:
|
188 |
+
scaled_init_method = scaled_init_method_normal(args.init_method_std, args.num_layers)
|
189 |
+
|
190 |
+
self.specs = []
|
191 |
+
|
192 |
+
def _to_float16(inputs):
|
193 |
+
if args.fp16:
|
194 |
+
return fp32_to_float16(inputs, lambda v: v.half())
|
195 |
+
elif args.bf16:
|
196 |
+
return fp32_to_float16(inputs, lambda v: v.bfloat16())
|
197 |
+
else:
|
198 |
+
return inputs
|
199 |
+
|
200 |
+
self.specs.append(_to_float16)
|
201 |
+
|
202 |
+
# Embedding layer
|
203 |
+
# assert args.position_embedding_type == PositionEmbeddingType.rotary, 'LLaMA should use rotary positional embeddings'
|
204 |
+
self.specs.append(LayerSpec(EmbeddingPipe,
|
205 |
+
args.hidden_size,
|
206 |
+
args.padded_vocab_size,
|
207 |
+
args.max_position_embeddings,
|
208 |
+
args.hidden_dropout,
|
209 |
+
init_method=init_method,
|
210 |
+
num_tokentypes=num_tokentypes,
|
211 |
+
use_position=False))
|
212 |
+
|
213 |
+
if args.fp32_residual_connection:
|
214 |
+
if args.sequence_parallel:
|
215 |
+
self.specs.append(lambda x: x.float())
|
216 |
+
else:
|
217 |
+
self.specs.append(lambda x: x.transpose(0, 1).contiguous().float())
|
218 |
+
else:
|
219 |
+
if args.sequence_parallel:
|
220 |
+
self.specs.append(lambda x: x)
|
221 |
+
else:
|
222 |
+
self.specs.append(lambda x: x.transpose(0, 1).contiguous())
|
223 |
+
|
224 |
+
for layer_idx in range(args.num_layers):
|
225 |
+
self.specs.append(
|
226 |
+
LayerSpec(ParallelTransformerLayerPipe,
|
227 |
+
init_method=init_method,
|
228 |
+
output_layer_init_method=scaled_init_method,
|
229 |
+
layer_number=layer_idx,
|
230 |
+
self_attn_mask_type=AttnMaskType.causal))
|
231 |
+
|
232 |
+
|
233 |
+
# Final layernorm after transformer layers
|
234 |
+
if args.sequence_parallel:
|
235 |
+
self.specs.append(lambda x: x)
|
236 |
+
else:
|
237 |
+
# Undo data format change
|
238 |
+
self.specs.append(lambda x: x.transpose(0, 1).contiguous())
|
239 |
+
|
240 |
+
# Final RMSNorm after transformer layers
|
241 |
+
assert args.layernorm_type=='rmsnorm', 'LLaMA model should use RMSNorm'
|
242 |
+
self.specs.append(
|
243 |
+
LayerSpec(WrapName, 'final_rmsnorm',
|
244 |
+
RMSNorm,
|
245 |
+
args.hidden_size,
|
246 |
+
eps=args.layernorm_epsilon,
|
247 |
+
sequence_parallel=args.sequence_parallel))
|
248 |
+
|
249 |
+
self.specs.append(
|
250 |
+
LayerSpec(WrapName, 'vocab_parallel_projection',
|
251 |
+
mpu.layers.VocabParallelProjection,
|
252 |
+
args.padded_vocab_size,
|
253 |
+
args.hidden_size,
|
254 |
+
init_method=init_method)
|
255 |
+
)
|
256 |
+
|
257 |
+
if args.sequence_parallel:
|
258 |
+
self.specs.append(lambda x: x.transpose(0, 1).contiguous())
|
259 |
+
else:
|
260 |
+
self.specs.append(lambda x: x)
|
261 |
+
|
262 |
+
# Convert to fp32 if needed
|
263 |
+
if args.fp16 or args.bf16:
|
264 |
+
self.specs.append(float16_to_fp32)
|
265 |
+
|
266 |
+
if args.checkpoint_activations and args.checkpoint_activations_granularity == "full":
|
267 |
+
interval = args.checkpoint_num_layers
|
268 |
+
else:
|
269 |
+
interval = 0
|
270 |
+
|
271 |
+
from deepspeed.runtime.pipe.topology import PipeModelDataParallelTopology
|
272 |
+
topo = PipeModelDataParallelTopology(num_pp=mpu.get_pipeline_model_parallel_world_size(),
|
273 |
+
num_mp=mpu.get_tensor_model_parallel_world_size(),
|
274 |
+
num_dp=mpu.get_data_parallel_world_size())
|
275 |
+
|
276 |
+
super().__init__(layers=self.specs,
|
277 |
+
loss_fn=CrossEntropy,
|
278 |
+
topology=topo,
|
279 |
+
activation_checkpoint_interval=interval,
|
280 |
+
partition_method='type:transformer')
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/module.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
|
2 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
|
4 |
+
"""Megatron Module"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.autograd import Variable
|
8 |
+
from torch.nn.parameter import Parameter
|
9 |
+
from deepspeed.accelerator import get_accelerator
|
10 |
+
from megatron import get_args
|
11 |
+
from megatron.core import mpu, tensor_parallel
|
12 |
+
|
13 |
+
|
14 |
+
if get_accelerator().device_name() == "hpu":
|
15 |
+
# revert this once [SW-160732] is fixed
|
16 |
+
_FLOAT_TYPES = (torch.FloatTensor, )
|
17 |
+
_HALF_TYPES = (torch.HalfTensor, )
|
18 |
+
_BF16_TYPES = (torch.BFloat16Tensor, )
|
19 |
+
else:
|
20 |
+
_FLOAT_TYPES = (torch.FloatTensor, get_accelerator().FloatTensor)
|
21 |
+
_HALF_TYPES = (torch.HalfTensor, get_accelerator().HalfTensor)
|
22 |
+
_BF16_TYPES = (torch.BFloat16Tensor, get_accelerator().BFloat16Tensor)
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
def param_is_not_shared(param):
|
27 |
+
return not hasattr(param, 'shared') or not param.shared
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
class MegatronModule(torch.nn.Module):
|
32 |
+
"""Megatron specific extensions of torch Module with support
|
33 |
+
for pipelining."""
|
34 |
+
|
35 |
+
def __init__(self, config=None, share_embeddings_and_output_weights=True):
|
36 |
+
super(MegatronModule, self).__init__()
|
37 |
+
self.config = config
|
38 |
+
self.share_embeddings_and_output_weights = share_embeddings_and_output_weights
|
39 |
+
|
40 |
+
|
41 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
42 |
+
"""Use this function to override the state dict for
|
43 |
+
saving checkpoints."""
|
44 |
+
return self.state_dict(prefix=prefix, keep_vars=keep_vars)
|
45 |
+
|
46 |
+
|
47 |
+
def shared_embedding_or_output_weight(self):
|
48 |
+
if self.pre_process:
|
49 |
+
return self.language_model.embedding.word_embeddings.weight
|
50 |
+
else:
|
51 |
+
if not self.share_embeddings_and_output_weights:
|
52 |
+
raise Exception('shared_embedding_or_output_weight() called for last '
|
53 |
+
'stage, but share_embeddings_and_output_weights is false')
|
54 |
+
return self.word_embeddings.weight
|
55 |
+
|
56 |
+
|
57 |
+
def initialize_word_embeddings(self):
|
58 |
+
args = get_args()
|
59 |
+
if not self.share_embeddings_and_output_weights:
|
60 |
+
raise Exception('initialize_word_embeddings() was called but '
|
61 |
+
'share_embeddings_and_output_weights is false')
|
62 |
+
|
63 |
+
# This function just initializes the word embeddings in the final stage
|
64 |
+
# when we are using pipeline parallelism. Nothing to do if we aren't
|
65 |
+
# using pipeline parallelism.
|
66 |
+
if args.pipeline_model_parallel_size == 1:
|
67 |
+
return
|
68 |
+
|
69 |
+
# Parameters are shared between the word embeddings layers, and the
|
70 |
+
# heads at the end of the model. In a pipelined setup with more than
|
71 |
+
# one stage, the initial embedding layer and the head are on different
|
72 |
+
# workers, so we do the following:
|
73 |
+
# 1. Create a second copy of word_embeddings on the last stage, with
|
74 |
+
# initial parameters of 0.0.
|
75 |
+
# 2. Do an all-reduce between the first and last stage to ensure that
|
76 |
+
# the two copies of word_embeddings start off with the same
|
77 |
+
# parameter values.
|
78 |
+
# 3. In the training loop, before an all-reduce between the grads of
|
79 |
+
# the two word_embeddings layers to ensure that every applied weight
|
80 |
+
# update is the same on both stages.
|
81 |
+
if mpu.is_pipeline_last_stage() and not self.pre_process:
|
82 |
+
assert not mpu.is_pipeline_first_stage()
|
83 |
+
self._word_embeddings_for_head_key = 'word_embeddings_for_head'
|
84 |
+
# set word_embeddings weights to 0 here, then copy first
|
85 |
+
# stage's weights using all_reduce below.
|
86 |
+
self.word_embeddings = tensor_parallel.VocabParallelEmbedding(
|
87 |
+
args.padded_vocab_size, self.config.hidden_size,
|
88 |
+
config=self.config, init_method=self.config.init_method)
|
89 |
+
self.word_embeddings.weight.data.fill_(0)
|
90 |
+
self.word_embeddings.weight.shared = True
|
91 |
+
|
92 |
+
# Zero out initial weights for decoder embedding.
|
93 |
+
# NOTE: We don't currently support T5 with the interleaved schedule.
|
94 |
+
if not mpu.is_pipeline_first_stage(ignore_virtual=True) and \
|
95 |
+
self.pre_process:
|
96 |
+
self.language_model.embedding.zero_parameters()
|
97 |
+
|
98 |
+
if not torch.distributed.is_initialized():
|
99 |
+
if not getattr(MegatronModule, "embedding_warning_printed", False):
|
100 |
+
print("WARNING! Distributed processes aren't initialized, so "
|
101 |
+
"word embeddings in the last layer are not initialized. "
|
102 |
+
"If you are just manipulating a model this is fine, but "
|
103 |
+
"this needs to be handled manually. If you are training "
|
104 |
+
"something is definitely wrong.")
|
105 |
+
MegatronModule.embedding_warning_printed = True
|
106 |
+
return
|
107 |
+
|
108 |
+
# Ensure that first and last stages have the same initial parameter
|
109 |
+
# values.
|
110 |
+
if mpu.is_rank_in_embedding_group():
|
111 |
+
torch.distributed.all_reduce(self.shared_embedding_or_output_weight().data,
|
112 |
+
group=mpu.get_embedding_group())
|
113 |
+
|
114 |
+
# Ensure that encoder(first stage) and decoder(split stage) position
|
115 |
+
# embeddings have the same initial parameter values
|
116 |
+
# NOTE: We don't currently support T5 with the interleaved schedule.
|
117 |
+
if mpu.is_rank_in_position_embedding_group() and \
|
118 |
+
args.pipeline_model_parallel_split_rank is not None:
|
119 |
+
# TODO: Support tokentype embedding.
|
120 |
+
self.language_model.embedding.cuda()
|
121 |
+
position_embeddings = self.language_model.embedding.position_embeddings
|
122 |
+
torch.distributed.all_reduce(position_embeddings.weight.data,
|
123 |
+
group=mpu.get_position_embedding_group())
|
124 |
+
|
125 |
+
def universal_checkpoint_info(self):
|
126 |
+
return {}
|
127 |
+
|
128 |
+
def conversion_helper(val, conversion):
|
129 |
+
"""Apply conversion to val. Recursively apply conversion if `val`
|
130 |
+
#is a nested tuple/list structure."""
|
131 |
+
if not isinstance(val, (tuple, list)):
|
132 |
+
return conversion(val)
|
133 |
+
rtn = [conversion_helper(v, conversion) for v in val]
|
134 |
+
if isinstance(val, tuple):
|
135 |
+
rtn = tuple(rtn)
|
136 |
+
return rtn
|
137 |
+
|
138 |
+
|
139 |
+
def fp32_to_float16(val, float16_convertor):
|
140 |
+
"""Convert fp32 `val` to fp16/bf16"""
|
141 |
+
def half_conversion(val):
|
142 |
+
val_typecheck = val
|
143 |
+
if isinstance(val_typecheck, (Parameter, Variable)):
|
144 |
+
val_typecheck = val.data
|
145 |
+
if isinstance(val_typecheck, _FLOAT_TYPES):
|
146 |
+
val = float16_convertor(val)
|
147 |
+
return val
|
148 |
+
return conversion_helper(val, half_conversion)
|
149 |
+
|
150 |
+
|
151 |
+
def float16_to_fp32(val):
|
152 |
+
"""Convert fp16/bf16 `val` to fp32"""
|
153 |
+
def float_conversion(val):
|
154 |
+
val_typecheck = val
|
155 |
+
if isinstance(val_typecheck, (Parameter, Variable)):
|
156 |
+
val_typecheck = val.data
|
157 |
+
if isinstance(val_typecheck, (_BF16_TYPES, _HALF_TYPES)):
|
158 |
+
val = val.float()
|
159 |
+
return val
|
160 |
+
return conversion_helper(val, float_conversion)
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
class Float16Module(MegatronModule):
|
165 |
+
|
166 |
+
def __init__(self, module, args):
|
167 |
+
super(Float16Module, self).__init__()
|
168 |
+
|
169 |
+
if args.fp16:
|
170 |
+
self.add_module('module', module.half())
|
171 |
+
def float16_convertor(val):
|
172 |
+
return val.half()
|
173 |
+
elif args.bf16:
|
174 |
+
self.add_module('module', module.bfloat16())
|
175 |
+
def float16_convertor(val):
|
176 |
+
return val.bfloat16()
|
177 |
+
else:
|
178 |
+
raise Exception('should not be here')
|
179 |
+
|
180 |
+
self.float16_convertor = float16_convertor
|
181 |
+
|
182 |
+
|
183 |
+
def set_input_tensor(self, input_tensor):
|
184 |
+
return self.module.set_input_tensor(input_tensor)
|
185 |
+
|
186 |
+
|
187 |
+
def forward(self, *inputs, **kwargs):
|
188 |
+
if mpu.is_pipeline_first_stage():
|
189 |
+
inputs = fp32_to_float16(inputs, self.float16_convertor)
|
190 |
+
outputs = self.module(*inputs, **kwargs)
|
191 |
+
if mpu.is_pipeline_last_stage():
|
192 |
+
outputs = float16_to_fp32(outputs)
|
193 |
+
return outputs
|
194 |
+
|
195 |
+
|
196 |
+
def state_dict(self, prefix='', keep_vars=False):
|
197 |
+
return self.module.state_dict(prefix=prefix, keep_vars=keep_vars)
|
198 |
+
|
199 |
+
|
200 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
201 |
+
return self.module.state_dict_for_save_checkpoint(prefix=prefix,
|
202 |
+
keep_vars=keep_vars)
|
203 |
+
|
204 |
+
|
205 |
+
def load_state_dict(self, state_dict, strict=True):
|
206 |
+
self.module.load_state_dict(state_dict, strict=strict)
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/realm_model.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from megatron import get_args, print_rank_0
|
5 |
+
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
|
6 |
+
from megatron.model import BertModel
|
7 |
+
from .module import MegatronModule
|
8 |
+
from megatron.core import mpu
|
9 |
+
from megatron.model.enums import AttnMaskType
|
10 |
+
from megatron.model.utils import get_linear_layer
|
11 |
+
from megatron.model.utils import init_method_normal
|
12 |
+
from megatron.model.language_model import get_language_model
|
13 |
+
from megatron.model.utils import scaled_init_method_normal
|
14 |
+
from megatron.model.bert_model import bert_extended_attention_mask, bert_position_ids
|
15 |
+
from deepspeed.accelerator import get_accelerator
|
16 |
+
|
17 |
+
def general_ict_model_provider(only_query_model=False, only_block_model=False):
|
18 |
+
"""Build the model."""
|
19 |
+
args = get_args()
|
20 |
+
assert args.ict_head_size is not None, \
|
21 |
+
"Need to specify --ict-head-size to provide an ICTBertModel"
|
22 |
+
assert mpu.get_tensor_model_parallel_world_size() == 1 and mpu.get_pipeline_model_parallel_world_size() == 1, \
|
23 |
+
"Model parallel size > 1 not supported for ICT"
|
24 |
+
|
25 |
+
print_rank_0('building ICTBertModel...')
|
26 |
+
|
27 |
+
# simpler to just keep using 2 tokentypes since the LM we initialize with has 2 tokentypes
|
28 |
+
model = ICTBertModel(
|
29 |
+
ict_head_size=args.ict_head_size,
|
30 |
+
num_tokentypes=2,
|
31 |
+
parallel_output=True,
|
32 |
+
only_query_model=only_query_model,
|
33 |
+
only_block_model=only_block_model)
|
34 |
+
|
35 |
+
return model
|
36 |
+
|
37 |
+
|
38 |
+
class ICTBertModel(MegatronModule):
|
39 |
+
"""Bert-based module for Inverse Cloze task."""
|
40 |
+
def __init__(self,
|
41 |
+
ict_head_size,
|
42 |
+
num_tokentypes=1,
|
43 |
+
parallel_output=True,
|
44 |
+
only_query_model=False,
|
45 |
+
only_block_model=False):
|
46 |
+
super(ICTBertModel, self).__init__()
|
47 |
+
bert_kwargs = dict(
|
48 |
+
ict_head_size=ict_head_size,
|
49 |
+
num_tokentypes=num_tokentypes,
|
50 |
+
parallel_output=parallel_output
|
51 |
+
)
|
52 |
+
assert not (only_block_model and only_query_model)
|
53 |
+
self.use_block_model = not only_query_model
|
54 |
+
self.use_query_model = not only_block_model
|
55 |
+
|
56 |
+
if self.use_query_model:
|
57 |
+
# this model embeds (pseudo-)queries - Embed_input in the paper
|
58 |
+
self.query_model = IREncoderBertModel(**bert_kwargs)
|
59 |
+
self._query_key = 'question_model'
|
60 |
+
|
61 |
+
if self.use_block_model:
|
62 |
+
# this model embeds evidence blocks - Embed_doc in the paper
|
63 |
+
self.block_model = IREncoderBertModel(**bert_kwargs)
|
64 |
+
self._block_key = 'context_model'
|
65 |
+
|
66 |
+
def forward(self, query_tokens, query_attention_mask, block_tokens, block_attention_mask):
|
67 |
+
"""Run a forward pass for each of the models and return the respective embeddings."""
|
68 |
+
query_logits = self.embed_query(query_tokens, query_attention_mask)
|
69 |
+
block_logits = self.embed_block(block_tokens, block_attention_mask)
|
70 |
+
return query_logits, block_logits
|
71 |
+
|
72 |
+
def embed_query(self, query_tokens, query_attention_mask):
|
73 |
+
"""Embed a batch of tokens using the query model"""
|
74 |
+
if self.use_query_model:
|
75 |
+
query_types = get_accelerator().LongTensor(*query_tokens.shape).fill_(0)
|
76 |
+
query_ict_logits, _ = self.query_model.forward(query_tokens, query_attention_mask, query_types)
|
77 |
+
return query_ict_logits
|
78 |
+
else:
|
79 |
+
raise ValueError("Cannot embed query without query model.")
