/* Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. */ /* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. */ /* Helper methods for fast index mapping builds */ #include #include #include #include #include #include #include #include namespace py = pybind11; using namespace std; const int32_t LONG_SENTENCE_LEN = 512; void build_blending_indices(py::array_t& dataset_index, py::array_t& dataset_sample_index, const py::array_t& weights, const int32_t num_datasets, const int64_t size, const bool verbose) { /* Given multiple datasets and a weighting array, build samples such that it follows those wieghts.*/ if (verbose) { std::cout << "> building indices for blendable datasets ..." << std::endl; } // Get the pointer access without the checks. auto dataset_index_ptr = dataset_index.mutable_unchecked<1>(); auto dataset_sample_index_ptr = dataset_sample_index.mutable_unchecked<1>(); auto weights_ptr = weights.unchecked<1>(); // Initialize buffer for number of samples used for each dataset. int64_t current_samples[num_datasets]; for(int64_t i = 0; i < num_datasets; ++i) { current_samples[i] = 0; } // For each sample: for(int64_t sample_idx = 0; sample_idx < size; ++sample_idx) { // Determine where the max error in sampling is happening. auto sample_idx_double = std::max(static_cast(sample_idx), 1.0); int64_t max_error_index = 0; double max_error = weights_ptr[0] * sample_idx_double - static_cast(current_samples[0]); for (int64_t dataset_idx = 1; dataset_idx < num_datasets; ++dataset_idx) { double error = weights_ptr[dataset_idx] * sample_idx_double - static_cast(current_samples[dataset_idx]); if (error > max_error) { max_error = error; max_error_index = dataset_idx; } } // Populate the indices. dataset_index_ptr[sample_idx] = static_cast(max_error_index); dataset_sample_index_ptr[sample_idx] = current_samples[max_error_index]; // Update the total samples. current_samples[max_error_index] += 1; } // print info if (verbose) { std::cout << " > sample ratios:" << std::endl; for (int64_t dataset_idx = 0; dataset_idx < num_datasets; ++dataset_idx) { auto ratio = static_cast(current_samples[dataset_idx]) / static_cast(size); std::cout << " dataset " << dataset_idx << ", input: " << weights_ptr[dataset_idx] << ", achieved: " << ratio << std::endl; } } } py::array build_sample_idx(const py::array_t& sizes_, const py::array_t& doc_idx_, const int32_t seq_length, const int32_t num_epochs, const int64_t tokens_per_epoch, const bool keep_last_sequence, const int32_t add_extra_token) { /* Sample index (sample_idx) is used for gpt2 like dataset for which the documents are flattened and the samples are built based on this 1-D flatten array. It is a 2D array with sizes [number-of-samples + 1, 2] where [..., 0] contains the index into `doc_idx` and [..., 1] is the starting offset in that document.*/ // Consistency checks. assert(seq_length > 1); assert(num_epochs > 0); assert(tokens_per_epoch > 1); // Remove bound checks. auto sizes = sizes_.unchecked<1>(); auto doc_idx = doc_idx_.unchecked<1>(); // Mapping and it's length (1D). int64_t num_samples = 0; if (keep_last_sequence) { num_samples = ceil(float(num_epochs * tokens_per_epoch - add_extra_token) / seq_length); } else { num_samples = (num_epochs * tokens_per_epoch - add_extra_token) / seq_length; } int64_t* sample_idx = new int64_t[2*(num_samples+1)]; cout << " using:" << endl << std::flush; cout << " number of documents: " << doc_idx_.shape(0) / num_epochs << endl << std::flush; cout << " number of epochs: " << num_epochs << endl << std::flush; cout << " sequence length: " << seq_length << endl << std::flush; cout << " total number of samples: " << num_samples << endl << std::flush; // Index into sample_idx. int64_t sample_index = 0; // Index into doc_idx. int64_t doc_idx_index = 0; // Begining offset for each document. int64_t doc_offset = 0; // Start with first document and no offset. sample_idx[2 * sample_index] = doc_idx_index; sample_idx[2 * sample_index + 1] = doc_offset; ++sample_index; while (sample_index <= num_samples) { // Start with a fresh