import torch from tests.test_utilities import Utils from megatron.core import ModelParallelConfig import megatron.core.pipeline_parallel.schedules as schedule from pytest_mock import mocker import pytest rank = Utils.rank def test_get_forward_backward_func(): Utils.initialize_model_parallel(tensor_model_parallel_size=2, pipeline_model_parallel_size=1) assert(schedule.get_forward_backward_func() == schedule.forward_backward_no_pipelining) Utils.destroy_model_parallel() Utils.initialize_model_parallel(tensor_model_parallel_size=2, pipeline_model_parallel_size=4) assert(schedule.get_forward_backward_func() == schedule.forward_backward_pipelining_without_interleaving) Utils.destroy_model_parallel() Utils.initialize_model_parallel(tensor_model_parallel_size=2, pipeline_model_parallel_size=4, virtual_pipeline_model_parallel_size=2) assert(schedule.get_forward_backward_func() == schedule.forward_backward_pipelining_with_interleaving) Utils.destroy_model_parallel() def test_deallocate_output_tensor(): out = torch.tensor([[1, 2, 3], [4, 5, 6]]) schedule.deallocate_output_tensor(out) assert(out.nelement() == 1) def test_forward_backward_func_without_pipeline_parallel(mocker): from megatron.core.pipeline_parallel import get_forward_backward_func Utils.initialize_model_parallel(tensor_model_parallel_size=2, pipeline_model_parallel_size=1) def forward_step_func(data_iterator, model): import os rank = int(os.environ['LOCAL_RANK']) dummy_data = torch.ones(1,4) def loss_func(output_tensor): return rank, {'loss_reduced':rank} return model(dummy_data), loss_func model = torch.nn.Linear(4,1) model.model_type = 'unit-test' def set_input_tensor(input_tensor): return None model.set_input_tensor = set_input_tensor forward_backward_func = get_forward_backward_func() assert(schedule.get_forward_backward_func() == schedule.forward_backward_no_pipelining) mocker.patch("megatron.core.pipeline_parallel.schedules.custom_backward", return_value=2) config = ModelParallelConfig( pipeline_model_parallel_size = 1 ) model.config = config losses_reduced = forward_backward_func( forward_step_func=forward_step_func, data_iterator=None, model=[model], num_microbatches=4, seq_length=None, micro_batch_size=None, forward_only=False) loss_reduced_expected = [{'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}] for i,j in zip(losses_reduced, loss_reduced_expected): print(losses_reduced) assert(i['loss_reduced'] == j['loss_reduced']) Utils.destroy_model_parallel() def test_forward_backward_func_with_pipeline_parallel(mocker): from megatron.core.pipeline_parallel import get_forward_backward_func Utils.initialize_model_parallel(tensor_model_parallel_size=1, pipeline_model_parallel_size=4) def forward_step_func(data_iterator, model): import os rank = int(os.environ['LOCAL_RANK']) def loss_func(output_tensor): return rank, {'loss_reduced':rank} return torch.rand(512,8,256).cuda(), loss_func model = torch.nn.Linear(4,1) model.model_type = 'unit-test' def set_input_tensor(input_tensor): return None model.set_input_tensor = set_input_tensor forward_backward_func = get_forward_backward_func() assert(schedule.get_forward_backward_func() == schedule.forward_backward_pipelining_without_interleaving) sequence_length = 512 micro_batch_size = 8 hidden_size = 256 config = ModelParallelConfig( pipeline_model_parallel_size = 4, sequence_parallel = False ) model.config = config losses_reduced = forward_backward_func( forward_step_func=forward_step_func, data_iterator=None, dtype=torch.float32, model=[model], num_microbatches= micro_batch_size, seq_length=sequence_length, micro_batch_size=micro_batch_size, forward_only=True) loss_reduced_expected = [{'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}] for i,j in zip(losses_reduced, loss_reduced_expected): print(losses_reduced) assert(i['loss_reduced'] == j['loss_reduced']) Utils.destroy_model_parallel() """ def test_forward_backward_func_with_interleaving(mocker): from megatron.core.pipeline_parallel import get_forward_backward_func from megatron.core.enums import ModelType Utils.initialize_model_parallel(tensor_model_parallel_size=1, pipeline_model_parallel_size=4, virtual_pipeline_model_parallel_size=2) def forward_step_func(data_iterator, model): import os rank = int(os.environ['LOCAL_RANK']) def loss_func(output_tensor): return rank, {'loss_reduced':rank} return torch.rand(512,8,256).cuda(), loss_func model = torch.nn.Linear(4,1) def set_input_tensor(input_tensor): return None model.set_input_tensor = set_input_tensor forward_backward_func = get_forward_backward_func() assert(schedule.get_forward_backward_func() == schedule.forward_backward_pipelining_with_interleaving) sequence_length = 512 micro_batch_size = 8 hidden_size = 256 mocker.patch("megatron.core.pipeline_parallel.schedules.custom_backward", return_value=2) with pytest.raises(RuntimeError): model.model_type = ModelType.encoder_and_decoder forward_backward_func( forward_step_func=forward_step_func, data_iterator=range(0,100), dtype=torch.float32, model=[model, model], num_microbatches= micro_batch_size, tensor_shape=[sequence_length, micro_batch_size, hidden_size], decoder_seq_length=sequence_length, sequence_parallel=False, forward_only=True) with pytest.raises(RuntimeError): model.model_type = ModelType.encoder_or_decoder forward_backward_func( forward_step_func=forward_step_func, data_iterator=range(0,100), dtype=torch.float32, model=[model, model], num_microbatches= micro_batch_size, tensor_shape=[sequence_length, micro_batch_size, hidden_size], decoder_seq_length=256, sequence_parallel=False, forward_only=True) with pytest.raises(RuntimeError): model.model_type = ModelType.encoder_or_decoder forward_backward_func( forward_step_func=forward_step_func, data_iterator=range(0,100), dtype=torch.float32, model=[model, model], num_microbatches= 7, tensor_shape=[sequence_length, micro_batch_size, hidden_size], decoder_seq_length=512, sequence_parallel=False, forward_only=True) model.model_type = ModelType.encoder_or_decoder losses_reduced = forward_backward_func( forward_step_func=forward_step_func, data_iterator=range(0,100), dtype=torch.float32, model=[model, model], num_microbatches= micro_batch_size, tensor_shape=[sequence_length, micro_batch_size, hidden_size], decoder_seq_length=sequence_length, sequence_parallel=True, forward_only=True) loss_reduced_expected = [{'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}] for i,j in zip(losses_reduced, loss_reduced_expected): print(losses_reduced) assert(i['loss_reduced'] == j['loss_reduced']) Utils.destroy_model_parallel() """