|
80 |
+
|
81 |
+
def embed_block(self, block_tokens, block_attention_mask):
|
82 |
+
"""Embed a batch of tokens using the block model"""
|
83 |
+
if self.use_block_model:
|
84 |
+
block_types = get_accelerator().LongTensor(*block_tokens.shape).fill_(0)
|
85 |
+
block_ict_logits, _ = self.block_model.forward(block_tokens, block_attention_mask, block_types)
|
86 |
+
return block_ict_logits
|
87 |
+
else:
|
88 |
+
raise ValueError("Cannot embed block without block model.")
|
89 |
+
|
90 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
91 |
+
"""Save dict with state dicts of each of the models."""
|
92 |
+
state_dict_ = {}
|
93 |
+
if self.use_query_model:
|
94 |
+
state_dict_[self._query_key] \
|
95 |
+
= self.query_model.state_dict_for_save_checkpoint(
|
96 |
+
prefix=prefix, keep_vars=keep_vars)
|
97 |
+
|
98 |
+
if self.use_block_model:
|
99 |
+
state_dict_[self._block_key] \
|
100 |
+
= self.block_model.state_dict_for_save_checkpoint(
|
101 |
+
prefix=prefix, keep_vars=keep_vars)
|
102 |
+
|
103 |
+
return state_dict_
|
104 |
+
|
105 |
+
def load_state_dict(self, state_dict, strict=True):
|
106 |
+
"""Load the state dicts of each of the models"""
|
107 |
+
if self.use_query_model:
|
108 |
+
print("Loading ICT query model", flush=True)
|
109 |
+
self.query_model.load_state_dict(
|
110 |
+
state_dict[self._query_key], strict=strict)
|
111 |
+
|
112 |
+
if self.use_block_model:
|
113 |
+
print("Loading ICT block model", flush=True)
|
114 |
+
self.block_model.load_state_dict(
|
115 |
+
state_dict[self._block_key], strict=strict)
|
116 |
+
|
117 |
+
def init_state_dict_from_bert(self):
|
118 |
+
"""Initialize the state from a pretrained BERT model on iteration zero of ICT pretraining"""
|
119 |
+
args = get_args()
|
120 |
+
tracker_filename = get_checkpoint_tracker_filename(args.bert_load)
|
121 |
+
if not os.path.isfile(tracker_filename):
|
122 |
+
raise FileNotFoundError("Could not find BERT load for ICT")
|
123 |
+
with open(tracker_filename, 'r') as f:
|
124 |
+
iteration = int(f.read().strip())
|
125 |
+
assert iteration > 0
|
126 |
+
|
127 |
+
checkpoint_name = get_checkpoint_name(args.bert_load, iteration, False)
|
128 |
+
if mpu.get_data_parallel_rank() == 0:
|
129 |
+
print('global rank {} is loading checkpoint {}'.format(
|
130 |
+
torch.distributed.get_rank(), checkpoint_name))
|
131 |
+
|
132 |
+
try:
|
133 |
+
state_dict = torch.load(checkpoint_name, map_location='cpu')
|
134 |
+
except BaseException:
|
135 |
+
raise ValueError("Could not load checkpoint")
|
136 |
+
|
137 |
+
# load the LM state dict into each model
|
138 |
+
model_dict = state_dict['model']['language_model']
|
139 |
+
self.query_model.language_model.load_state_dict(model_dict)
|
140 |
+
self.block_model.language_model.load_state_dict(model_dict)
|
141 |
+
|
142 |
+
# give each model the same ict_head to begin with as well
|
143 |
+
query_ict_head_state_dict = self.state_dict_for_save_checkpoint()[self._query_key]['ict_head']
|
144 |
+
self.block_model.ict_head.load_state_dict(query_ict_head_state_dict)
|
145 |
+
|
146 |
+
|
147 |
+
class IREncoderBertModel(MegatronModule):
|
148 |
+
"""BERT-based encoder for queries or blocks used for learned information retrieval."""
|
149 |
+
def __init__(self, ict_head_size, num_tokentypes=2, parallel_output=True):
|
150 |
+
super(IREncoderBertModel, self).__init__()
|
151 |
+
args = get_args()
|
152 |
+
|
153 |
+
self.ict_head_size = ict_head_size
|
154 |
+
self.parallel_output = parallel_output
|
155 |
+
init_method = init_method_normal(args.init_method_std)
|
156 |
+
scaled_init_method = scaled_init_method_normal(args.init_method_std,
|
157 |
+
args.num_layers)
|
158 |
+
|
159 |
+
self.language_model, self._language_model_key = get_language_model(
|
160 |
+
num_tokentypes=num_tokentypes,
|
161 |
+
add_pooler=True,
|
162 |
+
encoder_attn_mask_type=AttnMaskType.padding,
|
163 |
+
init_method=init_method,
|
164 |
+
scaled_init_method=scaled_init_method)
|
165 |
+
|
166 |
+
self.ict_head = get_linear_layer(args.hidden_size, ict_head_size, init_method, gather_params_on_init=args.zero_stage == 3)
|
167 |
+
self._ict_head_key = 'ict_head'
|
168 |
+
|
169 |
+
def forward(self, input_ids, attention_mask, tokentype_ids=None):
|
170 |
+
extended_attention_mask = bert_extended_attention_mask(
|
171 |
+
attention_mask, next(self.language_model.parameters()).dtype)
|
172 |
+
position_ids = bert_position_ids(input_ids)
|
173 |
+
|
174 |
+
lm_output, pooled_output = self.language_model(
|
175 |
+
input_ids,
|
176 |
+
position_ids,
|
177 |
+
extended_attention_mask,
|
178 |
+
tokentype_ids=tokentype_ids)
|
179 |
+
|
180 |
+
# Output.
|
181 |
+
ict_logits = self.ict_head(pooled_output)
|
182 |
+
return ict_logits, None
|
183 |
+
|
184 |
+
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
|
185 |
+
"""For easy load when model is combined with other heads,
|
186 |
+
add an extra key."""
|
187 |
+
|
188 |
+
state_dict_ = {}
|
189 |
+
state_dict_[self._language_model_key] \
|
190 |
+
= self.language_model.state_dict_for_save_checkpoint(prefix=prefix,
|
191 |
+
keep_vars=keep_vars)
|
192 |
+
state_dict_[self._ict_head_key] \
|
193 |
+
= self.ict_head.state_dict(prefix=prefix,
|
194 |
+
keep_vars=keep_vars)
|
195 |
+
return state_dict_
|
196 |
+
|
197 |
+
def load_state_dict(self, state_dict, strict=True):
|
198 |
+
"""Customized load."""
|
199 |
+
self.language_model.load_state_dict(
|
200 |
+
state_dict[self._language_model_key], strict=strict)
|
201 |
+
self.ict_head.load_state_dict(
|
202 |
+
state_dict[self._ict_head_key], strict=strict)
|
203 |
+
|
204 |
+
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/rmsnorm.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
|
2 |
+
# coding=utf-8
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from deepspeed.accelerator import get_accelerator
|
16 |
+
from megatron import get_args
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch.nn import init
|
20 |
+
from torch.nn.parameter import Parameter
|
21 |
+
|
22 |
+
try:
|
23 |
+
from habana_frameworks.torch.hpex.normalization import FusedRMSNorm
|
24 |
+
except:
|
25 |
+
FusedRMSNorm = None
|
26 |
+
|
27 |
+
|
28 |
+
class RMSNorm(torch.nn.Module):
|
29 |
+
def __init__(self, dim, eps=1e-5, sequence_parallel=False):
|
30 |
+
super().__init__()
|
31 |
+
self.epsilon = eps
|
32 |
+
self.weight = Parameter(torch.empty(dim,
|
33 |
+
device=get_accelerator().current_device_name(),
|
34 |
+
dtype=get_args().params_dtype))
|
35 |
+
init.ones_(self.weight)
|
36 |
+
self.use_fused_rmsnorm = get_args().use_fused_rmsnorm
|
37 |
+
|
38 |
+
if sequence_parallel:
|
39 |
+
setattr(self.weight, 'sequence_parallel', sequence_parallel)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
if self.use_fused_rmsnorm and x.device.type == "hpu":
|
43 |
+
assert FusedRMSNorm is not None, "failed to import FusedRMSNorm"
|
44 |
+
return FusedRMSNorm.apply(x, self.weight, self.epsilon)
|
45 |
+
dtype = x.dtype
|
46 |
+
x = x.float()
|
47 |
+
norm = torch.mean(x**2, -1, keepdim=True)
|
48 |
+
norm = x.mul(norm.add_(self.epsilon).rsqrt_())
|
49 |
+
return self.weight * norm.to(dtype)
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/rotary_pos_embedding.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
|
2 |
+
# coding=utf-8
|
3 |
+
|
4 |
+
# The following code has been taken from https://github.com/NVIDIA/NeMo/blob/ \
|
5 |
+
# 782b4e1652aaa43c8be390d9db0dc89544afa080/nemo/collections/nlp/modules/ \
|
6 |
+
# common/megatron/rotary_pos_embedding.py
|
7 |
+
|
8 |
+
import importlib.util
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from torch import einsum, nn
|
12 |
+
|
13 |
+
__all__ = ['RotaryEmbedding', 'apply_rotary_pos_emb']
|
14 |
+
|
15 |
+
try:
|
16 |
+
from habana_frameworks.torch.hpex.kernels import RotaryPosEmbeddingHelperV1
|
17 |
+
except ImportError:
|
18 |
+
RotaryPosEmbeddingHelperV1 = None
|
19 |
+
|
20 |
+
# sin, cos tensors cached for all devices
|
21 |
+
cos_cached = None
|
22 |
+
sin_cached = None
|
23 |
+
|
24 |
+
|
25 |
+
class RotaryEmbedding(nn.Module):
|
26 |
+
def __init__(self, dim):
|
27 |
+
super().__init__()
|
28 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
29 |
+
self.register_buffer('inv_freq', inv_freq)
|
30 |
+
if importlib.util.find_spec('einops') is None:
|
31 |
+
raise RuntimeError("einops is required for Rotary Embedding")
|
32 |
+
|
33 |
+
def forward(self, max_seq_len, offset=0):
|
34 |
+
seq = torch.arange(max_seq_len, device=self.inv_freq.device) + offset
|
35 |
+
freqs = einsum('i , j -> i j', seq.type_as(self.inv_freq), self.inv_freq)
|
36 |
+
# first part even vector components, second part odd vector components,
|
37 |
+
# 2 * dim in dimension size
|
38 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
39 |
+
# emb [seq_length, .., dim]
|
40 |
+
from einops import rearrange
|
41 |
+
return rearrange(emb, 'n d -> n 1 1 d')
|
42 |
+
|
43 |
+
|
44 |
+
def _rotate_half(x):
|
45 |
+
"""
|
46 |
+
change sign so the last dimension becomes [-odd, +even]
|
47 |
+
"""
|
48 |
+
from einops import rearrange
|
49 |
+
x = rearrange(x, '... (j d) -> ... j d', j=2)
|
50 |
+
x1, x2 = x.unbind(dim=-2)
|
51 |
+
return torch.cat((-x2, x1), dim=-1)
|
52 |
+
|
53 |
+
|
54 |
+
def apply_rotary_pos_emb(t, freqs):
|
55 |
+
"""
|
56 |
+
input tensor t is of shape [seq_length, ..., dim]
|
57 |
+
rotary positional embeding tensor freqs is of shape [seq_length, ..., dim]
|
58 |
+
check https://kexue.fm/archives/8265 for detailed formulas
|
59 |
+
"""
|
60 |
+
rot_dim = freqs.shape[-1]
|
61 |
+
t_pass = None
|
62 |
+
# due to 0 dim of t_pass tensor, there is zeros tensor DMA from H2D which
|
63 |
+
# affects performance, check whether we need t_pass
|
64 |
+
if t.shape[-1] != rot_dim:
|
65 |
+
# ideally t_pass is empty so rotary pos embedding is applied to all tensor t
|
66 |
+
t, t_pass = t[..., :rot_dim], t[..., rot_dim:]
|
67 |
+
|
68 |
+
global cos_cached, sin_cached
|
69 |
+
if cos_cached is None or sin_cached is None:
|
70 |
+
cos_cached = freqs.cos().to(t.dtype)
|
71 |
+
sin_cached = freqs.sin().to(t.dtype)
|
72 |
+
|
73 |
+
if t.device.type == "hpu":
|
74 |
+
assert RotaryPosEmbeddingHelperV1 is not None, "failed to import RotaryPosEmbeddingHelperV1"
|
75 |
+
t = RotaryPosEmbeddingHelperV1.apply(t, cos_cached, sin_cached, 0) # offset already used in RotaryEmbedding.forward
|
76 |
+
else:
|
77 |
+
# first part is cosine component
|
78 |
+
# second part is sine component, need to change signs with _rotate_half method
|
79 |
+
t = (t * cos_cached) + (_rotate_half(t) * sin_cached)
|
80 |
+
if t_pass is None:
|
81 |
+
return t
|
82 |
+
return torch.cat((t, t_pass), dim=-1)
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/__init__.py
ADDED
File without changes
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (193 Bytes). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/__pycache__/knn_monitor.cpython-310.pyc
ADDED
Binary file (3.43 kB). View file
|
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/classification.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
|
3 |
+
"""Vision Transformer(VIT) model."""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.nn.init import trunc_normal_
|
7 |
+
from megatron import get_args
|
8 |
+
from megatron.model.utils import get_linear_layer
|
9 |
+
from megatron.model.vision.vit_backbone import VitBackbone, VitMlpHead
|
10 |
+
from megatron.model.vision.mit_backbone import mit_b3_avg
|
11 |
+
from megatron.model.module import MegatronModule
|
12 |
+
|
13 |
+
class VitClassificationModel(MegatronModule):
|
14 |
+
"""Vision Transformer Model."""
|
15 |
+
|
16 |
+
def __init__(self, config, num_classes, finetune=False,
|
17 |
+
pre_process=True, post_process=True):
|
18 |
+
super(VitClassificationModel, self).__init__()
|
19 |
+
args = get_args()
|
20 |
+
|
21 |
+
self.hidden_size = args.hidden_size
|
22 |
+
self.num_classes = num_classes
|
23 |
+
self.finetune = finetune
|
24 |
+
self.pre_process = pre_process
|
25 |
+
self.post_process = post_process
|
26 |
+
self.backbone = VitBackbone(
|
27 |
+
config=config,
|
28 |
+
pre_process=self.pre_process,
|
29 |
+
post_process=self.post_process,
|
30 |
+
single_token_output=True
|
31 |
+
)
|
32 |
+
|
33 |
+
if self.post_process:
|
34 |
+
if not self.finetune:
|
35 |
+
self.head = VitMlpHead(self.hidden_size, self.num_classes)
|
36 |
+
else:
|
37 |
+
self.head = get_linear_layer(
|
38 |
+
self.hidden_size,
|
39 |
+
self.num_classes,
|
40 |
+
torch.nn.init.zeros_,
|
41 |
+
gather_params_on_init=args.zero_stage == 3
|
42 |
+
)
|
43 |
+
|
44 |
+
def set_input_tensor(self, input_tensor):
|
45 |
+
"""See megatron.model.transformer.set_input_tensor()"""
|
46 |
+
self.backbone.set_input_tensor(input_tensor)
|
47 |
+
|
48 |
+
def forward(self, input):
|
49 |
+
hidden_states = self.backbone(input)
|
50 |
+
|
51 |
+
if self.post_process:
|
52 |
+
hidden_states = self.head(hidden_states)
|
53 |
+
|
54 |
+
return hidden_states
|
55 |
+
|
56 |
+
|
57 |
+
class MitClassificationModel(MegatronModule):
|
58 |
+
"""Mix vision Transformer Model."""
|
59 |
+
|
60 |
+
def __init__(self, num_classes,
|
61 |
+
pre_process=True, post_process=True):
|
62 |
+
super(MitClassificationModel, self).__init__()
|
63 |
+
args = get_args()
|
64 |
+
|
65 |
+
self.hidden_size = args.hidden_size
|
66 |
+
self.num_classes = num_classes
|
67 |
+
|
68 |
+
self.backbone = mit_b3_avg()
|
69 |
+
self.head = torch.nn.Linear(512, num_classes)
|
70 |
+
self.apply(self._init_weights)
|
71 |
+
|
72 |
+
def _init_weights(self, m):
|
73 |
+
if isinstance(m, torch.nn.Linear):
|
74 |
+
trunc_normal_(m.weight, std=.02)
|
75 |
+
if isinstance(m, torch.nn.Linear) and m.bias is not None:
|
76 |
+
torch.nn.init.constant_(m.bias, 0)
|
77 |
+
|
78 |
+
def set_input_tensor(self, input_tensor):
|
79 |
+
"""See megatron.model.transformer.set_input_tensor()"""
|
80 |
+
pass
|
81 |
+
|
82 |
+
def forward(self, input):
|
83 |
+
hidden_states = self.backbone(input)
|
84 |
+
hidden_states = self.head(hidden_states)
|
85 |
+
|
86 |
+
return hidden_states
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/dino.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# copied from https://github.com/facebookresearch/dino/blob/main/main_dino.py
|
7 |
+
# reworked/refactored some parts to make it run in Megatron.
|
8 |
+
import math
|
9 |
+
import apex
|
10 |
+
import einops
|
11 |
+
import torch
|
12 |
+
import numpy as np
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from torch.nn.init import trunc_normal_
|
15 |
+
from megatron import get_args, print_rank_0
|
16 |
+
from megatron.model.utils import get_linear_layer
|
17 |
+
from megatron.model.vision.vit_backbone import VitBackbone
|
18 |
+
from megatron.model.module import MegatronModule
|
19 |
+
from megatron.model.vision.mit_backbone import mit_b5_avg
|
20 |
+
from megatron.model.vision.esvit_swin_backbone import get_swin
|
21 |
+
|
22 |
+
|
23 |
+
class DINOLoss(torch.nn.Module):
|
24 |
+
def __init__(self, out_dim, ncrops, warmup_teacher_temp, teacher_temp,
|
25 |
+
warmup_teacher_temp_epochs, nepochs, student_temp=0.1,
|
26 |
+
center_momentum=0.9):
|
27 |
+
super().__init__()
|
28 |
+
self.student_temp = student_temp
|
29 |
+
self.center_momentum = center_momentum
|
30 |
+
self.ncrops = ncrops
|
31 |
+
self.register_buffer("center", torch.zeros(1, out_dim))
|
32 |
+
# we apply a warm up for the teacher temperature because
|
33 |
+
# a too high temperature makes the training instable at the beginning
|
34 |
+
self.teacher_temp_schedule = np.concatenate((
|
35 |
+
np.linspace(warmup_teacher_temp,
|
36 |
+
teacher_temp, warmup_teacher_temp_epochs),
|
37 |
+
np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
|
38 |
+
))
|
39 |
+
self.teacher_temp = teacher_temp
|
40 |
+
|
41 |
+
def forward(self, student_output, teacher_output, iteration):
|
42 |
+
"""
|
43 |
+
Cross-entropy between softmax outputs of the teacher
|
44 |
+
and student network.