sequence. int64_t remaining_seq_length = seq_length + add_extra_token; while (remaining_seq_length != 0) { // Get the document length. auto doc_id = static_cast(doc_idx[doc_idx_index]); auto doc_length = static_cast(sizes[doc_id]) - doc_offset; // And add it to the current sequence. remaining_seq_length -= doc_length; // If we have more than a full sequence, adjust offset and set // remaining length to zero so we return from the while loop. // Note that -1 here is for the same reason we have -1 in // `_num_epochs` calculations. if (remaining_seq_length <= 0) { doc_offset += (remaining_seq_length + doc_length - add_extra_token); remaining_seq_length = 0; } else { // Otherwise, start from the begining of the next document. if (doc_idx_index == (doc_idx_.shape(0) - 1)) { assert(sample_index == num_samples); doc_offset = sizes[doc_idx[doc_idx_index]] - add_extra_token; break; } ++doc_idx_index; doc_offset = 0; } } // Record the sequence. sample_idx[2 * sample_index] = doc_idx_index; sample_idx[2 * sample_index + 1] = doc_offset; ++sample_index; } // Method to deallocate memory. py::capsule free_when_done(sample_idx, [](void *mem_) { int32_t *mem = reinterpret_cast(mem_); delete[] mem; }); // Return the numpy array. const auto byte_size = sizeof(int64_t); return py::array(std::vector{num_samples+1, 2}, // shape {2*byte_size, byte_size}, // C-style contiguous strides sample_idx, // the data pointer free_when_done); // numpy array references } inline int32_t get_target_sample_len(const int32_t short_seq_ratio, const int32_t max_length, std::mt19937& rand32_gen) { /* Training sample length. */ if (short_seq_ratio == 0) { return max_length; } const auto random_number = rand32_gen(); if ((random_number % short_seq_ratio) == 0) { return 2 + random_number % (max_length - 1); } return max_length; } template py::array build_mapping_impl(const py::array_t& docs_, const py::array_t& sizes_, const int32_t num_epochs, const uint64_t max_num_samples, const int32_t max_seq_length, const double short_seq_prob, const int32_t seed, const bool verbose, const int32_t min_num_sent) { /* Build a mapping of (start-index, end-index, sequence-length) where start and end index are the indices of the sentences in the sample and sequence-length is the target sequence length. */ // Consistency checks. assert(num_epochs > 0); assert(max_seq_length > 1); assert(short_seq_prob >= 0.0); assert(short_seq_prob <= 1.0); assert(seed > 0); // Remove bound checks. auto docs = docs_.unchecked<1>(); auto sizes = sizes_.unchecked<1>(); // For efficiency, convert probability to ratio. Note: rand() generates int. int32_t short_seq_ratio = 0; if (short_seq_prob > 0) { short_seq_ratio = static_cast(round(1.0 / short_seq_prob)); } if (verbose) { const auto sent_start_index = docs[0]; const auto sent_end_index = docs[docs_.shape(0) - 1]; const auto num_sentences = sent_end_index - sent_start_index; cout << " using:" << endl << std::flush; cout << " number of documents: " << docs_.shape(0) - 1 << endl << std::flush; cout << " sentences range: [" << sent_start_index << ", " << sent_end_index << ")" << endl << std::flush; cout << " total number of sentences: " << num_sentences << endl << std::flush; cout << " number of epochs: " << num_epochs << endl << std::flush; cout << " maximum number of samples: " << max_num_samples << endl << std::flush; cout << " maximum sequence length: " << max_seq_length << endl << std::flush; cout << " short sequence probability: " << short_seq_prob << endl << std::flush; cout << " short sequence ration (1/prob): " << short_seq_ratio << endl << std::flush; cout << " seed: " << seed << endl << std::flush; } // Mapping and it's length (1D). int64_t num_samples = -1; DocIdx* maps = NULL; // Perform two iterations, in the first iteration get the size // and allocate memory and in the second iteration populate the map. bool second = false; for (int32_t iteration=0; iteration<2; ++iteration) { // Set the seed so both iterations produce the same results. std::mt19937 rand32_gen(seed); // Set the flag on second iteration. second = (iteration == 1); // Counters: uint64_t empty_docs = 0; uint64_t one_sent_docs = 0; uint64_t long_sent_docs = 0; // Current map index. uint64_t map_index = 0; // For each epoch: for (int32_t epoch=0; epoch= max_num_samples) { if (verbose && (!second)) { cout << " reached " << max_num_samples << " samples after " << epoch << " epochs ..." << endl << std::flush; } break; } // For each document: for (int32_t doc=0; doc<(docs.shape(0) - 1); ++doc) { // Document sentences are in [sent_index_first, sent_index_last) const auto sent_index_first = docs[doc]; const auto sent_index_last = docs[doc + 1]; // At the begining of the document previous index is the // start index. auto prev_start_index = sent_index_first; // Remaining documents. auto num_remain_sent = sent_index_last - sent_index_first; // Some bookkeeping if ((epoch == 0) && (!second)) { if (num_remain_sent == 0) { ++empty_docs; } if (num_remain_sent == 1) { ++one_sent_docs; } } // Detect documents with long sentences. bool contains_long_sentence = false; if (num_remain_sent > 1) { for (auto sent_index=sent_index_first; sent_index < sent_index_last; ++sent_index) { if (sizes[sent_index] > LONG_SENTENCE_LEN){ if ((epoch == 0) && (!second)) { ++long_sent_docs; } contains_long_sentence = true; break; } } } // If we have more than two sentences. if ((num_remain_sent >= min_num_sent) && (!contains_long_sentence)) { // Set values. auto seq_len = int32_t{0}; auto num_sent = int32_t{0}; auto target_seq_len = get_target_sample_len(short_seq_ratio, max_seq_length, rand32_gen); // Loop through sentences. for (auto sent_index=sent_index_first; sent_index < sent_index_last; ++sent_index) { // Add the size and number of sentences. seq_len += sizes[sent_index]; ++num_sent; --num_remain_sent; // If we have reached the target length. // and if not only one sentence is left in the document. // and if we have at least two sentneces. // and if we have reached end of the document. if (((seq_len >= target_seq_len) && (num_remain_sent > 1) && (num_sent >= min_num_sent) ) || (num_remain_sent == 0)) { // Check for overflow. if ((3 * map_index + 2) > std::numeric_limits::max()) { cout << "number of samples exceeded maximum " << "allowed by type int64: " << std::numeric_limits::max() << endl; throw std::overflow_error("Number of samples"); } // Populate the map. if (second) { const auto map_index_0 = 3 * map_index; maps[map_index_0] = static_cast(prev_start_index); maps[map_index_0 + 1] = static_cast(sent_index + 1); maps[map_index_0 + 2] = static_cast(target_seq_len); } // Update indices / counters. ++map_index; prev_start_index = sent_index + 1; target_seq_len = get_target_sample_len(short_seq_ratio, max_seq_length, rand32_gen); seq_len = 0; num_sent = 0; } } // for (auto sent_index=sent_index_first; ... } // if (num_remain_sent > 1) { } // for (int doc=0; doc < num_docs; ++doc) { } // for (int epoch=0; epoch < num_epochs; ++epoch) { if (!second) { if (verbose) { cout << " number of empty documents: " << empty_docs << endl << std::flush; cout << " number of documents with one sentence: " << one_sent_docs << endl << std::flush; cout << " number of documents with long sentences: " << long_sent_docs << endl << std::flush; cout << " will create mapping for " << map_index << " samples" << endl << std::flush; } assert(maps == NULL); assert(num_samples < 0); maps = new DocIdx[3*map_index]; num_samples = static_cast(map_index); } } // for (int iteration=0; iteration < 2; ++iteration) { // Shuffle. // We need a 64 bit random number generator as we might have more // than 2 billion samples. std::mt19937_64 rand64_gen(seed + 1); for (auto i=(num_samples - 1); i > 0; --i) { const auto j = static_cast(rand64_gen() % (i + 1)); const auto i0 = 3 * i; const auto j0 = 3 * j; // Swap values. swap(maps[i0], maps[j0]); swap(maps[i0 + 1], maps[j0 + 1]); swap(maps[i0 + 2], maps[j0 + 2]); } // Method to deallocate memory. py::capsule free_when_done(maps, [](void *mem_) { DocIdx *mem = reinterpret_cast(mem_); delete[] mem; }); // Return the numpy array. const auto byte_size = sizeof(DocIdx); return py::array(std::vector{num_samples, 3}, // shape {3*byte_size, byte_size}, // C-style contiguous strides maps, // the data pointer free_when_done); // numpy array references } py::array build_mapping(const py::array_t& docs_, const py::array_t& sizes_, const int num_epochs, const uint64_t max_num_samples, const int max_seq_length, const double short_seq_prob, const int seed, const bool verbose, const int32_t min_num_sent) { if (sizes_.size() > std::numeric_limits::max()) { if (verbose) { cout << " using uint64 for data mapping..." << endl << std::flush; } return build_mapping_impl(docs_, sizes_, num_epochs, max_num_samples, max_seq_length, short_seq_prob, seed, verbose, min_num_sent); } else { if (verbose) { cout << " using uint32 for data mapping..." << endl << std::flush; } return build_mapping_impl(docs_, sizes_, num_epochs, max_num_samples, max_seq_length, short_seq_prob, seed, verbose, min_num_sent); } } template py::array build_blocks_mapping_impl(const py::array_t& docs_, const py::array_t& sizes_, const py::array_t& titles_sizes_, const int32_t num_epochs, const uint64_t max_num_samples, const int32_t max_seq_length, const int32_t seed, const bool verbose, const bool use_one_sent_blocks) { /* Build a mapping of (start-index, end-index, sequence-length) where start and end index are the indices of the sentences in the sample and sequence-length is the target sequence length. */ // Consistency checks. assert(num_epochs > 0); assert(max_seq_length > 1); assert(seed > 0); // Remove bound checks. auto docs = docs_.unchecked<1>(); auto sizes = sizes_.unchecked<1>(); auto titles_sizes = titles_sizes_.unchecked<1>(); if (verbose) { const auto sent_start_index = docs[0]; const auto sent_end_index = docs[docs_.shape(0) - 1]; const auto num_sentences = sent_end_index - sent_start_index; cout << " using:" << endl << std::flush; cout << " number of documents: " << docs_.shape(0) - 1 << endl << std::flush; cout << " sentences range: [" << sent_start_index << ", " << sent_end_index << ")" << endl << std::flush; cout << " total number of sentences: " << num_sentences << endl << std::flush; cout << " number of epochs: " << num_epochs << endl << std::flush; cout << " maximum number of samples: " << max_num_samples << endl << std::flush; cout << " maximum sequence length: " << max_seq_length << endl << std::flush; cout << " seed: " << seed << endl << std::flush; } // Mapping and its length (1D). int64_t num_samples = -1; DocIdx* maps = NULL; // Acceptable number of sentences per block. int min_num_sent = 2; if (use_one_sent_blocks) { min_num_sent = 1; } // Perform two iterations, in the first iteration get the size // and allocate memory and in the second iteration populate the map. bool second = false; for (int32_t iteration=0; iteration<2; ++iteration) { // Set the flag on second iteration. second = (iteration == 1); // Current map index. uint64_t map_index = 0; uint64_t empty_docs = 0; uint64_t one_sent_docs = 0; uint64_t long_sent_docs = 0; // For each epoch: for (int32_t epoch=0; epoch= max_num_samples) { if (verbose && (!second)) { cout << " reached " << max_num_samples << " samples after " << epoch << " epochs ..." << endl << std::flush; } break; } // For each document: for (int32_t doc=0; doc<(docs.shape(0) - 1); ++doc) { // Document sentences are in [sent_index_first, sent_index_last) const auto sent_index_first = docs[doc]; const auto sent_index_last = docs[doc + 1]; const auto target_seq_len = max_seq_length - titles_sizes[doc]; // At the begining of the document previous index is the // start index. auto prev_start_index = sent_index_first; // Remaining documents. auto num_remain_sent = sent_index_last - sent_index_first; // Some bookkeeping if ((epoch == 0) && (!second)) { if (num_remain_sent == 0) { ++empty_docs; } if (num_remain_sent == 1) { ++one_sent_docs; } } // Detect documents with long sentences. bool contains_long_sentence = false; if (num_remain_sent >= min_num_sent) { for (auto sent_index=sent_index_first; sent_index < sent_index_last; ++sent_index) { if (sizes[sent_index] > LONG_SENTENCE_LEN){ if ((epoch == 0) && (!second)) { ++long_sent_docs; } contains_long_sentence = true; break; } } } // If we have enough sentences and no long sentences. if ((num_remain_sent >= min_num_sent) && (!contains_long_sentence)) { // Set values. auto seq_len = int32_t{0}; auto num_sent = int32_t{0}; // Loop through sentences. for (auto sent_index=sent_index_first; sent_index < sent_index_last; ++sent_index) { // Add the size and number of sentences. seq_len += sizes[sent_index]; ++num_sent; --num_remain_sent; // If we have reached the target length. // and there are an acceptable number of sentences left // and if we have at least the minimum number of sentences. // or if we have reached end of the document. if (((seq_len >= target_seq_len) && (num_remain_sent >= min_num_sent) && (num_sent >= min_num_sent) ) || (num_remain_sent == 0)) { // Populate the map. if (second) { const auto map_index_0 = 4 * map_index; // Each sample has 4 items: the starting sentence index, ending sentence index, // the index of the document from which the block comes (used for fetching titles) // and the unique id of the block (used for creating block indexes) maps[map_index_0] = static_cast(prev_start_index); maps[map_index_0 + 1] = static_cast(sent_index + 1); maps[map_index_0 + 2] = static_cast(doc); maps[map_index_0 + 3] = static_cast(block_id); } // Update indices / counters. ++map_index; ++block_id; prev_start_index = sent_index + 1; seq_len = 0; num_sent = 0; } } // for (auto sent_index=sent_index_first; ... } // if (num_remain_sent > 1) { } // for (int doc=0; doc < num_docs; ++doc) { } // for (int epoch=0; epoch < num_epochs; ++epoch) { if (!second) { if (verbose) { cout << " number of empty documents: " << empty_docs << endl << std::flush; cout << " number of documents with one sentence: " << one_sent_docs << endl << std::flush; cout << " number of documents with long sentences: " << long_sent_docs << endl << std::flush; cout << " will create mapping for " << map_index << " samples" << endl << std::flush; } assert(maps == NULL); assert(num_samples < 0); maps = new DocIdx[4*map_index]; num_samples = static_cast(map_index); } } // for (int iteration=0; iteration < 2; ++iteration) { // Shuffle. // We need a 64 bit random number generator as we might have more // than 2 billion samples. std::mt19937_64 rand64_gen(seed + 1); for (auto i=(num_samples - 1); i > 0; --i) { const auto j = static_cast(rand64_gen() % (i + 1)); const auto i0 = 4 * i; const auto j0 = 4 * j; // Swap values. swap(maps[i0], maps[j0]); swap(maps[i0 + 1], maps[j0 + 1]); swap(maps[i0 + 2], maps[j0 + 2]); swap(maps[i0 + 3], maps[j0 + 3]); } // Method to deallocate memory. py::capsule free_when_done(maps, [](void *mem_) { DocIdx *mem = reinterpret_cast(mem_); delete[] mem; }); // Return the numpy array. const auto byte_size = sizeof(DocIdx); return py::array(std::vector{num_samples, 4}, // shape {4*byte_size, byte_size}, // C-style contiguous strides maps, // the data pointer free_when_done); // numpy array references } py::array build_blocks_mapping(const py::array_t& docs_, const py::array_t& sizes_, const py::array_t& titles_sizes_, const int num_epochs, const uint64_t max_num_samples, const int max_seq_length, const int seed, const bool verbose, const bool use_one_sent_blocks) { if (sizes_.size() > std::numeric_limits::max()) { if (verbose) { cout << " using uint64 for data mapping..." << endl << std::flush; } return build_blocks_mapping_impl(docs_, sizes_, titles_sizes_, num_epochs, max_num_samples, max_seq_length, seed, verbose, use_one_sent_blocks); } else { if (verbose) { cout << " using uint32 for data mapping..." << endl << std::flush; } return build_blocks_mapping_impl(docs_, sizes_, titles_sizes_, num_epochs, max_num_samples, max_seq_length, seed, verbose, use_one_sent_blocks); } } PYBIND11_MODULE(helpers, m) { m.def("build_mapping", &build_mapping); m.def("build_blocks_mapping", &build_blocks_mapping); m.def("build_sample_idx", &build_sample_idx); m.def("build_blending_indices", &build_blending_indices); }