# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. from commons import print_separator from commons import initialize_distributed import mpu import torch import sys sys.path.append("../..") def test_set_cuda_rng_state(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print('> testing set_rng_state with size {} ...'. format(tensor_model_parallel_size)) mpu.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() size = 123 seed = 1234 get_accelerator().manual_seed(1234) tensor = get_accelerator().FloatTensor(size) # Get the state rng_state = get_accelerator().get_rng_state() rng_state_copy = rng_state.clone() # Do some stuff. for _ in range(5): torch.randn(size, out=tensor) result_1 = tensor.clone() assert rng_state.sub(rng_state_copy).max() == 0 assert get_accelerator().get_rng_state().sub(rng_state_copy).max() > 0 # State should be different. new_rng_state = get_accelerator().get_rng_state() max_diff = new_rng_state.sub(rng_state).max() print(' max diff in rng state (should be non-zero) on global rank {}: {}'. format(torch.distributed.get_rank(), max_diff)) assert max_diff > 0 # Reset the rng state and do the same stuff. mpu.random._set_cuda_rng_state(rng_state) for _ in range(5): torch.randn(size, out=tensor) mpu.random._set_cuda_rng_state(rng_state) for _ in range(5): torch.randn(size, out=tensor) result_2 = tensor.clone() # Results should be the same error = result_2.sub(result_1).abs().max() print(' max error in generated tensors (should be zero) on ' 'global rank {}: {}'.format(torch.distributed.get_rank(), error)) assert error < 1.0e-6 # Input state should have remained intact. error = rng_state.sub(rng_state_copy).max() print(' max error in rng state (should be zero) on global rank {}: {}'. format(torch.distributed.get_rank(), error)) assert error == 0 # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print('>> passed the test :-)') def test_cuda_rng_tracker(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print('> testing cuda rng tracker with size {} ...'. format(tensor_model_parallel_size)) mpu.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() seed_1 = 1234 seed_2 = 4321 size = [12, 21] tensor = get_accelerator().FloatTensor(size) # Set to seed_1 and generate two tensors. get_accelerator().manual_seed(seed_1) torch.randn(size, out=tensor) target_11 = tensor.clone() torch.randn(size, out=tensor) target_12 = tensor.clone() # Set to seed_2 and generate two tensors. get_accelerator().manual_seed(seed_2) torch.randn(size, out=tensor) target_21 = tensor.clone() torch.randn(size, out=tensor) target_22 = tensor.clone() # Now if we interleave seed_1 and seed_2, # we should still get the same tensors get_accelerator().manual_seed(seed_1) mpu.get_cuda_rng_tracker().add('test', seed_2) torch.randn(size, out=tensor) result_11 = tensor.clone() with mpu.get_cuda_rng_tracker().fork('test'): torch.randn(size, out=tensor) result_21 = tensor.clone() torch.randn(size, out=tensor) result_12 = tensor.clone() with mpu.get_cuda_rng_tracker().fork('test'): torch.randn(size, out=tensor) result_22 = tensor.clone() diff = result_11.sub(result_21).abs().max() diff = min(diff, result_12.sub(result_22).abs().max()) print(' max diff in generated tensors (should be non-zero) on ' 'global rank {}: {}'.format(torch.distributed.get_rank(), diff)) assert diff > 1.0e-6 error = max(result_11.sub(target_11).abs().max(), result_12.sub(target_12).abs().max()) error = max(error, result_21.sub(target_21).abs().max()) error = max(error, result_22.sub(target_22).abs().max()) print(' max error in generated tensors (should be zero) on ' 'global rank {}: {}'.format(torch.distributed.get_rank(), error)) assert error < 1.0e-6 # Reset the tracker mpu.get_cuda_rng_tracker().reset() # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print('>> passed the test :-)') def test_model_parallel_cuda_manual_seed(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print('> testing model parallel cuda manual seed with size {} ...'. format(tensor_model_parallel_size)) mpu.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() mpu.model_parallel_cuda_manual_seed(12345) assert get_accelerator().initial_seed() == 12345 with mpu.get_cuda_rng_tracker().fork(): assert get_accelerator().initial_seed() == (12345 + 2718 + mpu.get_tensor_model_parallel_rank()) # Reset the tracker mpu.get_cuda_rng_tracker().reset() # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print('>> passed the test :-)') if __name__ == '__main__': initialize_distributed() world_size = torch.distributed.get_world_size() tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: print_separator('test set rng state') test_set_cuda_rng_state(tensor_model_parallel_size) tensor_model_parallel_size *= 2 tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: print_separator('test cuda rng tracker') test_cuda_rng_tracker(tensor_model_parallel_size) tensor_model_parallel_size *= 2 tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: print_separator('test model parallel cuda manual seed') test_model_parallel_cuda_manual_seed(tensor_model_parallel_size) tensor_model_parallel_size *= 2