|
45 |
+
"""
|
46 |
+
args = get_args()
|
47 |
+
student_out = student_output / self.student_temp
|
48 |
+
student_out = student_out.chunk(self.ncrops)
|
49 |
+
|
50 |
+
epoch = iteration // args.iter_per_epoch
|
51 |
+
|
52 |
+
# teacher centering and sharpening
|
53 |
+
temp = self.teacher_temp_schedule[epoch]
|
54 |
+
teacher_out = F.softmax((teacher_output - self.center) / temp, dim=-1)
|
55 |
+
|
56 |
+
teacher_out = teacher_out.detach().chunk(2)
|
57 |
+
|
58 |
+
total_loss = 0
|
59 |
+
n_loss_terms = 0
|
60 |
+
for iq, q in enumerate(teacher_out):
|
61 |
+
for v in range(len(student_out)):
|
62 |
+
if v == iq:
|
63 |
+
# we skip cases where student and teacher operate on the same view
|
64 |
+
continue
|
65 |
+
loss = torch.sum(-q * F.log_softmax(student_out[v], dim=-1), dim=-1)
|
66 |
+
total_loss += loss.mean()
|
67 |
+
n_loss_terms += 1
|
68 |
+
total_loss /= n_loss_terms
|
69 |
+
self.update_center(teacher_output)
|
70 |
+
return total_loss
|
71 |
+
|
72 |
+
@torch.no_grad()
|
73 |
+
def update_center(self, teacher_output):
|
74 |
+
"""
|
75 |
+
Update center used for teacher output.
|
76 |
+
"""
|
77 |
+
batch_center = torch.sum(teacher_output, dim=0, keepdim=True)
|
78 |
+
torch.distributed.all_reduce(batch_center)
|
79 |
+
batch_center = batch_center / (len(teacher_output) * torch.distributed.get_world_size())
|
80 |
+
self.center = self.center * self.center_momentum + batch_center * (1 - self.center_momentum)
|
81 |
+
|
82 |
+
class DINOHead(torch.nn.Module):
|
83 |
+
def __init__(self, in_dim, out_dim, norm_last_layer=True, nlayers=3):
|
84 |
+
super().__init__()
|
85 |
+
args = get_args()
|
86 |
+
hidden_dim = args.dino_head_hidden_size
|
87 |
+
bottleneck_dim = args.dino_bottleneck_size
|
88 |
+
nlayers = max(nlayers, 1)
|
89 |
+
if nlayers == 1:
|
90 |
+
self.mlp = torch.nn.Linear(in_dim, bottleneck_dim)
|
91 |
+
else:
|
92 |
+
layers = [torch.nn.Linear(in_dim, hidden_dim)]
|
93 |
+
layers.append(torch.nn.GELU())
|
94 |
+
for _ in range(nlayers - 2):
|
95 |
+
layers.append(torch.nn.Linear(hidden_dim, hidden_dim))
|
96 |
+
layers.append(torch.nn.GELU())
|
97 |
+
layers.append(torch.nn.Linear(hidden_dim, bottleneck_dim))
|
98 |
+
self.mlp = torch.nn.Sequential(*layers)
|
99 |
+
self.apply(self._init_weights)
|
100 |
+
self.last_layer = torch.nn.utils.weight_norm(torch.nn.Linear(bottleneck_dim, out_dim, bias=False))
|
101 |
+
self.last_layer.weight_g.data.fill_(1)
|
102 |
+
if norm_last_layer:
|
103 |
+
self.last_layer.weight_g.requires_grad = False
|
104 |
+
|
105 |
+
def _init_weights(self, m):
|
106 |
+
if isinstance(m, torch.nn.Linear):
|
107 |
+
trunc_normal_(m.weight, std=.02)
|
108 |
+
if isinstance(m, torch.nn.Linear) and m.bias is not None:
|
109 |
+
torch.nn.init.constant_(m.bias, 0)
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
x = self.mlp(x)
|
113 |
+
x = torch.nn.functional.normalize(x, dim=-1, p=2)
|
114 |
+
x = self.last_layer(x)
|
115 |
+
return x
|
116 |
+
|
117 |
+
|
118 |
+
class MultiCropWrapper(MegatronModule):
|
119 |
+
|
120 |
+
"""
|
121 |
+
Perform forward pass separately on each resolution input.
|
122 |
+
The inputs corresponding to a single resolution are clubbed and single
|
123 |
+
forward is run on the same resolution inputs. Hence we do several
|
124 |
+
forward passes = number of different resolutions used. We then
|
125 |
+
concatenate all the output features and run the head forward on these
|
126 |
+
concatenated features.
|
127 |
+
"""
|
128 |
+
def __init__(self, backbone, head):
|
129 |
+
super(MultiCropWrapper, self).__init__()
|
130 |
+
# disable layers dedicated to ImageNet labels classification
|
131 |
+
#backbone.fc, backbone.head = torch.nn.Identity(), torch.nn.Identity()
|
132 |
+
self.backbone = backbone
|
133 |
+
self.head = head
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
# convert to list
|
137 |
+
if not isinstance(x, list):
|
138 |
+
x = [x]
|
139 |
+
idx_crops = torch.cumsum(torch.unique_consecutive(
|
140 |
+
torch.tensor([inp.shape[-1] for inp in x]),
|
141 |
+
return_counts=True,
|
142 |
+
)[1], 0)
|
143 |
+
|
144 |
+
start_idx = 0
|
145 |
+
for end_idx in idx_crops:
|
146 |
+
_out = self.backbone(torch.cat(x[start_idx: end_idx]))
|
147 |
+
if start_idx == 0:
|
148 |
+
output = _out
|
149 |
+
else:
|
150 |
+
output = torch.cat((output, _out))
|
151 |
+
start_idx = end_idx
|
152 |
+
# Run the head forward on the concatenated features.
|
153 |
+
if self.training:
|
154 |
+
return self.head(output)
|
155 |
+
else:
|
156 |
+
return output
|
157 |
+
|
158 |
+
|
159 |
+
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep,
|
160 |
+
warmup_epochs=0, start_warmup_value=0):
|
161 |
+
warmup_schedule = np.array([])
|
162 |
+
warmup_iters = warmup_epochs * niter_per_ep
|
163 |
+
if warmup_epochs > 0:
|
164 |
+
warmup_schedule = \
|
165 |
+
np.linspace(start_warmup_value, base_value, warmup_iters)
|
166 |
+
|
167 |
+
iters = np.arange(epochs * niter_per_ep - warmup_iters)
|
168 |
+
schedule = final_value + 0.5 * (base_value - final_value) \
|
169 |
+
* (1 + np.cos(np.pi * iters / len(iters)))
|
170 |
+
|
171 |
+
schedule = np.concatenate((warmup_schedule, schedule))
|
172 |
+
assert len(schedule) == epochs * niter_per_ep
|
173 |
+
return schedule
|
174 |
+
|
175 |
+
|
176 |
+
def get_student_backbone_and_num_features(config, pre_process=True, post_process=True):
|
177 |
+
args = get_args()
|
178 |
+
|
179 |
+
if args.vision_backbone_type == 'vit':
|
180 |
+
student = VitBackbone(config,
|
181 |
+
pre_process=pre_process,
|
182 |
+
post_process=post_process,
|
183 |
+
drop_path_rate=0.1,
|
184 |
+
single_token_output=True)
|
185 |
+
num_features = args.hidden_size
|
186 |
+
elif args.vision_backbone_type == 'mit':
|
187 |
+
student = mit_b5_avg(drop_path_rate=0.1)
|
188 |
+
num_features = 512
|
189 |
+
elif args.vision_backbone_type == 'swin':
|
190 |
+
student = get_swin()
|
191 |
+
num_features = student.num_features
|
192 |
+
else:
|
193 |
+
raise Exception('{} vision backbone is not supported.'.format(
|
194 |
+
args.vision_backbone_type))
|
195 |
+
|
196 |
+
return student, num_features
|
197 |
+
|
198 |
+
def get_teacher_backbone_and_num_features(config, pre_process=True, post_process=True):
|
199 |
+
args = get_args()
|
200 |
+
|
201 |
+
if args.vision_backbone_type == 'vit':
|
202 |
+
teacher = VitBackbone(config,
|
203 |
+
pre_process=pre_process,
|
204 |
+
post_process=post_process,
|
205 |
+
single_token_output=True)
|
206 |
+
num_features = args.hidden_size
|
207 |
+
elif args.vision_backbone_type == 'mit':
|
208 |
+
teacher = mit_b5_avg(drop_path_rate=0.0)
|
209 |
+
num_features = 512
|
210 |
+
elif args.vision_backbone_type == 'swin':
|
211 |
+
teacher = get_swin(is_teacher=True)
|
212 |
+
num_features = teacher.num_features
|
213 |
+
else:
|
214 |
+
raise Exception('{} vision backbone is not supported.'.format(
|
215 |
+
args.vision_backbone_type))
|
216 |
+
return teacher, num_features
|
217 |
+
|
218 |
+
|
219 |
+
class DINOPretrainModel(MegatronModule):
|
220 |
+
def __init__(self, config, pre_process=True, post_process=True):
|
221 |
+
super(DINOPretrainModel, self).__init__()
|
222 |
+
args = get_args()
|
223 |
+
self.out_dim = 65536
|
224 |
+
|
225 |
+
self.dino_loss = DINOLoss(
|
226 |
+
self.out_dim,
|
227 |
+
args.dino_local_crops_number + 2,
|
228 |
+
args.dino_warmup_teacher_temp,
|
229 |
+
args.dino_teacher_temp,
|
230 |
+
args.dino_warmup_teacher_temp_epochs,
|
231 |
+
300,
|
232 |
+
)
|
233 |
+
|
234 |
+
self.pre_process = pre_process
|
235 |
+
self.post_process = post_process
|
236 |
+
self.momentum_teacher = 0.996
|
237 |
+
|
238 |
+
student_backbone, num_features = \
|
239 |
+
get_student_backbone_and_num_features(config, pre_process, post_process)
|
240 |
+
|
241 |
+
self.student = MultiCropWrapper(
|
242 |
+
student_backbone,
|
243 |
+
DINOHead(num_features, self.out_dim,
|
244 |
+
norm_last_layer=args.dino_norm_last_layer)
|
245 |
+
)
|
246 |
+
|
247 |
+
self.momentum_schedule = cosine_scheduler(
|
248 |
+
self.momentum_teacher, 1,
|
249 |
+
args.train_iters // args.iter_per_epoch,
|
250 |
+
args.iter_per_epoch
|
251 |
+
)
|
252 |
+
|
253 |
+
teacher_backbone, num_features = \
|
254 |
+
get_teacher_backbone_and_num_features(config, pre_process, post_process)
|
255 |
+
self.teacher = MultiCropWrapper(
|
256 |
+
teacher_backbone,
|
257 |
+
DINOHead(num_features, self.out_dim)
|
258 |
+
)
|
259 |
+
self.teacher.load_state_dict(self.student.state_dict())
|
260 |
+
|
261 |
+
for p in self.teacher.parameters():
|
262 |
+
if hasattr(p, "requires_grad") and p.requires_grad is not None:
|
263 |
+
p.requires_grad = False
|
264 |
+
|
265 |
+
def set_input_tensor(self, tensor):
|
266 |
+
pass
|
267 |
+
|
268 |
+
def forward(self, input):
|
269 |
+
student_output = None
|
270 |
+
if self.training:
|
271 |
+
student_output = self.student(input)
|
272 |
+
teacher_output = self.teacher(input[:2])
|
273 |
+
else:
|
274 |
+
teacher_output = self.teacher(input)
|
275 |
+
return student_output, teacher_output
|
276 |
+
|
277 |
+
def cancel_gradients_last_layer(self, iteration):
|
278 |
+
args = get_args()
|
279 |
+
epoch = iteration // args.iter_per_epoch
|
280 |
+
if epoch < args.dino_freeze_last_layer:
|
281 |
+
for n, p in self.student.named_parameters():
|
282 |
+
if "last_layer" in n:
|
283 |
+
p.grad = None
|
284 |
+
|
285 |
+
def update_momentum(self, iteration):
|
286 |
+
with torch.no_grad():
|
287 |
+
m = self.momentum_schedule[iteration]
|
288 |
+
for param_q, param_k in zip(self.student.parameters(), self.teacher.parameters()):
|
289 |
+
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
|
290 |
+
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/esvit_swin_backbone.py
ADDED
@@ -0,0 +1,849 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Microsoft
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
# --------------------------------------------------------
|
6 |
+
# Modified by Chunyuan Li ([email protected])
|
7 |
+
# Swin Transformer
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
import os
|
11 |
+
import logging
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from functools import partial
|
16 |
+
import torch.distributed as dist
|
17 |
+
from torch.nn.init import trunc_normal_
|
18 |
+
from megatron.model.transformer import DropPath
|
19 |
+
from megatron import get_args
|
20 |
+
from megatron.model import LayerNorm
|
21 |
+
import numpy as np
|
22 |
+
from math import sqrt
|
23 |
+
|
24 |
+
|
25 |
+
class Mlp(nn.Module):
|
26 |
+
def __init__(self, in_features, hidden_features=None,
|
27 |
+
out_features=None, act_layer=nn.GELU, drop=0.):
|
28 |
+
super(Mlp, self).__init__()
|
29 |
+
out_features = out_features or in_features
|
30 |
+
hidden_features = hidden_features or in_features
|
31 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
32 |
+
self.act = act_layer()
|
33 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
34 |
+
self.drop = nn.Dropout(drop)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
x = self.fc1(x)
|
38 |
+
x = self.act(x)
|
39 |
+
x = self.drop(x)
|
40 |
+
x = self.fc2(x)
|
41 |
+
x = self.drop(x)
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
def window_partition(x, window_size):
|
46 |
+
"""
|
47 |
+
Args:
|
48 |
+
x: (B, H, W, C)
|
49 |
+
window_size (int): window size
|
50 |
+
Returns:
|
51 |
+
windows: (num_windows*B, window_size, window_size, C)
|
52 |
+
"""
|
53 |
+
B, H, W, C = x.shape
|
54 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
55 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
56 |
+
return windows
|
57 |
+
|
58 |
+
|
59 |
+
def window_reverse(windows, window_size, H, W):
|
60 |
+
"""
|
61 |
+
Args:
|
62 |
+
windows: (num_windows*B, window_size, window_size, C)
|
63 |
+
window_size (int): Window size
|
64 |
+
H (int): Height of image
|
65 |
+
W (int): Width of image
|
66 |
+
Returns:
|
67 |
+
x: (B, H, W, C)
|
68 |
+
"""
|
69 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
70 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
71 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
72 |
+
return x
|
73 |
+
|
74 |
+
|
75 |
+
class WindowAttention(nn.Module):
|
76 |
+
r"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
77 |
+
It supports both of shifted and non-shifted window.
|
78 |
+
Args:
|
79 |
+
dim (int): Number of input channels.
|
80 |
+
window_size (tuple[int]): The height and width of the window.
|
81 |
+
num_heads (int): Number of attention heads.
|
82 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
83 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
84 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
85 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
86 |
+
"""
|
87 |
+
|
88 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
89 |
+
|
90 |
+
super(WindowAttention, self).__init__()
|
91 |
+
self.dim = dim
|
92 |
+
self.window_size = window_size # Wh, Ww
|
93 |
+
self.num_heads = num_heads
|
94 |
+
head_dim = dim // num_heads
|
95 |
+
self.scale = qk_scale or head_dim ** -0.5
|
96 |
+
|
97 |
+
# define a parameter table of relative position bias
|
98 |
+
self.relative_position_bias_table = nn.Parameter(
|
99 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
100 |
+
|
101 |
+
# get pair-wise relative position index for each token inside the window
|
102 |
+
coords_h = torch.arange(self.window_size[0])
|
103 |
+
coords_w = torch.arange(self.window_size[1])
|
104 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
105 |
+
coords_flatten = torch.flatten(coords, 1) # 2 Wh*Ww
|
106 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
107 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
108 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
109 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
110 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
111 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
112 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
113 |
+
|
114 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
115 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
116 |
+
self.proj = nn.Linear(dim, dim)
|
117 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
118 |
+
|
119 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
120 |
+
self.softmax = nn.Softmax(dim=-1)
|
121 |
+
|
122 |
+
def forward(self, x, mask=None):
|
123 |
+
"""
|
124 |
+
Args:
|
125 |
+
x: input features with shape of (num_windows*B, N, C)
|
126 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
127 |
+
"""
|
128 |
+
B_, N, C = x.shape
|
129 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
130 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
131 |
+
|
132 |
+
q = q * self.scale
|
133 |
+
attn = (q @ k.transpose(-2, -1))
|
134 |
+
|
135 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
136 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
137 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
138 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
139 |
+
|
140 |
+
if mask is not None:
|
141 |
+
nW = mask.shape[0]
|
142 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0).type(attn.type())
|
143 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
144 |
+
attn = self.softmax(attn)
|
145 |
+
else:
|
146 |
+
attn = self.softmax(attn)
|
147 |
+
|
148 |
+
attn_out = attn
|
149 |
+
attn = self.attn_drop(attn)
|
150 |
+
|
151 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
152 |
+
x = self.proj(x)
|
153 |
+
x = self.proj_drop(x)
|
154 |
+
return x, attn_out
|
155 |
+
|
156 |
+
def extra_repr(self) -> str:
|
157 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
158 |
+
|
159 |
+
def flops(self, N):
|
160 |
+
# calculate flops for 1 window with token length of N
|
161 |
+
flops = 0
|
162 |
+
# qkv = self.qkv(x)
|
163 |
+
flops += N * self.dim * 3 * self.dim
|
164 |
+
# attn = (q @ k.transpose(-2, -1))
|
165 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
166 |
+
# x = (attn @ v)
|
167 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
168 |
+
# x = self.proj(x)
|
169 |
+
flops += N * self.dim * self.dim
|
170 |
+
return flops
|
171 |
+
|
172 |
+
@staticmethod
|
173 |
+
def compute_macs(module, input, output):
|
174 |
+
B, N, C = input[0].shape
|
175 |
+
|
176 |
+
module.__flops__ += module.flops(N) * B
|
177 |
+
|
178 |
+
|
179 |
+
class SwinTransformerBlock(nn.Module):
|
180 |
+
r"""Swin Transformer Block.
|
181 |
+
Args:
|
182 |
+
dim (int): Number of input channels.
|
183 |
+
input_resolution (tuple[int]): Input resulotion.
|
184 |
+
num_heads (int): Number of attention heads.
|
185 |
+
window_size (int): Window size.
|
186 |
+
shift_size (int): Shift size for SW-MSA.
