# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import pytest import torch from megatron.core.transformer.transformer_config import TransformerConfig from megatron.core.models.gpt.gpt_embedding import GPTEmbedding @pytest.fixture def gpt_embedding(transformer_config): embedding = GPTEmbedding(config=transformer_config, vocab_size=100, max_sequence_length=4) return embedding class TestGPTEmbedding: def test_constructor(self, gpt_embedding: GPTEmbedding): assert isinstance(gpt_embedding, GPTEmbedding) num_weights = sum([p.numel() for p in gpt_embedding.parameters()]) assert num_weights == 1248 def test_zero_parameters(self, gpt_embedding: GPTEmbedding): sum_weights = sum([p.sum() for p in gpt_embedding.parameters()]) assert sum_weights != 0 gpt_embedding.zero_parameters() sum_weights = sum([p.sum() for p in gpt_embedding.parameters()]) assert sum_weights == 0 def test_cpu_forward(self, gpt_embedding: GPTEmbedding): input_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)) position_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)) embeddings = gpt_embedding(input_ids, position_ids) assert embeddings.device.type == 'cpu' assert embeddings.shape[0] == gpt_embedding.max_sequence_length assert embeddings.shape[1] == input_ids.shape[0] assert embeddings.shape[2] == gpt_embedding.config.hidden_size def test_gpu_forward(self, gpt_embedding: GPTEmbedding): gpt_embedding.cuda() input_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)).cuda() position_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)).cuda() embeddings = gpt_embedding(input_ids, position_ids) assert embeddings.device.type == 'cuda' assert embeddings.shape[0] == gpt_embedding.max_sequence_length assert embeddings.shape[1] == input_ids.shape[0] assert embeddings.shape[2] == gpt_embedding.config.hidden_size