# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import pytest import torch from megatron.core.transformer.parallel_attention import ParallelAttention @pytest.fixture def parallel_attention(transformer_config): return ParallelAttention(transformer_config) @pytest.fixture def checkpointed_parallel_attention(transformer_config): transformer_config.recompute_granularity = 'selective' return ParallelAttention(transformer_config) class TestParallelAttention: def test_constructor(self, parallel_attention): assert isinstance(parallel_attention, ParallelAttention) assert parallel_attention.layer_number == 1 num_weights = sum([p.numel() for p in parallel_attention.parameters()]) assert num_weights == 624 def test_cpu_forward(self, parallel_attention): # we can't currently do this because the global memory buffer is on GPU pass def test_gpu_forward(self, parallel_attention): config = parallel_attention.config sequence_length = 32 micro_batch_size = 2 parallel_attention.cuda() # [sequence length, batch size, hidden size] hidden_states = torch.ones((sequence_length, micro_batch_size, parallel_attention.config.hidden_size)) hidden_states = hidden_states.cuda() attention_mask = torch.ones((1, 1, sequence_length, sequence_length), dtype=bool).cuda() output, bias = parallel_attention(hidden_states, attention_mask) assert config.recompute_granularity is None assert output.shape[0] == sequence_length assert output.shape[1] == micro_batch_size assert output.shape[2] == config.hidden_size assert bias.shape[0] == config.hidden_size def test_checkpointed_gpu_forward(self, checkpointed_parallel_attention): config = checkpointed_parallel_attention.config sequence_length = 32 micro_batch_size = 2 checkpointed_parallel_attention.cuda() # [sequence length, batch size, hidden size] hidden_states = torch.ones( (sequence_length, micro_batch_size, checkpointed_parallel_attention.config.hidden_size) ) hidden_states = hidden_states.cuda() attention_mask = torch.ones((1, 1, sequence_length, sequence_length), dtype=bool).cuda() output, bias = checkpointed_parallel_attention(hidden_states, attention_mask) assert config.recompute_granularity == 'selective' assert output.shape[0] == sequence_length assert output.shape[1] == micro_batch_size assert output.shape[2] == config.hidden_size assert bias.shape[0] == config.hidden_size