|
187 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
188 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
189 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
190 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
191 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
192 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
193 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
194 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
195 |
+
"""
|
196 |
+
|
197 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
198 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
199 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
200 |
+
super().__init__()
|
201 |
+
self.dim = dim
|
202 |
+
self.input_resolution = input_resolution
|
203 |
+
self.num_heads = num_heads
|
204 |
+
self.window_size = window_size
|
205 |
+
self.shift_size = shift_size
|
206 |
+
self.mlp_ratio = mlp_ratio
|
207 |
+
if min(self.input_resolution) <= self.window_size:
|
208 |
+
# if window size is larger than input resolution, we don't partition windows
|
209 |
+
self.shift_size = 0
|
210 |
+
self.window_size = min(self.input_resolution)
|
211 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
212 |
+
|
213 |
+
self.norm1 = norm_layer(dim)
|
214 |
+
self.attn = WindowAttention(
|
215 |
+
dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
|
216 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
217 |
+
|
218 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
219 |
+
self.norm2 = norm_layer(dim)
|
220 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
221 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
222 |
+
|
223 |
+
self.H = input_resolution[0]
|
224 |
+
self.W = input_resolution[1]
|
225 |
+
|
226 |
+
self.attn_mask_dict = {}
|
227 |
+
|
228 |
+
|
229 |
+
def create_attn_mask(self, H, W):
|
230 |
+
# calculate attention mask for SW-MSA
|
231 |
+
|
232 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
233 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
234 |
+
img_mask = torch.zeros((1, Hp, Wp, 1)) # 1 Hp Wp 1
|
235 |
+
h_slices = (slice(0, -self.window_size),
|
236 |
+
slice(-self.window_size, -self.shift_size),
|
237 |
+
slice(-self.shift_size, None))
|
238 |
+
w_slices = (slice(0, -self.window_size),
|
239 |
+
slice(-self.window_size, -self.shift_size),
|
240 |
+
slice(-self.shift_size, None))
|
241 |
+
cnt = 0
|
242 |
+
for h in h_slices:
|
243 |
+
for w in w_slices:
|
244 |
+
img_mask[:, h, w, :] = cnt
|
245 |
+
cnt += 1
|
246 |
+
|
247 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
248 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
249 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
250 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
251 |
+
|
252 |
+
return attn_mask
|
253 |
+
|
254 |
+
|
255 |
+
def forward(self, x):
|
256 |
+
B, L, C = x.shape
|
257 |
+
H = int(sqrt(L))
|
258 |
+
W = H
|
259 |
+
|
260 |
+
shortcut = x
|
261 |
+
x = self.norm1(x)
|
262 |
+
x = x.view(B, H, W, C)
|
263 |
+
|
264 |
+
# pad feature maps to multiples of window size
|
265 |
+
pad_l = pad_t = 0
|
266 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
267 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
268 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
269 |
+
_, Hp, Wp, _ = x.shape
|
270 |
+
|
271 |
+
# cyclic shift
|
272 |
+
if self.shift_size > 0:
|
273 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
274 |
+
|
275 |
+
if H in self.attn_mask_dict.keys():
|
276 |
+
attn_mask = self.attn_mask_dict[H]
|
277 |
+
else:
|
278 |
+
self.attn_mask_dict[H] = self.create_attn_mask(self.H, self.W).to(x.device)
|
279 |
+
attn_mask = self.attn_mask_dict[H]
|
280 |
+
|
281 |
+
else:
|
282 |
+
shifted_x = x
|
283 |
+
attn_mask = None
|
284 |
+
|
285 |
+
# partition windows
|
286 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
287 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
288 |
+
|
289 |
+
# W-MSA/SW-MSA
|
290 |
+
attn_windows, attn = self.attn(x_windows, attn_mask) # nW*B, window_size*window_size, C
|
291 |
+
|
292 |
+
# merge windows
|
293 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
294 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
295 |
+
|
296 |
+
# reverse cyclic shift
|
297 |
+
if self.shift_size > 0:
|
298 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
299 |
+
else:
|
300 |
+
x = shifted_x
|
301 |
+
|
302 |
+
if pad_r > 0 or pad_b > 0:
|
303 |
+
x = x[:, :H, :W, :].contiguous()
|
304 |
+
|
305 |
+
x = x.view(B, H * W, C)
|
306 |
+
|
307 |
+
# FFN
|
308 |
+
x = shortcut + self.drop_path(x)
|
309 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
310 |
+
|
311 |
+
return x, attn
|
312 |
+
|
313 |
+
def extra_repr(self) -> str:
|
314 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
315 |
+
f"window_size={self.window_size}, shift_size={self.shift_size} mlp_ratio={self.mlp_ratio}"
|
316 |
+
|
317 |
+
def flops(self):
|
318 |
+
flops = 0
|
319 |
+
H, W = self.input_resolution
|
320 |
+
# norm1
|
321 |
+
flops += self.dim * H * W
|
322 |
+
# W-MSA/SW-MSA
|
323 |
+
nW = H * W / self.window_size / self.window_size
|
324 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
325 |
+
# mlp
|
326 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
327 |
+
# norm2
|
328 |
+
flops += self.dim * H * W
|
329 |
+
return flops
|
330 |
+
|
331 |
+
|
332 |
+
class PatchMerging(nn.Module):
|
333 |
+
r"""Patch Merging Layer.
|
334 |
+
Args:
|
335 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
336 |
+
dim (int): Number of input channels.
|
337 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
338 |
+
"""
|
339 |
+
|
340 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
341 |
+
super().__init__()
|
342 |
+
self.input_resolution = input_resolution
|
343 |
+
self.dim = dim
|
344 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
345 |
+
self.norm = norm_layer(4 * dim)
|
346 |
+
|
347 |
+
def forward(self, x):
|
348 |
+
""" Forward function.
|
349 |
+
Args:
|
350 |
+
x: Input feature, tensor size (B, H*W, C).
|
351 |
+
H, W: Spatial resolution of the input feature.
|
352 |
+
"""
|
353 |
+
B, L, C = x.shape
|
354 |
+
H = int(sqrt(L))
|
355 |
+
W = H
|
356 |
+
|
357 |
+
x = x.view(B, H, W, C)
|
358 |
+
|
359 |
+
# padding
|
360 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
361 |
+
if pad_input:
|
362 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
363 |
+
|
364 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
365 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
366 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
367 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
368 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
369 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
370 |
+
|
371 |
+
x = self.norm(x)
|
372 |
+
x = self.reduction(x)
|
373 |
+
|
374 |
+
return x
|
375 |
+
|
376 |
+
|
377 |
+
def extra_repr(self) -> str:
|
378 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
379 |
+
|
380 |
+
def flops(self):
|
381 |
+
H, W = self.input_resolution
|
382 |
+
flops = H * W * self.dim
|
383 |
+
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
384 |
+
return flops
|
385 |
+
|
386 |
+
|
387 |
+
class BasicLayer(nn.Module):
|
388 |
+
"""A basic Swin Transformer layer for one stage.
|
389 |
+
Args:
|
390 |
+
dim (int): Number of input channels.
|
391 |
+
input_resolution (tuple[int]): Input resulotion.
|
392 |
+
depth (int): Number of blocks.
|
393 |
+
num_heads (int): Number of attention heads.
|
394 |
+
window_size (int): Window size.
|
395 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
396 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
397 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
398 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
399 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
400 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
401 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
402 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
403 |
+
"""
|
404 |
+
|
405 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
406 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
407 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None):
|
408 |
+
|
409 |
+
super().__init__()
|
410 |
+
self.dim = dim
|
411 |
+
self.input_resolution = input_resolution
|
412 |
+
self.depth = depth
|
413 |
+
|
414 |
+
self.blocks = nn.ModuleList([
|
415 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
416 |
+
num_heads=num_heads, window_size=window_size,
|
417 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
418 |
+
mlp_ratio=mlp_ratio,
|
419 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
420 |
+
drop=drop, attn_drop=attn_drop,
|
421 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
422 |
+
norm_layer=norm_layer)
|
423 |
+
for i in range(depth)])
|
424 |
+
if downsample is not None:
|
425 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
426 |
+
else:
|
427 |
+
self.downsample = None
|
428 |
+
|
429 |
+
def forward(self, x):
|
430 |
+
for blk in self.blocks:
|
431 |
+
x, _ = blk(x)
|
432 |
+
if self.downsample is not None:
|
433 |
+
x = self.downsample(x)
|
434 |
+
return x
|
435 |
+
|
436 |
+
def forward_with_features(self, x):
|
437 |
+
fea = []
|
438 |
+
for blk in self.blocks:
|
439 |
+
x, _ = blk(x)
|
440 |
+
fea.append(x)
|
441 |
+
if self.downsample is not None:
|
442 |
+
x = self.downsample(x)
|
443 |
+
return x, fea
|
444 |
+
|
445 |
+
def forward_with_attention(self, x):
|
446 |
+
attns = []
|
447 |
+
for blk in self.blocks:
|
448 |
+
x, attn = blk(x)
|
449 |
+
attns.append(attn)
|
450 |
+
if self.downsample is not None:
|
451 |
+
x = self.downsample(x)
|
452 |
+
return x, attns
|
453 |
+
|
454 |
+
|
455 |
+
def extra_repr(self) -> str:
|
456 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
457 |
+
|
458 |
+
def flops(self):
|
459 |
+
flops = 0
|
460 |
+
for blk in self.blocks:
|
461 |
+
flops += blk.flops()
|
462 |
+
if self.downsample is not None:
|
463 |
+
flops += self.downsample.flops()
|
464 |
+
return flops
|
465 |
+
|
466 |
+
|
467 |
+
class PatchEmbed(nn.Module):
|
468 |
+
""" Image to Patch Embedding
|
469 |
+
"""
|
470 |
+
|
471 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None):
|
472 |
+
super().__init__()
|
473 |
+
img_size = (img_size, img_size)
|
474 |
+
patch_size = (patch_size, patch_size)
|
475 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
476 |
+
self.img_size = img_size
|
477 |
+
self.patch_size = patch_size
|
478 |
+
self.patches_resolution = patches_resolution
|
479 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
480 |
+
|
481 |
+
self.in_chans = in_chans
|
482 |
+
self.embed_dim = embed_dim
|
483 |
+
|
484 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
485 |
+
if norm_layer is not None:
|
486 |
+
self.norm = norm_layer(embed_dim)
|
487 |
+
else:
|
488 |
+
self.norm = None
|
489 |
+
|
490 |
+
def forward(self, x):
|
491 |
+
B, C, H, W = x.shape
|
492 |
+
|
493 |
+
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
|
494 |
+
if self.norm is not None:
|
495 |
+
x = self.norm(x)
|
496 |
+
return x
|
497 |
+
|
498 |
+
|
499 |
+
def flops(self):
|
500 |
+
Ho, Wo = self.patches_resolution
|
501 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
502 |
+
if self.norm is not None:
|
503 |
+
flops += Ho * Wo * self.embed_dim
|
504 |
+
return flops
|
505 |
+
|
506 |
+
class SwinTransformer(nn.Module):
|
507 |
+
r""" Swin Transformer
|
508 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
509 |
+
https://arxiv.org/pdf/2103.14030
|
510 |
+
Args:
|
511 |
+
img_size (int | tuple(int)): Input image size.
|
512 |
+
patch_size (int | tuple(int)): Patch size.
|
513 |
+
in_chans (int): Number of input channels.
|
514 |
+
num_classes (int): Number of classes for classification head.
|
515 |
+
embed_dim (int): Embedding dimension.
|
516 |
+
depths (tuple(int)): Depth of Swin Transformer layers.
|
517 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
518 |
+
window_size (int): Window size.
|
519 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
520 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee
|
521 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
522 |
+
drop_rate (float): Dropout rate.
|
523 |
+
attn_drop_rate (float): Attention dropout rate.
|
524 |
+
drop_path_rate (float): Stochastic depth rate.
|
525 |
+
norm_layer (nn.Module): normalization layer.
|
526 |
+
ape (bool): If True, add absolute position embedding to the patch embedding.
|
527 |
+
patch_norm (bool): If True, add normalization after patch embedding.
|
528 |
+
"""
|
529 |
+
|
530 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
|
531 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
|
532 |
+
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
533 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
534 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True, **kwargs):
|
535 |
+
super().__init__()
|
536 |
+
|
537 |
+
self.num_classes = num_classes
|
538 |
+
self.num_layers = len(depths)
|
539 |
+
self.embed_dim = embed_dim
|
540 |
+
self.ape = ape
|
541 |
+
self.patch_norm = patch_norm
|
542 |
+
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
|
543 |
+
self.mlp_ratio = mlp_ratio
|
544 |
+
|
545 |
+
self.patch_embed = PatchEmbed(
|
546 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
547 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
548 |
+
num_patches = self.patch_embed.num_patches
|
549 |
+
patches_resolution = self.patch_embed.patches_resolution
|
550 |
+
self.patches_resolution = patches_resolution
|
551 |
+
|
552 |
+
if self.ape:
|
553 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
554 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
555 |
+
|
556 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
557 |
+
|
558 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
559 |
+
self.layers = nn.ModuleList()
|
560 |
+
for i_layer in range(self.num_layers):
|
561 |
+
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
|
562 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
563 |
+
patches_resolution[1] // (2 ** i_layer)),
|
564 |
+
depth=depths[i_layer],
|
565 |
+
num_heads=num_heads[i_layer],
|
566 |
+
window_size=window_size,
|
567 |
+
mlp_ratio=self.mlp_ratio,
|
568 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
569 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
570 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
571 |
+
norm_layer=norm_layer,
|
572 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None)
|
573 |
+
self.layers.append(layer)
|
574 |
+
|
575 |
+
self.norm = norm_layer(self.num_features)
|
576 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
577 |
+
|
578 |
+
self.apply(self._init_weights)
|
579 |
+
|
580 |
+
def _init_weights(self, m):
|
581 |
+
if isinstance(m, nn.Linear):
|
582 |
+
trunc_normal_(m.weight, std=.02)
|
583 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
584 |
+
nn.init.constant_(m.bias, 0)
|
585 |
+
elif isinstance(m, nn.LayerNorm):
|
586 |
+
nn.init.constant_(m.bias, 0)
|
587 |
+
nn.init.constant_(m.weight, 1.0)
|
588 |
+
|
589 |
+
@torch.jit.ignore
|
590 |
+
def no_weight_decay(self):
|
591 |
+
return {'absolute_pos_embed'}
|
592 |
+
|
593 |
+
@torch.jit.ignore
|
594 |
+
def no_weight_decay_keywords(self):
|
595 |
+
# todo: to be implemented
|
596 |
+
return {'relative_position_bias_table'}
|
597 |
+
|
598 |
+
def forward(self, x):
|
599 |
+
x = self.patch_embed(x)
|
600 |
+
if self.ape:
|
601 |
+
x = x + self.absolute_pos_embed
|
602 |
+
x = self.pos_drop(x)
|
603 |
+
|
604 |
+
for layer in self.layers:
|
605 |
+
x = layer(x)
|
606 |
+
|
607 |
+
x_region = self.norm(x) # B L C
|
608 |
+
x = self.avgpool(x_region.transpose(1, 2)) # B C 1
|
609 |
+
x = torch.flatten(x, 1)
|
610 |
+
|
611 |
+
return x
|
612 |
+
|
613 |
+
|
614 |
+
def forward_feature_maps(self, x):
|
615 |
+
x = self.patch_embed(x)
|
616 |
+
if self.ape:
|
617 |
+
x = x + self.absolute_pos_embed
|
618 |
+
x = self.pos_drop(x)
|
619 |
+
|
620 |
+
for layer in self.layers:
|
621 |
+
x = layer(x)
|
622 |
+
|
623 |
+
x_grid = self.norm(x) # B L C
|
624 |
+
x = self.avgpool(x_grid.transpose(1, 2)) # B C 1
|
625 |
+
x = torch.flatten(x, 1)
|
626 |
+
|
627 |
+
return x, x_grid
|
628 |
+
|
629 |
+
|
630 |
+
def forward_selfattention(self, x, n=1):
|
631 |
+
# n=1 return the last layer attn map; otherwise return attn maps in all layers
|
632 |
+
|
633 |
+
|
634 |
+
x = self.patch_embed(x)
|
635 |
+
if self.ape:
|
636 |
+
x = x + self.absolute_pos_embed
|
637 |
+
x = self.pos_drop(x)
|
638 |
+
|
639 |
+
if n==1:
|
640 |
+
return self.forward_last_selfattention(x)
|
641 |
+
else:
|
642 |
+
return self.forward_all_selfattention(x)
|
643 |
+
|
644 |
+
def forward_last_selfattention(self, x):
|
645 |
+
|
646 |
+
for i, layer in enumerate(self.layers):
|
647 |
+
if i < len(self.layers) - 1:
|
648 |
+
x = layer(x)
|
649 |
+
else:
|
650 |
+
x, attns = layer.forward_with_attention(x)
|
651 |
+
return attns[-1]
|
652 |
+
|
653 |
+
def forward_all_selfattention(self, x):
|
654 |
+
attn_out = []
|
655 |
+
|
656 |
+
for layer in self.layers:
|
657 |
+
x, attns = layer.forward_with_attention(x)
|
658 |
+
attn_out += attns
|
659 |
+
|
660 |
+
return attn_out
|
661 |
+
|
662 |
+
|
663 |
+
def forward_return_n_last_blocks(self, x, n=1, return_patch_avgpool=False, depth=[]):
|
664 |
+
|
665 |
+
num_blks = sum(depth)
|
666 |
+
start_idx = num_blks - n
|
667 |
+
|
668 |
+
sum_cur = 0
|
669 |
+
for i, d in enumerate(depth):
|
670 |
+
sum_cur_new = sum_cur + d
|
671 |
+
if start_idx >= sum_cur and start_idx < sum_cur_new:
|
672 |
+
start_stage = i
|
673 |
+
start_blk = start_idx - sum_cur
|
674 |
+
sum_cur = sum_cur_new
|
675 |
+
|
676 |
+
|
677 |
+
x = self.patch_embed(x)
|
678 |
+
if self.ape:
|
679 |
+
x = x + self.absolute_pos_embed
|
680 |
+
x = self.pos_drop(x)
|
681 |
+
|
682 |
+
# we will return the averaged token features from the `n` last blocks
|
683 |
+
# note: there is no [CLS] token in Swin Transformer
|
684 |
+
output = []
|
685 |
+
s = 0
|
686 |
+
for i, layer in enumerate(self.layers):
|
687 |
+
x, fea = layer.forward_with_features(x)
|
688 |
+
|
689 |
+
if i >= start_stage:
|
690 |
+
for x_ in fea[start_blk:]:
|
691 |
+
|
692 |
+
if i == len(self.layers)-1: # use the norm in the last stage
|
693 |
+
x_ = self.norm(x_)
|
694 |
+
|
695 |
+
x_avg = torch.flatten(self.avgpool(x_.transpose(1, 2)), 1) # B C
|
696 |
+
# print(f'Stage {i}, x_avg {x_avg.shape}')
|
697 |
+
output.append(x_avg)
|
698 |
+
|
699 |
+
start_blk = 0
|
700 |
+
|
701 |
+
return torch.cat(output, dim=-1)
|
702 |
+
|
703 |
+
|
704 |
+
|
705 |
+
def flops(self):
|
706 |
+
flops = 0
|
707 |
+
flops += self.patch_embed.flops()
|
708 |
+
for i, layer in enumerate(self.layers):
|
709 |
+
flops += layer.flops()
|
710 |
+
if dist.get_rank() == 0:
|
711 |
+
print(f"GFLOPs layer_{i}: {layer.flops() / 1e9}")
|
712 |
+
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
|
713 |
+
flops += self.num_features * self.num_classes
|
714 |
+
return flops
|
715 |
+
|
716 |
+
def init_weights(self, pretrained='', pretrained_layers=[], verbose=True):
|
717 |
+
if os.path.isfile(pretrained):
|
718 |
+
pretrained_dict = torch.load(pretrained, map_location='cpu')
|
719 |
+
logging.info(f'=> loading pretrained model {pretrained}')
|
720 |
+
model_dict = self.state_dict()
|
721 |
+
pretrained_dict = {
|
722 |
+
k: v for k, v in pretrained_dict.items()
|
723 |
+
if k in model_dict.keys()
|
724 |
+
}
|
725 |
+
need_init_state_dict = {}
|
726 |
+
for k, v in pretrained_dict.items():
|
727 |
+
need_init = (
|
728 |
+
k.split('.')[0] in pretrained_layers
|
729 |
+
or pretrained_layers[0] is '*'
|
730 |
+
or 'relative_position_index' not in k
|
731 |
+
or 'attn_mask' not in k
|
732 |
+
)
|
733 |
+
|
734 |
+
if need_init:
|
735 |
+
if verbose:
|
736 |
+
logging.info(f'=> init {k} from {pretrained}')
|
737 |
+
|
738 |
+
if 'relative_position_bias_table' in k and v.size() != model_dict[k].size():
|
739 |
+
relative_position_bias_table_pretrained = v
|
740 |
+
relative_position_bias_table_current = model_dict[k]
|
741 |
+
L1, nH1 = relative_position_bias_table_pretrained.size()
|
742 |
+
L2, nH2 = relative_position_bias_table_current.size()
|
743 |
+
if nH1 != nH2:
|
744 |
+
logging.info(f"Error in loading {k}, passing")
|
745 |
+
else:
|
746 |
+
if L1 != L2:
|
747 |
+
logging.info(
|
748 |
+
'=> load_pretrained: resized variant: {} to {}'
|
749 |
+
.format((L1, nH1), (L2, nH2))
|
750 |
+
)
|
751 |
+
S1 = int(L1 ** 0.5)
|
752 |
+
S2 = int(L2 ** 0.5)
|
753 |
+
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
|
754 |
+
relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1),
|
755 |
+
size=(S2, S2),
|
756 |
+
mode='bicubic')
|
757 |
+
v = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0)
|
758 |
+
|
759 |
+
if 'absolute_pos_embed' in k and v.size() != model_dict[k].size():
|
760 |
+
absolute_pos_embed_pretrained = v
|
761 |
+
absolute_pos_embed_current = model_dict[k]
|
762 |
+
_, L1, C1 = absolute_pos_embed_pretrained.size()
|
763 |
+
_, L2, C2 = absolute_pos_embed_current.size()
|
764 |
+
if C1 != C1:
|
765 |
+
logging.info(f"Error in loading {k}, passing")
|
766 |
+
else:
|
767 |
+
if L1 != L2:
|
768 |
+
logging.info(
|
769 |
+
'=> load_pretrained: resized variant: {} to {}'
|
770 |
+
.format((1, L1, C1), (1, L2, C2))
|
771 |
+
)
|
772 |
+
S1 = int(L1 ** 0.5)
|
773 |
+
S2 = int(L2 ** 0.5)
|
774 |
+
absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.reshape(-1, S1, S1, C1)
|
775 |
+
absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.permute(0, 3, 1, 2)
|
776 |
+
absolute_pos_embed_pretrained_resized = torch.nn.functional.interpolate(
|
777 |
+
absolute_pos_embed_pretrained, size=(S2, S2), mode='bicubic')
|
778 |
+
v = absolute_pos_embed_pretrained_resized.permute(0, 2, 3, 1).flatten(1, 2)
|
779 |
+
|
780 |
+
need_init_state_dict[k] = v
|
781 |
+
self.load_state_dict(need_init_state_dict, strict=False)
|
782 |
+
|
783 |
+
def freeze_pretrained_layers(self, frozen_layers=[]):
|
784 |
+
for name, module in self.named_modules():
|
785 |
+
if (
|
786 |
+
name.split('.')[0] in frozen_layers
|
787 |
+
or '.'.join(name.split('.')[0:2]) in frozen_layers
|
788 |
+
or (len(frozen_layers) > 0 and frozen_layers[0] is '*')
|
789 |
+
):
|
790 |
+
for _name, param in module.named_parameters():
|
791 |
+
param.requires_grad = False
|
792 |
+
logging.info(
|
793 |
+
'=> set param {} requires grad to False'
|
794 |
+
.format(name)
|
795 |
+
)
|
796 |
+
for name, param in self.named_parameters():
|
797 |
+
if (
|
798 |
+
name.split('.')[0] in frozen_layers
|
799 |
+
or (len(frozen_layers) > 0 and frozen_layers[0] is '*')
|
800 |
+
and param.requires_grad is True
|
801 |
+
):
|
802 |
+
param.requires_grad = False
|
803 |
+
logging.info(
|
804 |
+
'=> set param {} requires grad to False'
|
805 |
+
.format(name)
|
806 |
+
)
|
807 |
+
return self
|
808 |
+
|
809 |
+
|
810 |
+
def get_swin(is_teacher=False):
|
811 |
+
args = get_args()
|
812 |
+
|
813 |
+
if args.swin_backbone_type == "tiny":
|
814 |
+
embed_dim = 96
|
815 |
+
depths = [2, 2, 6, 2]
|
816 |
+
num_heads = [3, 6, 12, 24]
|
817 |
+
drop_path_rate = 0.1
|
818 |
+
elif args.swin_backbone_type == 'h3':
|
819 |
+
embed_dim = 384
|
820 |
+
depths = [2, 2, 18, 2]
|
821 |
+
num_heads = [6, 12, 24, 48]
|
822 |
+
drop_path_rate = 0.2
|
823 |
+
else:
|
824 |
+
embed_dim = 128
|
825 |
+
depths = [2, 2, 18, 2]
|
826 |
+
num_heads = [4, 8, 16, 32]
|
827 |
+
drop_path_rate = 0.2
|
828 |
+
|
829 |
+
swin = SwinTransformer(
|
830 |
+
img_size=224,
|
831 |
+
in_chans=3,
|
832 |
+
num_classes=1000,
|
833 |
+
patch_size=4,
|
834 |
+
embed_dim=embed_dim,
|
835 |
+
depths=depths,
|
836 |
+
num_heads=num_heads,
|
837 |
+
window_size=7,
|
838 |
+
mlp_ratio=4,
|
839 |
+
qkv_bias=True,
|
840 |
+
drop_rate=0,
|
841 |
+
attn_drop_rate=0,
|
842 |
+
drop_path_rate=(0.0 if is_teacher else drop_path_rate),
|
843 |
+
norm_layer=partial(LayerNorm, eps=1e-6),
|
844 |
+
ape=False,
|
845 |
+
patch_norm=True,
|
846 |
+
)
|
847 |
+
|
848 |
+
return swin
|
849 |
+
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/inpainting.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the BSD license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
i
|
6 |
+
import math
|
7 |
+
import apex
|
8 |
+
import einops
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from megatron import get_args, print_rank_0
|
12 |
+
from megatron.model.utils import get_linear_layer
|
13 |
+
from megatron.model.vision.vit_backbone import VitBackbone
|
14 |
+
from megatron.model.module import MegatronModule
|
15 |
+
from megatron.model.vision.mit_backbone import mit_b3
|
16 |
+
from megatron.model.vision.utils import resize_
|
17 |
+
|
18 |
+
|
19 |
+
class VitInpaintingModel(MegatronModule):
|
20 |
+
|
21 |
+
def __init__(self, config, pre_process=True, post_process=True):
|
22 |
+
super(VitInpaintingModel, self).__init__()
|
23 |
+
args = get_args()
|
24 |
+
|
25 |
+
self.pre_process = pre_process
|
26 |
+
self.post_process = post_process
|
27 |
+
self.hidden_size = config.hidden_size
|
28 |
+
self.backbone = VitBackbone(
|
29 |
+
config=config,
|
30 |
+
pre_process=self.pre_process,
|
31 |
+
post_process=self.post_process,
|
32 |
+
class_token=False,
|
33 |
+
)
|
34 |
+
self.patch_dim = args.patch_dim
|
35 |
+
self.img_h = args.img_h
|
36 |
+
self.img_w = args.img_w
|
37 |
+
self.seq_length = args.seq_length
|
38 |
+
# full mask
|
39 |
+
|
40 |
+
if self.post_process:
|
41 |
+
self.linear_decoder = get_linear_layer(
|
42 |
+
self.hidden_size,
|
43 |
+
self.backbone.flatten_dim,
|
44 |
+
torch.nn.init.zeros_,
|
45 |
+
gather_params_on_init=args.zero_stage == 3
|
46 |
+
)
|
47 |
+
|
48 |
+
def set_input_tensor(self, input_tensor):
|
49 |
+
self.backbone.set_input_tensor(input_tensor)
|
50 |
+
|
51 |
+
def forward(self, input):
|
52 |
+
|
53 |
+
hidden_states = self.backbone(input)
|
54 |
+
|
55 |
+
if not self.post_process:
|
56 |
+
return hidden_states
|
57 |
+
decoded_output = self.linear_decoder(hidden_states)
|
58 |
+
output = einops.rearrange(
|
59 |
+
decoded_output,
|
60 |
+
"b (h w) (p1 p2 c) -> b c (h p1) (w p2)",
|
61 |
+
p1=self.patch_dim,
|
62 |
+
p2=self.patch_dim,
|
63 |
+
h=self.img_h//self.patch_dim,
|
64 |
+
w=self.img_w//self.patch_dim,
|
65 |
+
)
|
66 |
+
|
67 |
+
return output
|
68 |
+
|
69 |
+
|
70 |
+
class MLP(torch.nn.Module):
|
71 |
+
"""
|
72 |
+
Linear Embedding
|
73 |
+
"""
|
74 |
+
def __init__(self, input_dim=2048, embed_dim=768):
|
75 |
+
super().__init__()
|
76 |
+
self.proj = torch.nn.Linear(input_dim, embed_dim)
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
x = x.flatten(2).transpose(1, 2)
|
80 |
+
x = self.proj(x)
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
class MitInpaintingModel(MegatronModule):
|
85 |
+
"""Mix vision Transformer Model."""
|
86 |
+
|
87 |
+
def __init__(self, pre_process=True, post_process=True):
|
88 |
+
super(MitInpaintingModel, self).__init__()
|
89 |
+
self.pre_process = pre_process
|
90 |
+
self.post_process = post_process
|
91 |
+
|
92 |
+
args = get_args()
|
93 |
+
self.patch_dim = args.patch_dim
|
94 |
+
self.img_h = args.img_h
|
95 |
+
self.img_w = args.img_w
|
96 |
+
self.flatten_dim = self.patch_dim * self.patch_dim * 3
|
97 |
+
self.backbone = mit_b3()
|
98 |
+
|
99 |
+
self.in_channels = [64, 128, 320, 512]
|
100 |
+
self.embedding_dim = 768
|
101 |
+
|
102 |
+
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels
|
103 |
+
|
104 |
+
self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=self.embedding_dim)
|
105 |
+
self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=self.embedding_dim)
|
106 |
+
self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=self.embedding_dim)
|
107 |
+
self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=self.embedding_dim)
|
108 |
+
|
109 |
+
self.conv_fuse = torch.nn.Conv2d(self.embedding_dim*4, self.embedding_dim, 1, 1, bias=False)
|
110 |
+
self.norm = apex.parallel.SyncBatchNorm(self.embedding_dim)
|
111 |
+
self.dropout = torch.nn.Dropout2d(0.1)
|
112 |
+
|
113 |
+
self.linear_pred = torch.nn.Conv2d(self.embedding_dim, self.flatten_dim, kernel_size=1)
|
114 |
+
|
115 |
+
def set_input_tensor(self, input_tensor):
|
116 |
+
"""See megatron.model.transformer.set_input_tensor()"""
|
117 |
+
pass
|
118 |
+
|
119 |
+
def forward(self, input):
|
120 |
+
c1, c2, c3, c4 = self.backbone(input)
|
121 |
+
|
122 |
+
n, _, h, w = c4.shape
|
123 |
+
_c4 = self.linear_c4(c4).permute(0, 2, 1).reshape(n, -1, c4.shape[2], c4.shape[3])
|
124 |
+
_c4 = resize(_c4, size=c1.size()[2:], mode='bilinear', align_corners=False)
|
125 |
+
|
126 |
+
_c3 = self.linear_c3(c3).permute(0, 2, 1).reshape(n, -1, c3.shape[2], c3.shape[3])
|
127 |
+
_c3 = resize(_c3, size=c1.size()[2:], mode='bilinear', align_corners=False)
|
128 |
+
|
129 |
+
_c2 = self.linear_c2(c2).permute(0, 2, 1).reshape(n, -1, c2.shape[2], c2.shape[3])
|
130 |
+
_c2 = resize(_c2, size=c1.size()[2:], mode='bilinear', align_corners=False)
|
131 |
+
|
132 |
+
_c1 = self.linear_c1(c1).permute(0, 2, 1).reshape(n, -1, c1.shape[2], c1.shape[3])
|
133 |
+
|
134 |
+
_c = torch.cat([_c4, _c3, _c2, _c1], dim=1)
|
135 |
+
_c = self.conv_fuse(_c)
|
136 |
+
|
137 |
+
x = self.norm(_c)
|
138 |
+
x = F.relu(x, inplace=True)
|
139 |
+
x = self.dropout(x)
|
140 |
+
|
141 |
+
x = self.linear_pred(x)
|
142 |
+
|
143 |
+
output = einops.rearrange(
|
144 |
+
x,
|
145 |
+
"b (c p1 p2) h w -> b c (h p1) (w p2)",
|
146 |
+
p1=self.patch_dim,
|
147 |
+
p2=self.patch_dim,
|
148 |
+
h=self.img_h//self.patch_dim,
|
149 |
+
w=self.img_w//self.patch_dim,
|
150 |
+
)
|
151 |
+
|
152 |
+
return output
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/knn_monitor.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn.functional as F
|
2 |
+
import torch
|
3 |
+
from megatron import print_rank_0, get_args
|
4 |
+
from megatron.core import mpu
|
5 |
+
from megatron.data.vit_dataset import ClassificationTransform
|
6 |
+
from megatron.data.image_folder import ImageFolder
|
7 |
+
|
8 |
+
_FEATURE_BANK = None
|
9 |
+
|
10 |
+
|
11 |
+
def build_data_loader(dataset, drop_last=True, shuffle=False):
|
12 |
+
"""Data loader. Note that batch-size is the local (per GPU) batch-size."""
|
13 |
+
# Sampler.
|
14 |
+
args = get_args()
|
15 |
+
micro_batch_size = 16
|
16 |
+
num_workers = args.num_workers
|
17 |
+
world_size = mpu.get_data_parallel_world_size()
|
18 |
+
rank = mpu.get_data_parallel_rank()
|
19 |
+
sampler = torch.utils.data.distributed.DistributedSampler(
|
20 |
+
dataset, num_replicas=world_size, rank=rank,
|
21 |
+
drop_last=drop_last, shuffle=shuffle
|
22 |
+
)
|
23 |
+
|
24 |
+
# Data loader. Note that batch size is the per GPU batch size.
|
25 |
+
data_loader = torch.utils.data.DataLoader(
|
26 |
+
dataset,
|
27 |
+
batch_size=micro_batch_size,
|
28 |
+
sampler=sampler,
|
29 |
+
shuffle=False,
|
30 |
+
num_workers=num_workers,
|
31 |
+
drop_last=not drop_last,
|
32 |
+
pin_memory=True,
|
33 |
+
)
|
34 |
+
return data_loader
|
35 |
+
|
36 |
+
|
37 |
+
def compute_feature_bank(model):
|
38 |
+
args = get_args()
|
39 |
+
global _FEATURE_BANK
|
40 |
+
feature_bank = []
|
41 |
+
feature_label = []
|
42 |
+
|
43 |
+
train_ds = ImageFolder(
|
44 |
+
root=args.data_path[0],
|
45 |
+
transform=ClassificationTransform((args.img_h, args.img_w), train=False),
|
46 |
+
data_per_class_fraction=1.0
|
47 |
+
)
|
48 |
+
classes = len(train_ds.classes)
|
49 |
+
dataloader = build_data_loader(train_ds)
|
50 |
+
|
51 |
+
for m in model:
|
52 |
+
m.eval()
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
for i, batch in enumerate(dataloader):
|
56 |
+
images = batch[0].cuda().contiguous()
|
57 |
+
labels = batch[1].cuda().contiguous()
|
58 |
+
student_feature, teacher_feature = model[0](images)
|
59 |
+
feature = F.normalize(teacher_feature.float(), dim=1)
|
60 |
+
feature_bank.append(feature)
|
61 |
+
feature_label.append(labels)
|
62 |
+
|
63 |
+
for m in model:
|
64 |
+
m.train()
|
65 |
+
|
66 |
+
# [N', D]
|
67 |
+
feature_bank = torch.cat(feature_bank, dim=0).contiguous()
|
68 |
+
feature_label = torch.cat(feature_label, dim=0).contiguous()
|
69 |
+
|
70 |
+
feature_banks = [torch.zeros_like(feature_bank)
|
71 |
+
for i in range(mpu.get_data_parallel_world_size())]
|
72 |
+
torch.distributed.all_gather(feature_banks,
|
73 |
+
feature_bank,
|
74 |
+
group=mpu.get_data_parallel_group())
|
75 |
+
|
76 |
+
assert torch.all(torch.eq(feature_banks[mpu.get_data_parallel_rank()],
|
77 |
+
feature_bank))
|
78 |
+
|
79 |
+
feature_labels = [torch.zeros_like(feature_label)
|
80 |
+
for i in range(mpu.get_data_parallel_world_size())]
|
81 |
+
torch.distributed.all_gather(feature_labels,
|
82 |
+
feature_label,
|
83 |
+
group=mpu.get_data_parallel_group())
|
84 |
+
|
85 |
+
# [D, N]
|
86 |
+
feature_banks = torch.cat(feature_banks, dim=0).t().contiguous()
|
87 |
+
# [N]
|
88 |
+
feature_labels = torch.cat(feature_labels, dim=0).contiguous()
|
89 |
+
print_rank_0("feature_banks size is {}".format(feature_banks.size()))
|
90 |
+
print_rank_0("feature labels size is {}".format(feature_labels.size()))
|
91 |
+
|
92 |
+
_FEATURE_BANK = (feature_banks, feature_labels, classes)
|
93 |
+
|
94 |
+
|
95 |
+
def get_feature_bank():
|
96 |
+
global _FEATURE_BANK
|
97 |
+
assert _FEATURE_BANK is not None
|
98 |
+
return _FEATURE_BANK
|
99 |
+
|
100 |
+
|
101 |
+
# knn monitor as in InstDisc https://arxiv.org/abs/1805.01978
|
102 |
+
# implementation follows http://github.com/zhirongw/lemniscate.pytorch and
|
103 |
+
# https://github.com/leftthomas/SimCLR
|
104 |
+
def knn_predict(feature, feature_bank, feature_labels, classes, knn_k, knn_t):
|
105 |
+
# compute cos similarity between each feature vector and feature bank ---> [B, N]
|
106 |
+
sim_matrix = torch.mm(feature, feature_bank)
|
107 |
+
# [B, K]
|
108 |
+
sim_weight, sim_indices = sim_matrix.topk(k=knn_k, dim=-1)
|
109 |
+
# [B, K]
|
110 |
+
sim_labels = torch.gather(feature_labels.expand(feature.size(0), -1),
|
111 |
+
dim=-1,
|
112 |
+
index=sim_indices)
|
113 |
+
sim_weight = (sim_weight / knn_t).exp()
|
114 |
+
|
115 |
+
# counts for each class
|
116 |
+
one_hot_label = torch.zeros(feature.size(0) * knn_k,
|
117 |
+
classes,
|
118 |
+
device=sim_labels.device)
|
119 |
+
# [B*K, C]
|
120 |
+
one_hot_label = one_hot_label.scatter(dim=-1,
|
121 |
+
index=sim_labels.view(-1, 1),
|
122 |
+
value=1.0)
|
123 |
+
# weighted score ---> [B, C]
|
124 |
+
pred_scores = torch.sum(
|
125 |
+
one_hot_label.view(feature.size(0), -1, classes) * sim_weight.unsqueeze(dim=-1),
|
126 |
+
dim=1)
|
127 |
+
|
128 |
+
pred_labels = pred_scores.argsort(dim=-1, descending=True)
|
129 |
+
return pred_labels
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/mit_backbone.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ---------------------------------------------------------------
|
2 |
+
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
|
3 |
+
#
|
4 |
+
# This work is licensed under the NVIDIA Source Code License
|
5 |
+
# found in the LICENSE file in the root directory of this
|
6 |
+
# source tree.
|
7 |
+
# ---------------------------------------------------------------
|
8 |
+
import math
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from functools import partial
|
13 |
+
from torch.nn.init import trunc_normal_
|
14 |
+
from megatron.model.transformer import DropPath
|
15 |
+
from megatron.model import LayerNorm
|
16 |
+
|
17 |
+
|
18 |
+
class Mlp(nn.Module):
|
19 |
+
def __init__(self,
|
20 |
+
in_features,
|
21 |
+
hidden_features=None,
|
22 |
+
out_features=None,
|
23 |
+
act_layer=nn.GELU,
|
24 |
+
drop=0.):
|
25 |
+
super().__init__()
|
26 |
+
out_features = out_features or in_features
|
27 |
+
hidden_features = hidden_features or in_features
|
28 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
29 |
+
self.dwconv = DWConv(hidden_features)
|
30 |
+
self.act = act_layer()
|
31 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
32 |
+
self.drop = nn.Dropout(drop)
|
33 |
+
|
34 |
+
self.apply(self._init_weights)
|
35 |
+
|
36 |
+
def _init_weights(self, m):
|
37 |
+
if isinstance(m, nn.Linear):
|
38 |
+
trunc_normal_(m.weight, std=.02)
|
39 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
40 |
+
nn.init.constant_(m.bias, 0)
|
41 |
+
elif isinstance(m, nn.LayerNorm):
|
42 |
+
nn.init.constant_(m.bias, 0)
|
43 |
+
nn.init.constant_(m.weight, 1.0)
|
44 |
+
elif isinstance(m, nn.Conv2d):
|
45 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
46 |
+
fan_out //= m.groups
|
47 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
48 |
+
if m.bias is not None:
|
49 |
+
m.bias.data.zero_()
|
50 |
+
|
51 |
+
def forward(self, x, H, W):
|
52 |
+
x = self.fc1(x)
|
53 |
+
x = self.dwconv(x, H, W)
|
54 |
+
x = self.act(x)
|
55 |
+
x = self.drop(x)
|
56 |
+
x = self.fc2(x)
|
57 |
+
x = self.drop(x)
|
58 |
+
return x
|
59 |
+
|
60 |
+
|
61 |
+
class Attention(nn.Module):
|
62 |
+
def __init__(self,
|
63 |
+
dim,
|
64 |
+
num_heads=8,
|
65 |
+
qkv_bias=False,
|
66 |
+
qk_scale=None,
|
67 |
+
attn_drop=0.,
|
68 |
+
proj_drop=0.,
|
69 |
+
sr_ratio=1):
|
70 |
+
super().__init__()
|
71 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
72 |
+
|
73 |
+
self.dim = dim
|
74 |
+
self.num_heads = num_heads
|
75 |
+
head_dim = dim // num_heads
|
76 |
+
self.scale = qk_scale or head_dim ** -0.5
|
77 |
+
|
78 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
79 |
+
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
80 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
81 |
+
self.proj = nn.Linear(dim, dim)
|
82 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
83 |
+
|
84 |
+
self.sr_ratio = sr_ratio
|
85 |
+
if sr_ratio > 1:
|
86 |
+
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
87 |
+
self.norm = LayerNorm(dim)
|
88 |
+
|
89 |
+
self.apply(self._init_weights)
|
90 |
+
|
91 |
+
def _init_weights(self, m):
|
92 |
+
if isinstance(m, nn.Linear):
|
93 |
+
trunc_normal_(m.weight, std=.02)
|
94 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
95 |
+
nn.init.constant_(m.bias, 0)
|
96 |
+
elif isinstance(m, nn.LayerNorm):
|
97 |
+
nn.init.constant_(m.bias, 0)
|
98 |
+
nn.init.constant_(m.weight, 1.0)
|
99 |
+
elif isinstance(m, nn.Conv2d):
|
100 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
101 |
+
fan_out //= m.groups
|
102 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
103 |
+
if m.bias is not None:
|
104 |
+
m.bias.data.zero_()
|
105 |
+
|
106 |
+
def forward(self, x, H, W):
|
107 |
+
B, N, C = x.shape
|
108 |
+
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
109 |
+
|
110 |
+
if self.sr_ratio > 1:
|
111 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
112 |
+
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
113 |
+
x_ = self.norm(x_)
|
114 |
+
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
115 |
+
else:
|
116 |
+
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
117 |
+
k, v = kv[0], kv[1]
|
118 |
+
|
119 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
120 |
+
attn = attn.softmax(dim=-1)
|
121 |
+
attn = self.attn_drop(attn)
|
122 |
+
|
123 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
124 |
+
x = self.proj(x)
|
125 |
+
x = self.proj_drop(x)
|
126 |
+
|
127 |
+
return x
|
128 |
+
|
129 |
+
|
130 |
+
class Block(nn.Module):
|
131 |
+
|
132 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
133 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=LayerNorm, sr_ratio=1):
|
134 |
+
super().__init__()
|
135 |
+
self.norm1 = norm_layer(dim)
|
136 |
+
self.attn = Attention(
|
137 |
+
dim,
|
138 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
139 |
+
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
140 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
141 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
142 |
+
self.norm2 = norm_layer(dim)
|
143 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
144 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
145 |
+
|
146 |
+
self.apply(self._init_weights)
|
147 |
+
|
148 |
+
def _init_weights(self, m):
|
149 |
+
if isinstance(m, nn.Linear):
|
150 |
+
trunc_normal_(m.weight, std=.02)
|
151 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
152 |
+
nn.init.constant_(m.bias, 0)
|
153 |
+
elif isinstance(m, nn.LayerNorm):
|
154 |
+
nn.init.constant_(m.bias, 0)
|
155 |
+
nn.init.constant_(m.weight, 1.0)
|
156 |
+
elif isinstance(m, nn.Conv2d):
|
157 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
158 |
+
fan_out //= m.groups
|
159 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
160 |
+
if m.bias is not None:
|
161 |
+
m.bias.data.zero_()
|
162 |
+
|
163 |
+
def forward(self, x, H, W):
|
164 |
+
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
165 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
166 |
+
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
class OverlapPatchEmbed(nn.Module):
|
171 |
+
""" Image to Patch Embedding
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
|
175 |
+
super().__init__()
|
176 |
+
img_size = (img_size, img_size)
|
177 |
+
patch_size = (patch_size, patch_size)
|
178 |
+
|
179 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
|
180 |
+
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
181 |
+
self.norm = LayerNorm(embed_dim)
|
182 |
+
|
183 |
+
self.apply(self._init_weights)
|
184 |
+
|
185 |
+
def _init_weights(self, m):
|
186 |
+
if isinstance(m, nn.Linear):
|
187 |
+
trunc_normal_(m.weight, std=.02)
|
188 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
189 |
+
nn.init.constant_(m.bias, 0)
|
190 |
+
elif isinstance(m, nn.LayerNorm):
|
191 |
+
nn.init.constant_(m.bias, 0)
|
192 |
+
nn.init.constant_(m.weight, 1.0)
|
193 |
+
elif isinstance(m, nn.Conv2d):
|
194 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
195 |
+
fan_out //= m.groups
|
196 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
197 |
+
if m.bias is not None:
|
198 |
+
m.bias.data.zero_()
|
199 |
+
|
200 |
+
def forward(self, x):
|
201 |
+
x = self.proj(x)
|
202 |
+
_, _, H, W = x.shape
|
203 |
+
x = x.flatten(2).transpose(1, 2)
|
204 |
+
x = self.norm(x)
|
205 |
+
|
206 |
+
return x, H, W
|
207 |
+
|
208 |
+
|
209 |
+
class MixVisionTransformer(nn.Module):
|
210 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
|
211 |
+
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
212 |
+
attn_drop_rate=0., drop_path_rate=0., norm_layer=LayerNorm,
|
213 |
+
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], output_avg=False):
|
214 |
+
super().__init__()
|
215 |
+
self.num_classes = num_classes
|
216 |
+
self.depths = depths
|
217 |
+
self.output_avg = output_avg
|
218 |
+
|
219 |
+
# patch_embed
|
220 |
+
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
|
221 |
+
embed_dim=embed_dims[0])
|
222 |
+
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
|
223 |
+
embed_dim=embed_dims[1])
|
224 |
+
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
|
225 |
+
embed_dim=embed_dims[2])
|
226 |
+
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
|
227 |
+
embed_dim=embed_dims[3])
|
228 |
+
|
229 |
+
# transformer encoder
|
230 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
231 |
+
cur = 0
|
232 |
+
self.block1 = nn.ModuleList([Block(
|
233 |
+
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
234 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
235 |
+
sr_ratio=sr_ratios[0])
|
236 |
+
for i in range(depths[0])])
|
237 |
+
self.norm1 = norm_layer(embed_dims[0])
|
238 |
+
|
239 |
+
cur += depths[0]
|
240 |
+
self.block2 = nn.ModuleList([Block(
|
241 |
+
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
242 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
243 |
+
sr_ratio=sr_ratios[1])
|
244 |
+
for i in range(depths[1])])
|
245 |
+
self.norm2 = norm_layer(embed_dims[1])
|
246 |
+
|
247 |
+
cur += depths[1]
|
248 |
+
self.block3 = nn.ModuleList([Block(
|
249 |
+
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
250 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
251 |
+
sr_ratio=sr_ratios[2])
|
252 |
+
for i in range(depths[2])])
|
253 |
+
self.norm3 = norm_layer(embed_dims[2])
|
254 |
+
|
255 |
+
cur += depths[2]
|
256 |
+
self.block4 = nn.ModuleList([Block(
|
257 |
+
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
258 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
259 |
+
sr_ratio=sr_ratios[3])
|
260 |
+
for i in range(depths[3])])
|
261 |
+
self.norm4 = norm_layer(embed_dims[3])
|
262 |
+
|
263 |
+
self.apply(self._init_weights)
|
264 |
+
|
265 |
+
def _init_weights(self, m):
|
266 |
+
if isinstance(m, nn.Linear):
|
267 |
+
trunc_normal_(m.weight, std=.02)
|
268 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
269 |
+
nn.init.constant_(m.bias, 0)
|
270 |
+
elif isinstance(m, nn.LayerNorm):
|
271 |
+
nn.init.constant_(m.bias, 0)
|
272 |
+
nn.init.constant_(m.weight, 1.0)
|
273 |
+
elif isinstance(m, nn.Conv2d):
|
274 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
275 |
+
fan_out //= m.groups
|
276 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
277 |
+
if m.bias is not None:
|
278 |
+
m.bias.data.zero_()
|
279 |
+
|
280 |
+
def reset_drop_path(self, drop_path_rate):
|
281 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
|
282 |
+
cur = 0
|
283 |
+
for i in range(self.depths[0]):
|
284 |
+
self.block1[i].drop_path.drop_prob = dpr[cur + i]
|
285 |
+
|
286 |
+
cur += self.depths[0]
|
287 |
+
for i in range(self.depths[1]):
|
288 |
+
self.block2[i].drop_path.drop_prob = dpr[cur + i]
|
289 |
+
|
290 |
+
cur += self.depths[1]
|
291 |
+
for i in range(self.depths[2]):
|
292 |
+
self.block3[i].drop_path.drop_prob = dpr[cur + i]
|
293 |
+
|
294 |
+
cur += self.depths[2]
|
295 |
+
for i in range(self.depths[3]):
|
296 |
+
self.block4[i].drop_path.drop_prob = dpr[cur + i]
|
297 |
+
|
298 |
+
def freeze_patch_emb(self):
|
299 |
+
self.patch_embed1.requires_grad = False
|
300 |
+
|
301 |
+
def forward_features(self, x):
|
302 |
+
B = x.shape[0]
|
303 |
+
outs = []
|
304 |
+
|
305 |
+
# stage 1
|
306 |
+
x, H, W = self.patch_embed1(x)
|
307 |
+
for i, blk in enumerate(self.block1):
|
308 |
+
x = blk(x, H, W)
|
309 |
+
x = self.norm1(x)
|
310 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
311 |
+
outs.append(x)
|
312 |
+
|
313 |
+
# stage 2
|
314 |
+
x, H, W = self.patch_embed2(x)
|
315 |
+
for i, blk in enumerate(self.block2):
|
316 |
+
x = blk(x, H, W)
|
317 |
+
x = self.norm2(x)
|
318 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
319 |
+
outs.append(x)
|
320 |
+
|
321 |
+
# stage 3
|
322 |
+
x, H, W = self.patch_embed3(x)
|
323 |
+
for i, blk in enumerate(self.block3):
|
324 |
+
x = blk(x, H, W)
|
325 |
+
x = self.norm3(x)
|
326 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
327 |
+
outs.append(x)
|
328 |
+
|
329 |
+
# stage 4
|
330 |
+
x, H, W = self.patch_embed4(x)
|
331 |
+
for i, blk in enumerate(self.block4):
|
332 |
+
x = blk(x, H, W)
|
333 |
+
x = self.norm4(x)
|
334 |
+
if not self.output_avg:
|
335 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
336 |
+
outs.append(x)
|
337 |
+
|
338 |
+
return outs
|
339 |
+
|
340 |
+
def forward(self, x):
|
341 |
+
x = self.forward_features(x)
|
342 |
+
|
343 |
+
if self.output_avg:
|
344 |
+
x = x[3].mean(dim=1)
|
345 |
+
|
346 |
+
return x
|
347 |
+
|
348 |
+
|
349 |
+
class DWConv(nn.Module):
|
350 |
+
def __init__(self, dim=768):
|
351 |
+
super(DWConv, self).__init__()
|
352 |
+
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
353 |
+
|
354 |
+
def forward(self, x, H, W):
|
355 |
+
B, N, C = x.shape
|
356 |
+
x = x.transpose(1, 2).view(B, C, H, W)
|
357 |
+
x = self.dwconv(x)
|
358 |
+
x = x.flatten(2).transpose(1, 2)
|
359 |
+
|
360 |
+
return x
|
361 |
+
|
362 |
+
class mit_b0(MixVisionTransformer):
|
363 |
+
def __init__(self, **kwargs):
|
364 |
+
super(mit_b0, self).__init__(
|
365 |
+
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
366 |
+
qkv_bias=True, norm_layer=partial(LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
367 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
368 |
+
|
369 |
+
|
370 |
+
class mit_b1(MixVisionTransformer):
|
371 |
+
def __init__(self, **kwargs):
|
372 |
+
super(mit_b1, self).__init__(
|
373 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
374 |
+
qkv_bias=True, norm_layer=partial(LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
375 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
376 |
+
|
377 |
+
|
378 |
+
class mit_b2(MixVisionTransformer):
|
379 |
+
def __init__(self, **kwargs):
|
380 |
+
super(mit_b2, self).__init__(
|
381 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
382 |
+
qkv_bias=True, norm_layer=partial(LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
383 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
384 |
+
|
385 |
+
|
386 |
+
class mit_b3(MixVisionTransformer):
|
387 |
+
def __init__(self, **kwargs):
|
388 |
+
super(mit_b3, self).__init__(
|
389 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
390 |
+
qkv_bias=True, norm_layer=partial(LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
|
391 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
392 |
+
|
393 |
+
class mit_b3_avg(MixVisionTransformer):
|
394 |
+
def __init__(self, drop_path_rate=0.1, **kwargs):
|
395 |
+
super(mit_b3_avg, self).__init__(
|
396 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
397 |
+
qkv_bias=True, norm_layer=partial(LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
|
398 |
+
drop_rate=0.0, drop_path_rate=drop_path_rate, output_avg=True)
|
399 |
+
|
400 |
+
class mit_b4(MixVisionTransformer):
|
401 |
+
def __init__(self, **kwargs):
|
402 |
+
super(mit_b4, self).__init__(
|
403 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
404 |
+
qkv_bias=True, norm_layer=partial(LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
|
405 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
406 |
+
|
407 |
+
class mit_b5(MixVisionTransformer):
|
408 |
+
def __init__(self, **kwargs):
|
409 |
+
super(mit_b5, self).__init__(
|
410 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
411 |
+
qkv_bias=True, norm_layer=partial(LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
|
412 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
413 |
+
|
414 |
+
class mit_b5_avg(MixVisionTransformer):
|
415 |
+
def __init__(self, drop_path_rate=0.1, **kwargs):
|
416 |
+
super(mit_b5_avg, self).__init__(
|
417 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
418 |
+
qkv_bias=True, norm_layer=partial(LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
|
419 |
+
drop_rate=0.0, drop_path_rate=drop_path_rate, output_avg=True)
|
420 |
+
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/swin_backbone.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Microsoft
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
# --------------------------------------------------------
|
6 |
+
# Swin Transformer
|
7 |
+
# --------------------------------------------------------
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint as checkpoint
|
12 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
13 |
+
from math import sqrt
|
14 |
+
|
15 |
+
from megatron import get_args
|
16 |
+
from functools import partial
|
17 |
+
|
18 |
+
|
19 |
+
class Mlp(nn.Module):
|
20 |
+
def __init__(self, in_features, hidden_features=None,
|
21 |
+
out_features=None, act_layer=nn.GELU, drop=0.):
|
22 |
+
super().__init__()
|
23 |
+
out_features = out_features or in_features
|
24 |
+
hidden_features = hidden_features or in_features
|
25 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
26 |
+
self.act = act_layer()
|
27 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
28 |
+
self.drop = nn.Dropout(drop)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = self.fc1(x)
|
32 |
+
x = self.act(x)
|
33 |
+
x = self.drop(x)
|
34 |
+
x = self.fc2(x)
|
35 |
+
x = self.drop(x)
|
36 |
+
return x
|
37 |
+
|
38 |
+
|
39 |
+
def window_partition(x, window_size):
|
40 |
+
"""
|
41 |
+
Args:
|
42 |
+
x: (B, H, W, C)
|
43 |
+
window_size (int): window size
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
windows: (num_windows*B, window_size, window_size, C)
|
47 |
+
"""
|
48 |
+
B, H, W, C = x.shape
|
49 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
50 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
51 |
+
return windows
|
52 |
+
|
53 |
+
|
54 |
+
def window_reverse(windows, window_size, H, W):
|
55 |
+
"""
|
56 |
+
Args:
|
57 |
+
windows: (num_windows*B, window_size, window_size, C)
|
58 |
+
window_size (int): Window size
|
59 |
+
H (int): Height of image
|
60 |
+
W (int): Width of image
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
x: (B, H, W, C)
|
64 |
+
"""
|
65 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
66 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
67 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
68 |
+
return x
|
69 |
+
|
70 |
+
|
71 |
+
class WindowAttention(nn.Module):
|
72 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
73 |
+
It supports both of shifted and non-shifted window.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
dim (int): Number of input channels.
|
77 |
+
window_size (tuple[int]): The height and width of the window.
|
78 |
+
num_heads (int): Number of attention heads.
|
79 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
80 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
81 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
82 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
86 |
+
|
87 |
+
super().__init__()
|
88 |
+
self.dim = dim
|
89 |
+
self.window_size = window_size # Wh, Ww
|
90 |
+
self.num_heads = num_heads
|
91 |
+
head_dim = dim // num_heads
|
92 |
+
self.scale = qk_scale or head_dim ** -0.5
|
93 |
+
|
94 |
+
# define a parameter table of relative position bias
|
95 |
+
self.relative_position_bias_table = nn.Parameter(
|
96 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
97 |
+
|
98 |
+
# get pair-wise relative position index for each token inside the window
|
99 |
+
coords_h = torch.arange(self.window_size[0])
|
100 |
+
coords_w = torch.arange(self.window_size[1])
|
101 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
102 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
103 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
104 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
105 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
106 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
107 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
108 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
109 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
110 |
+
|
111 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
112 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
113 |
+
self.proj = nn.Linear(dim, dim)
|
114 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
115 |
+
|
116 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
117 |
+
self.softmax = nn.Softmax(dim=-1)
|
118 |
+
|
119 |
+
def forward(self, x, mask=None):
|
120 |
+
"""
|
121 |
+
Args:
|
122 |
+
x: input features with shape of (num_windows*B, N, C)
|
123 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
124 |
+
"""
|
125 |
+
B_, N, C = x.shape
|
126 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
127 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
128 |
+
|
129 |
+
q = q * self.scale
|
130 |
+
attn = (q @ k.transpose(-2, -1))
|
131 |
+
|
132 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
133 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
134 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
135 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
136 |
+
|
137 |
+
if mask is not None:
|
138 |
+
nW = mask.shape[0]
|
139 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
140 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
141 |
+
attn = self.softmax(attn)
|
142 |
+
else:
|
143 |
+
attn = self.softmax(attn)
|
144 |
+
|
145 |
+
attn = self.attn_drop(attn)
|
146 |
+
|
147 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
148 |
+
x = self.proj(x)
|
149 |
+
x = self.proj_drop(x)
|
150 |
+
return x
|
151 |
+
|
152 |
+
def extra_repr(self) -> str:
|
153 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
154 |
+
|
155 |
+
def flops(self, N):
|
156 |
+
# calculate flops for 1 window with token length of N
|
157 |
+
flops = 0
|
158 |
+
# qkv = self.qkv(x)
|
159 |
+
flops += N * self.dim * 3 * self.dim
|
160 |
+
# attn = (q @ k.transpose(-2, -1))
|
161 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
162 |
+
# x = (attn @ v)
|
163 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
164 |
+
# x = self.proj(x)
|
165 |
+
flops += N * self.dim * self.dim
|
166 |
+
return flops
|
167 |
+
|
168 |
+
|
169 |
+
class SwinTransformerBlock(nn.Module):
|
170 |
+
r""" Swin Transformer Block.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
dim (int): Number of input channels.
|
174 |
+
input_resolution (tuple[int]): Input resulotion.
|
175 |
+
num_heads (int): Number of attention heads.
|
176 |
+
window_size (int): Window size.
|
177 |
+
shift_size (int): Shift size for SW-MSA.
|
178 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
179 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
180 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
181 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
182 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
183 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
184 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
185 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
186 |
+
"""
|
187 |
+
|
188 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
189 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
190 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
191 |
+
super().__init__()
|
192 |
+
self.dim = dim
|
193 |
+
self.input_resolution = input_resolution
|
194 |
+
self.num_heads = num_heads
|
195 |
+
self.window_size = window_size
|
196 |
+
self.shift_size = shift_size
|
197 |
+
self.mlp_ratio = mlp_ratio
|
198 |
+
if min(self.input_resolution) <= self.window_size:
|
199 |
+
# if window size is larger than input resolution, we don't partition windows
|
200 |
+
self.shift_size = 0
|
201 |
+
self.window_size = min(self.input_resolution)
|
202 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
203 |
+
|
204 |
+
self.norm1 = norm_layer(dim)
|
205 |
+
self.attn = WindowAttention(
|
206 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
207 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
208 |
+
|
209 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
210 |
+
self.norm2 = norm_layer(dim)
|
211 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
212 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
213 |
+
|
214 |
+
self.H = input_resolution[0]
|
215 |
+
self.W = input_resolution[1]
|
216 |
+
|
217 |
+
self.attn_mask_dict = {}
|
218 |
+
|
219 |
+
def create_attn_mask(self, H, W):
|
220 |
+
# calculate attention mask for SW-MSA
|
221 |
+
|
222 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
223 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
224 |
+
img_mask = torch.zeros((1, Hp, Wp, 1)) # 1 Hp Wp 1
|
225 |
+
h_slices = (slice(0, -self.window_size),
|
226 |
+
slice(-self.window_size, -self.shift_size),
|
227 |
+
slice(-self.shift_size, None))
|
228 |
+
w_slices = (slice(0, -self.window_size),
|
229 |
+
slice(-self.window_size, -self.shift_size),
|
230 |
+
slice(-self.shift_size, None))
|
231 |
+
cnt = 0
|
232 |
+
for h in h_slices:
|
233 |
+
for w in w_slices:
|
234 |
+
img_mask[:, h, w, :] = cnt
|
235 |
+
cnt += 1
|
236 |
+
|
237 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
238 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
239 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
240 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
241 |
+
|
242 |
+
return attn_mask
|
243 |
+
|
244 |
+
|
245 |
+
def forward(self, x):
|
246 |
+
B, L, C = x.shape
|
247 |
+
H = int(sqrt(L))
|
248 |
+
W = H
|
249 |
+
|
250 |
+
shortcut = x
|
251 |
+
x = self.norm1(x)
|
252 |
+
x = x.view(B, H, W, C)
|
253 |
+
|
254 |
+
# cyclic shift
|
255 |
+
if self.shift_size > 0:
|
256 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
257 |
+
else:
|
258 |
+
shifted_x = x
|
259 |
+
|
260 |
+
# partition windows
|
261 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
262 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
263 |
+
|
264 |
+
# W-MSA/SW-MSA
|
265 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
266 |
+
|
267 |
+
# merge windows
|
268 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
269 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
270 |
+
|
271 |
+
# reverse cyclic shift
|
272 |
+
if self.shift_size > 0:
|
273 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
274 |
+
else:
|
275 |
+
x = shifted_x
|
276 |
+
x = x.view(B, H * W, C)
|
277 |
+
|
278 |
+
# FFN
|
279 |
+
x = shortcut + self.drop_path(x)
|
280 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
281 |
+
|
282 |
+
return x
|
283 |
+
|
284 |
+
def extra_repr(self) -> str:
|
285 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
286 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
287 |
+
|
288 |
+
def flops(self):
|
289 |
+
flops = 0
|
290 |
+
H, W = self.input_resolution
|
291 |
+
# norm1
|
292 |
+
flops += self.dim * H * W
|
293 |
+
# W-MSA/SW-MSA
|
294 |
+
nW = H * W / self.window_size / self.window_size
|
295 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
296 |
+
# mlp
|
297 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
298 |
+
# norm2
|
299 |
+
flops += self.dim * H * W
|
300 |
+
return flops
|
301 |
+
|
302 |
+
|
303 |
+
class PatchMerging(nn.Module):
|
304 |
+
r""" Patch Merging Layer.
|
305 |
+
|
306 |
+
Args:
|
307 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
308 |
+
dim (int): Number of input channels.
|
309 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
310 |
+
"""
|
311 |
+
|
312 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
313 |
+
super().__init__()
|
314 |
+
self.input_resolution = input_resolution
|
315 |
+
self.dim = dim
|
316 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
317 |
+
self.norm = norm_layer(4 * dim)
|
318 |
+
|
319 |
+
def forward(self, x):
|
320 |
+
"""
|
321 |
+
x: B, H*W, C
|
322 |
+
"""
|
323 |
+
H, W = self.input_resolution
|
324 |
+
B, L, C = x.shape
|
325 |
+
assert L == H * W, "input feature has wrong size"
|
326 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
327 |
+
|
328 |
+
x = x.view(B, H, W, C)
|
329 |
+
|
330 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
331 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
332 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
333 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
334 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
335 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
336 |
+
|
337 |
+
x = self.norm(x)
|
338 |
+
x = self.reduction(x)
|
339 |
+
|
340 |
+
return x
|
341 |
+
|
342 |
+
def extra_repr(self) -> str:
|
343 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
344 |
+
|
345 |
+
def flops(self):
|
346 |
+
H, W = self.input_resolution
|
347 |
+
flops = H * W * self.dim
|
348 |
+
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
349 |
+
return flops
|
350 |
+
|
351 |
+
|
352 |
+
class BasicLayer(nn.Module):
|
353 |
+
""" A basic Swin Transformer layer for one stage.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
dim (int): Number of input channels.
|
357 |
+
input_resolution (tuple[int]): Input resolution.
|
358 |
+
depth (int): Number of blocks.
|
359 |
+
num_heads (int): Number of attention heads.
|
360 |
+
window_size (int): Local window size.
|
361 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
362 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
363 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
364 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
365 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
366 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
367 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
368 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
369 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
370 |
+
"""
|
371 |
+
|
372 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
373 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
374 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
|
375 |
+
|
376 |
+
super().__init__()
|
377 |
+
self.dim = dim
|
378 |
+
self.input_resolution = input_resolution
|
379 |
+
self.depth = depth
|
380 |
+
self.use_checkpoint = use_checkpoint
|
381 |
+
|
382 |
+
# build blocks
|
383 |
+
self.blocks = nn.ModuleList([
|
384 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
385 |
+
num_heads=num_heads, window_size=window_size,
|
386 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
387 |
+
mlp_ratio=mlp_ratio,
|
388 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
389 |
+
drop=drop, attn_drop=attn_drop,
|
390 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
391 |
+
norm_layer=norm_layer)
|
392 |
+
for i in range(depth)])
|
393 |
+
|
394 |
+
# patch merging layer
|
395 |
+
if downsample is not None:
|
396 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
397 |
+
else:
|
398 |
+
self.downsample = None
|
399 |
+
|
400 |
+
def forward(self, x):
|
401 |
+
for blk in self.blocks:
|
402 |
+
if self.use_checkpoint:
|
403 |
+
x = checkpoint.checkpoint(blk, x)
|
404 |
+
else:
|
405 |
+
x = blk(x)
|
406 |
+
x_b4_ds = x
|
407 |
+
if self.downsample is not None:
|
408 |
+
x = self.downsample(x)
|
409 |
+
return x_b4_ds, x
|
410 |
+
|
411 |
+
def extra_repr(self) -> str:
|
412 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
413 |
+
|
414 |
+
def flops(self):
|
415 |
+
flops = 0
|
416 |
+
for blk in self.blocks:
|
417 |
+
flops += blk.flops()
|
418 |
+
if self.downsample is not None:
|
419 |
+
flops += self.downsample.flops()
|
420 |
+
return flops
|
421 |
+
|
422 |
+
|
423 |
+
class PatchEmbed(nn.Module):
|
424 |
+
r""" Image to Patch Embedding
|
425 |
+
|
426 |
+
Args:
|
427 |
+
img_size (int): Image size. Default: 224.
|
428 |
+
patch_size (int): Patch token size. Default: 4.
|
429 |
+
in_chans (int): Number of input image channels. Default: 3.
|
430 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
431 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
432 |
+
"""
|
433 |
+
|
434 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
435 |
+
super().__init__()
|
436 |
+
img_size = to_2tuple(img_size)
|
437 |
+
patch_size = to_2tuple(patch_size)
|
438 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
439 |
+
self.img_size = img_size
|
440 |
+
self.patch_size = patch_size
|
441 |
+
self.patches_resolution = patches_resolution
|
442 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
443 |
+
|
444 |
+
self.in_chans = in_chans
|
445 |
+
self.embed_dim = embed_dim
|
446 |
+
|
447 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
448 |
+
if norm_layer is not None:
|
449 |
+
self.norm = norm_layer(embed_dim)
|
450 |
+
else:
|
451 |
+
self.norm = None
|
452 |
+
|
453 |
+
def forward(self, x):
|
454 |
+
B, C, H, W = x.shape
|
455 |
+
# FIXME look at relaxing size constraints
|
456 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
457 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
458 |
+
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
|
459 |
+
if self.norm is not None:
|
460 |
+
x = self.norm(x)
|
461 |
+
return x
|
462 |
+
|
463 |
+
def flops(self):
|
464 |
+
Ho, Wo = self.patches_resolution
|
465 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
466 |
+
if self.norm is not None:
|
467 |
+
flops += Ho * Wo * self.embed_dim
|
468 |
+
return flops
|
469 |
+
|
470 |
+
|
471 |
+
class SwinTransformer(nn.Module):
|
472 |
+
r""" Swin Transformer
|
473 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
474 |
+
https://arxiv.org/pdf/2103.14030
|
475 |
+
|
476 |
+
Args:
|
477 |
+
img_size (int | tuple(int)): Input image size. Default 224
|
478 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
479 |
+
in_chans (int): Number of input image channels. Default: 3
|
480 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
481 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
482 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
483 |
+
window_size (int): Window size. Default: 7
|
484 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
485 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
486 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
487 |
+
drop_rate (float): Dropout rate. Default: 0
|
488 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
489 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
490 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
491 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
492 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
493 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
494 |
+
"""
|
495 |
+
|
496 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3,
|
497 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
|
498 |
+
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
499 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3,
|
500 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), ape=False, patch_norm=True,
|
501 |
+
use_checkpoint=False, output_avg=False, **kwargs):
|
502 |
+
super().__init__()
|
503 |
+
|
504 |
+
self.num_layers = len(depths)
|
505 |
+
self.embed_dim = embed_dim
|
506 |
+
self.ape = ape
|
507 |
+
self.patch_norm = patch_norm
|
508 |
+
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
|
509 |
+
self.mlp_ratio = mlp_ratio
|
510 |
+
self.img_size = to_2tuple(img_size)
|
511 |
+
self.patch_size = to_2tuple(patch_size)
|
512 |
+
self.output_avg = output_avg
|
513 |
+
|
514 |
+
# split image into non-overlapping patches
|
515 |
+
self.patch_embed = PatchEmbed(
|
516 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
517 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
518 |
+
num_patches = self.patch_embed.num_patches
|
519 |
+
patches_resolution = self.patch_embed.patches_resolution
|
520 |
+
self.patches_resolution = patches_resolution
|
521 |
+
|
522 |
+
# absolute position embedding
|
523 |
+
if self.ape:
|
524 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
525 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
526 |
+
|
527 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
528 |
+
|
529 |
+
# stochastic depth
|
530 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
531 |
+
|
532 |
+
# build layers
|
533 |
+
self.layers = nn.ModuleList()
|
534 |
+
for i_layer in range(self.num_layers):
|
535 |
+
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
|
536 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
537 |
+
patches_resolution[1] // (2 ** i_layer)),
|
538 |
+
depth=depths[i_layer],
|
539 |
+
num_heads=num_heads[i_layer],
|
540 |
+
window_size=window_size,
|
541 |
+
mlp_ratio=self.mlp_ratio,
|
542 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
543 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
544 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
545 |
+
norm_layer=norm_layer,
|
546 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
547 |
+
use_checkpoint=use_checkpoint)
|
548 |
+
self.layers.append(layer)
|
549 |
+
|
550 |
+
self.apply(self._init_weights)
|
551 |
+
|
552 |
+
def _init_weights(self, m):
|
553 |
+
if isinstance(m, nn.Linear):
|
554 |
+
trunc_normal_(m.weight, std=.02)
|
555 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
556 |
+
nn.init.constant_(m.bias, 0)
|
557 |
+
elif isinstance(m, nn.LayerNorm):
|
558 |
+
nn.init.constant_(m.bias, 0)
|
559 |
+
nn.init.constant_(m.weight, 1.0)
|
560 |
+
|
561 |
+
@torch.jit.ignore
|
562 |
+
def no_weight_decay(self):
|
563 |
+
return {'absolute_pos_embed'}
|
564 |
+
|
565 |
+
@torch.jit.ignore
|
566 |
+
def no_weight_decay_keywords(self):
|
567 |
+
return {'relative_position_bias_table'}
|
568 |
+
|
569 |
+
def forward(self, x):
|
570 |
+
x = self.patch_embed(x)
|
571 |
+
if self.ape:
|
572 |
+
x = x + self.absolute_pos_embed
|
573 |
+
x = self.pos_drop(x)
|
574 |
+
|
575 |
+
h = self.img_size[0] // self.patch_size[0]
|
576 |
+
w = self.img_size[1] // self.patch_size[1]
|
577 |
+
outs = []
|
578 |
+
|
579 |
+
for i, layer in enumerate(self.layers):
|
580 |
+
px, x = layer(x)
|
581 |
+
b, n, c = px.shape
|
582 |
+
|
583 |
+
if i != len(self.layers) - 1 or not self.output_avg:
|
584 |
+
px = px.permute(0, 2, 1).contiguous()
|
585 |
+
px = px.reshape(b, c, h, w)
|
586 |
+
# is this a fair assumption ?? i think it's baked into the architecture
|
587 |
+
h, w = h//2, w//2
|
588 |
+
outs.append(px)
|
589 |
+
|
590 |
+
if self.output_avg:
|
591 |
+
return outs[-1].mean(dim=1)
|
592 |
+
|
593 |
+
return outs
|
594 |
+
|
595 |
+
def flops(self):
|
596 |
+
flops = 0
|
597 |
+
flops += self.patch_embed.flops()
|
598 |
+
for i, layer in enumerate(self.layers):
|
599 |
+
flops += layer.flops()
|
600 |
+
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
|
601 |
+
flops += self.num_features * self.num_classes
|
602 |
+
return flops
|
603 |
+
|
604 |
+
|
605 |
+
def get_swin(drop_path_rate=0.3, output_avg=False):
|
606 |
+
args = get_args()
|
607 |
+
|
608 |
+
window_size = 7
|
609 |
+
embed_dim = 128
|
610 |
+
depths = [2, 2, 18, 2]
|
611 |
+
num_heads = [4, 8, 16, 32]
|
612 |
+
swin = SwinTransformer(
|
613 |
+
img_size=(args.img_h, args.img_w,),
|
614 |
+
in_chans=3,
|
615 |
+
patch_size=args.patch_dim,
|
616 |
+
embed_dim=embed_dim,
|
617 |
+
depths=depths,
|
618 |
+
num_heads=num_heads,
|
619 |
+
window_size=window_size,
|
620 |
+
drop_path_rate=drop_path_rate,
|
621 |
+
output_avg=output_avg,
|
622 |
+
)
|
623 |
+
|
624 |
+
return swin
|
625 |
+
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/utils.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def resize(input,
|
7 |
+
size=None,
|
8 |
+
scale_factor=None,
|
9 |
+
mode='nearest',
|
10 |
+
align_corners=None,
|
11 |
+
warning=True):
|
12 |
+
if warning:
|
13 |
+
if size is not None and align_corners:
|
14 |
+
input_h, input_w = tuple(int(x) for x in input.shape[2:])
|
15 |
+
output_h, output_w = tuple(int(x) for x in size)
|
16 |
+
if output_h > input_h or output_w > output_h:
|
17 |
+
if ((output_h > 1 and output_w > 1 and input_h > 1
|
18 |
+
and input_w > 1) and (output_h - 1) % (input_h - 1)
|
19 |
+
and (output_w - 1) % (input_w - 1)):
|
20 |
+
warnings.warn(
|
21 |
+
f'When align_corners={align_corners}, '
|
22 |
+
'the output would more aligned if '
|
23 |
+
f'input size {(input_h, input_w)} is `x+1` and '
|
24 |
+
f'out size {(output_h, output_w)} is `nx+1`')
|
25 |
+
if isinstance(size, torch.Size):
|
26 |
+
size = tuple(int(x) for x in size)
|
27 |
+
return F.interpolate(input, size, scale_factor, mode, align_corners)
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/model/vision/vit_backbone.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
|
3 |
+
"""Vision Transformer(VIT) model."""
|
4 |
+
|
5 |
+
import math
|
6 |
+
import einops
|
7 |
+
import torch
|
8 |
+
import apex
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from megatron import get_args
|
11 |
+
from megatron.model.transformer import ParallelTransformer
|
12 |
+
from megatron.model.utils import (
|
13 |
+
get_linear_layer,
|
14 |
+
init_method_normal,
|
15 |
+
scaled_init_method_normal,
|
16 |
+
)
|
17 |
+
from megatron.model.module import MegatronModule
|
18 |
+
|
19 |
+
CLASS_TOKEN_LENGTH = 8
|
20 |
+
|
21 |
+
class VitMlpHead(MegatronModule):
|
22 |
+
"""Pooler layer.
|
23 |
+
|
24 |
+
Pool hidden states of a specific token (for example start of the
|
25 |
+
sequence) and add a linear transformation followed by a tanh.
|
26 |
+
|
27 |
+
Arguments:
|
28 |
+
hidden_size: hidden size
|
29 |
+
init_method: weight initialization method for the linear layer.
|
30 |
+
bias is set to zero.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(self, hidden_size, num_classes):
|
34 |
+
super(VitMlpHead, self).__init__()
|
35 |
+
self.dense_in = torch.nn.Linear(hidden_size, hidden_size)
|
36 |
+
self.relu = torch.nn.ReLU()
|
37 |
+
self.dense_out = torch.nn.Linear(hidden_size, num_classes)
|
38 |
+
torch.nn.init.constant_(self.dense_out.bias, -10)
|
39 |
+
|
40 |
+
def forward(self, hidden_states):
|
41 |
+
# hidden_states: [b, 1, h]
|
42 |
+
# sequence_index: index of the token to pool.
|
43 |
+
dense_in_result = self.dense_in(hidden_states)
|
44 |
+
tanh_result = torch.tanh(dense_in_result)
|
45 |
+
dense_out_result = self.dense_out(tanh_result)
|
46 |
+
return dense_out_result
|
47 |
+
|
48 |
+
|
49 |
+
def isPerfectSquare(x):
|
50 |
+
if(x >= 0):
|
51 |
+
sr = math.sqrt(x)
|
52 |
+
return (int(sr) * int(sr) == x)
|
53 |
+
return False
|
54 |
+
|
55 |
+
|
56 |
+
def twod_interpolate_position_embeddings_hook(
|
57 |
+
state_dict,
|
58 |
+
prefix,
|
59 |
+
local_metadata,
|
60 |
+
strict,
|
61 |
+
missing_keys,
|
62 |
+
unexpected_keys,
|
63 |
+
error_msgs,
|
64 |
+
):
|
65 |
+
|
66 |
+
args = get_args()
|
67 |
+
num_patches_per_dim_h = args.img_h // args.patch_dim
|
68 |
+
num_patches_per_dim_w = args.img_w // args.patch_dim
|
69 |
+
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
|
70 |
+
hidden_size = args.hidden_size
|
71 |
+
|
72 |
+
key = prefix + "weight"
|
73 |
+
|
74 |
+
assert key in state_dict
|
75 |
+
if key in state_dict:
|
76 |
+
input_param = state_dict[key]
|
77 |
+
|
78 |
+
input_seq_len = input_param.shape[0]
|
79 |
+
assert(isPerfectSquare(input_seq_len) or isPerfectSquare(input_seq_len - CLASS_TOKEN_LENGTH))
|
80 |
+
input_has_class_token = not isPerfectSquare(input_seq_len)
|
81 |
+
num_tok_input = input_seq_len - CLASS_TOKEN_LENGTH if input_has_class_token else input_seq_len
|
82 |
+
num_tok_output = num_patches
|
83 |
+
output_has_class_token = args.class_token_present
|
84 |
+
|
85 |
+
# update input_param and load it to state_dict[key]
|
86 |
+
if input_has_class_token:
|
87 |
+
input_param_tok = input_param[:CLASS_TOKEN_LENGTH, :]
|
88 |
+
input_param_grid = input_param[CLASS_TOKEN_LENGTH:, :]
|
89 |
+
else:
|
90 |
+
input_param_tok = torch.zeros(CLASS_TOKEN_LENGTH, hidden_size)
|
91 |
+
input_param_grid = input_param
|
92 |
+
|
93 |
+
assert input_param.shape[1] == hidden_size
|
94 |
+
|
95 |
+
if num_tok_input != num_tok_output:
|
96 |
+
|
97 |
+
gs_input = int(math.sqrt(num_tok_input))
|
98 |
+
gs_new = (num_patches_per_dim_h, num_patches_per_dim_w)
|
99 |
+
|
100 |
+
input_param_grid = input_param_grid.transpose(0, 1).contiguous()
|
101 |
+
input_param_grid = input_param_grid.reshape(
|
102 |
+
(1, -1, gs_input, gs_input)
|
103 |
+
)
|
104 |
+
input_param_grid = input_param_grid.float()
|
105 |
+
scale_factor = (gs_new[0] / gs_input, gs_new[1] / gs_input)
|
106 |
+
|
107 |
+
input_param_grid = F.interpolate(
|
108 |
+
input_param_grid, scale_factor=scale_factor, mode="bilinear"
|
109 |
+
)
|
110 |
+
|
111 |
+
input_param_grid = input_param_grid.half()
|
112 |
+
input_param_grid = input_param_grid.reshape((-1, num_tok_output))
|
113 |
+
input_param_grid = input_param_grid.transpose(0, 1).contiguous()
|
114 |
+
|
115 |
+
assert input_param_grid.shape[1] == hidden_size
|
116 |
+
|
117 |
+
input_param = input_param_grid
|
118 |
+
assert (
|
119 |
+
input_param.shape[0] == num_tok_output
|
120 |
+
and input_param.shape[1] == hidden_size
|
121 |
+
)
|
122 |
+
|
123 |
+
if output_has_class_token:
|
124 |
+
input_param = torch.cat((input_param_tok, input_param), dim=0)
|
125 |
+
|
126 |
+
state_dict[key] = input_param
|
127 |
+
|
128 |
+
|
129 |
+
class VitBackbone(MegatronModule):
|
130 |
+
"""Vision Transformer Model."""
|
131 |
+
|
132 |
+
def __init__(self,
|
133 |
+
config,
|
134 |
+
pre_process=True,
|
135 |
+
post_process=True,
|
136 |
+
class_token=True,
|
137 |
+
single_token_output=False,
|
138 |
+
post_layer_norm=True,
|
139 |
+
drop_path_rate=0.0):
|
140 |
+
super(VitBackbone, self).__init__(share_embeddings_and_output_weights=False)
|
141 |
+
args = get_args()
|
142 |
+
|
143 |
+
self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
|
144 |
+
|
145 |
+
self.pre_process = pre_process
|
146 |
+
self.post_process = post_process
|
147 |
+
self.class_token = class_token
|
148 |
+
self.post_layer_norm = post_layer_norm
|
149 |
+
self.hidden_size = args.hidden_size
|
150 |
+
self.patch_dim = args.patch_dim
|
151 |
+
self.img_h = args.img_h
|
152 |
+
self.img_w = args.img_w
|
153 |
+
self.micro_batch_size = args.micro_batch_size
|
154 |
+
self.single_token_output = single_token_output
|
155 |
+
self.drop_path_rate = drop_path_rate
|
156 |
+
|
157 |
+
assert self.img_h % self.patch_dim == 0
|
158 |
+
assert self.img_w % self.patch_dim == 0
|
159 |
+
self.num_patches_per_dim_h = self.img_h // self.patch_dim
|
160 |
+
self.num_patches_per_dim_w = self.img_w // self.patch_dim
|
161 |
+
self.num_patches = self.num_patches_per_dim_h * self.num_patches_per_dim_w
|
162 |
+
self.seq_length = self.num_patches + (CLASS_TOKEN_LENGTH if self.class_token else 0)
|
163 |
+
self.flatten_dim = self.patch_dim * self.patch_dim * args.num_channels
|
164 |
+
self.input_tensor = None
|
165 |
+
self.position_ids = None
|
166 |
+
|
167 |
+
if self.pre_process:
|
168 |
+
# cls_token
|
169 |
+
if self.class_token:
|
170 |
+
self.cls_token = torch.nn.Parameter(
|
171 |
+
torch.randn(1, CLASS_TOKEN_LENGTH, self.hidden_size)
|
172 |
+
)
|
173 |
+
torch.nn.init.zeros_(self.cls_token)
|
174 |
+
self.position_ids = torch.arange(self.seq_length).expand(1, -1).cuda()
|
175 |
+
|
176 |
+
# Linear encoder
|
177 |
+
self.linear_encoder = torch.nn.Linear(
|
178 |
+
self.flatten_dim, self.hidden_size
|
179 |
+
)
|
180 |
+
|
181 |
+
# embedding
|
182 |
+
self.position_embeddings = torch.nn.Embedding(
|
183 |
+
self.seq_length, self.hidden_size
|
184 |
+
)
|
185 |
+
init_method_normal(args.init_method_std)(
|
186 |
+
self.position_embeddings.weight
|
187 |
+
)
|
188 |
+
|
189 |
+
args.class_token_present = self.class_token
|
190 |
+
self.position_embeddings._register_load_state_dict_pre_hook(
|
191 |
+
twod_interpolate_position_embeddings_hook
|
192 |
+
)
|
193 |
+
|
194 |
+
self.embedding_dropout = torch.nn.Dropout(args.hidden_dropout)
|
195 |
+
|
196 |
+
# Transformer
|
197 |
+
self.transformer = ParallelTransformer(
|
198 |
+
config,
|
199 |
+
pre_process=self.pre_process,
|
200 |
+
post_process=self.post_process,
|
201 |
+
post_layer_norm=self.post_layer_norm,
|
202 |
+
drop_path_rate=self.drop_path_rate
|
203 |
+
)
|
204 |
+
|
205 |
+
def set_input_tensor(self, input_tensor):
|
206 |
+
"""See megatron.model.transformer.set_input_tensor()"""
|
207 |
+
self.transformer.set_input_tensor(input_tensor)
|
208 |
+
|
209 |
+
def forward(self, input):
|
210 |
+
|
211 |
+
if self.pre_process:
|
212 |
+
rearranged_input = einops.rearrange(
|
213 |
+
input,
|
214 |
+
"b c (h p1) (w p2) -> b (h w) (p1 p2 c)",
|
215 |
+
p1=self.patch_dim,
|
216 |
+
p2=self.patch_dim,
|
217 |
+
)
|
218 |
+
|
219 |
+
assert rearranged_input.dtype == torch.half
|
220 |
+
encoder_output = self.linear_encoder(rearranged_input)
|
221 |
+
|
222 |
+
concatenated_tokens = encoder_output
|
223 |
+
if self.class_token:
|
224 |
+
cls_tokens = self.cls_token.expand(encoder_output.shape[0], -1, -1)
|
225 |
+
concatenated_tokens = torch.cat((cls_tokens, encoder_output), dim=1)
|
226 |
+
|
227 |
+
token_embeddings = concatenated_tokens + \
|
228 |
+
self.position_embeddings(self.position_ids[:, :concatenated_tokens.shape[1]])
|
229 |
+
# [b, s, h] => [s, b, h]
|
230 |
+
token_embeddings = token_embeddings.transpose(0, 1).contiguous()
|
231 |
+
hidden_states = self.embedding_dropout(token_embeddings)
|
232 |
+
else:
|
233 |
+
hidden_states = input
|
234 |
+
|
235 |
+
hidden_states = self.transformer(hidden_states, None)
|
236 |
+
|
237 |
+
if self.post_process:
|
238 |
+
# [s b h] => [b s h]
|
239 |
+
if self.single_token_output:
|
240 |
+
hidden_states = hidden_states[0]
|
241 |
+
else:
|
242 |
+
hidden_states = hidden_states.transpose(0, 1).contiguous()
|
243 |
+
|
244 |
+
return hidden_states
|
245 |
+
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/mpu/tests/__init__.py
ADDED
File without changes
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/mpu/tests/commons.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
import numpy
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import mpu
|
10 |
+
from deepspeed.accelerator import get_accelerator
|
11 |
+
|
12 |
+
class IdentityLayer(torch.nn.Module):
|
13 |
+
def __init__(self, size, scale=1.0):
|
14 |
+
super(IdentityLayer, self).__init__()
|
15 |
+
self.weight = torch.nn.Parameter(scale * torch.randn(size))
|
16 |
+
|
17 |
+
def forward(self):
|
18 |
+
return self.weight
|
19 |
+
|
20 |
+
|
21 |
+
def set_random_seed(seed):
|
22 |
+
"""Set random seed for reproducability."""
|
23 |
+
random.seed(seed)
|
24 |
+
numpy.random.seed(seed)
|
25 |
+
torch.manual_seed(seed)
|
26 |
+
mpu.model_parallel_cuda_manual_seed(seed)
|
27 |
+
|
28 |
+
|
29 |
+
def initialize_distributed(backend='nccl'):
|
30 |
+
"""Initialize torch.distributed."""
|
31 |
+
# Get local rank in case it is provided.
|
32 |
+
parser = argparse.ArgumentParser()
|
33 |
+
parser.add_argument('--local_rank', type=int, default=None,
|
34 |
+
help='local rank passed from distributed launcher')
|
35 |
+
args = parser.parse_args()
|
36 |
+
local_rank = args.local_rank
|
37 |
+
|
38 |
+
# Get rank and world size.
|
39 |
+
rank = int(os.getenv('RANK', '0'))
|
40 |
+
world_size = int(os.getenv("WORLD_SIZE", '1'))
|
41 |
+
|
42 |
+
print('> initializing torch.distributed with local rank: {}, '
|
43 |
+
'rank: {}, world size: {}'.format(local_rank, rank, world_size))
|
44 |
+
|
45 |
+
# Set the device id.
|
46 |
+
device = rank % get_accelerator().device_count()
|
47 |
+
if local_rank is not None:
|
48 |
+
device = local_rank
|
49 |
+
get_accelerator().set_device(device)
|
50 |
+
|
51 |
+
# Call the init process.
|
52 |
+
init_method = 'tcp://'
|
53 |
+
master_ip = os.getenv('MASTER_ADDR', 'localhost')
|
54 |
+
master_port = os.getenv('MASTER_PORT', '6000')
|
55 |
+
init_method += master_ip + ':' + master_port
|
56 |
+
torch.distributed.init_process_group(
|
57 |
+
backend=backend,
|
58 |
+
world_size=world_size,
|
59 |
+
rank=rank,
|
60 |
+
init_method=init_method)
|
61 |
+
|
62 |
+
|
63 |
+
def print_separator(message):
|
64 |
+
torch.distributed.barrier()
|
65 |
+
filler_len = (78 - len(message)) // 2
|
66 |
+
filler = '-' * filler_len
|
67 |
+
string = '\n' + filler + ' {} '.format(message) + filler
|
68 |
+
if torch.distributed.get_rank() == 0:
|
69 |
+
print(string, flush=True)
|
70 |
+
torch.distributed.barrier()
|
docker/intel_code/llama13b/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/mpu/tests/test_cross_entropy.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
|
3 |
+
from commons import set_random_seed
|
4 |
+
from commons import IdentityLayer
|
5 |
+
from commons import print_separator
|
6 |
+
from commons import initialize_distributed
|
7 |
+
from mpu.cross_entropy import vocab_parallel_cross_entropy
|
8 |
+
import mpu
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch
|
11 |
+
import random
|
12 |
+
import sys
|
13 |
+
from deepspeed.accelerator import get_accelerator
|
14 |
+
sys.path.append("../..")
|
15 |
+
|
16 |
+
|
17 |
+
def torch_cross_entropy(batch_size, seq_length, vocab_size,
|
18 |
+
logits_scale, seed):
|
19 |
+
set_random_seed(seed)
|
20 |
+
identity = IdentityLayer((batch_size, seq_length, vocab_size),
|
21 |
+
scale=logits_scale).to(get_accelerator().device_name())
|
22 |
+
logits = identity()
|
23 |
+
target = get_accelerator().LongTensor(
|
24 |
+
size=(batch_size, seq_length)).random_(0, vocab_size)
|
25 |
+
loss = F.cross_entropy(logits.view(-1, logits.size()[-1]),
|
26 |
+
target.view(-1),
|
27 |
+
reduction='none').view_as(target).mean()
|
28 |
+
loss.backward()
|
29 |
+
return loss, identity.weight.grad
|
30 |
+
|
31 |
+
|
32 |
+
def mpu_cross_entropy(batch_size, seq_length, vocab_size,
|
33 |
+
logits_scale, seed):
|
34 |
+
set_random_seed(seed)
|
35 |
+
identity = IdentityLayer((batch_size, seq_length, vocab_size),
|
36 |
+
scale=logits_scale).to(get_accelerator().device_name())
|
37 |
+
logits = identity()
|
38 |
+
logits_parallel = mpu.scatter_to_tensor_model_parallel_region(logits)
|
39 |
+
target = get_accelerator().LongTensor(
|
40 |
+
size=(batch_size, seq_length)).random_(0, vocab_size)
|
41 |
+
loss = vocab_parallel_cross_entropy(logits_parallel, target).mean()
|
42 |
+
loss.backward()
|
43 |
+
return loss, identity.weight.grad
|
44 |
+
|
45 |
+
|
46 |
+
def test_cross_entropy(tensor_model_parallel_size):
|
47 |
+
|
48 |
+
if torch.distributed.get_rank() == 0:
|
49 |
+
print('> testing cross entropy with model parallel size {} ...'.
|
50 |
+
format(tensor_model_parallel_size))
|
51 |
+
|
52 |
+
mpu.initialize_model_parallel(tensor_model_parallel_size)
|
53 |
+
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size()
|
54 |
+
|
55 |
+
batch_size = 13
|
56 |
+
seq_length = 17
|
57 |
+
vocab_size_per_partition = 11
|
58 |
+
logits_scale = 1000.0
|
59 |
+
vocab_size = vocab_size_per_partition * tensor_model_parallel_size
|
60 |
+
seed = 1234
|
61 |
+
|
62 |
+
loss_torch, grad_torch = torch_cross_entropy(batch_size, seq_length,
|
63 |
+
vocab_size, logits_scale,
|
64 |
+
seed)
|
65 |
+
loss_mpu, grad_mpu = mpu_cross_entropy(batch_size, seq_length,
|
66 |
+
vocab_size, logits_scale,
|
67 |
+
seed)
|
68 |
+
|
69 |
+
error = loss_torch.sub_(loss_mpu).abs().max()
|
70 |
+
print(' max error in loss on global rank {}: {}'.format(
|
71 |
+
torch.distributed.get_rank(), error))
|
72 |
+
assert error < 1.0e-6
|
73 |
+
|
74 |
+
error = grad_torch.sub_(grad_mpu).abs().max()
|
75 |
+
print(' max error in grad on global rank {}: {}'.format(
|
76 |
+
torch.distributed.get_rank(), error))
|
77 |
+
assert error < 1.0e-6
|
78 |
+
|
79 |
+
# Reset groups
|
80 |
+
mpu.destroy_tensor_model_parallel()
|
81 |
+
|
82 |
+
torch.distributed.barrier()
|
83 |
+
if torch.distributed.get_rank() == 0:
|
84 |
+
print('>> passed the test :-)')
|
85 |
+
|
86 |
+
|
87 |
+
if __name__ == '__main__':
|
88 |
+
|
89 |
+
initialize_distributed()
|
90 |
+
world_size = torch.distributed.get_world_size()
|
91 |
+
|
92 |
+
tensor_model_parallel_size = 1
|
93 |
+
while tensor_model_parallel_size <= world_size:
|
94 |
+
print_separator('test cross entropy')
|
95 |
+
test_cross_entropy(tensor_model_parallel_size)
|
96 |
+
tensor_model_parallel_size *= 2
|