# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import pytest import torch from megatron.core.transformer.parallel_mlp import ParallelMLP @pytest.fixture def mlp(transformer_config): return ParallelMLP(transformer_config) class TestParallelMLP: def test_constructor(self, mlp): assert isinstance(mlp, ParallelMLP) num_weights = sum([p.numel() for p in mlp.parameters()]) assert num_weights == 1212 def test_cpu_forward(self, mlp): # [sequence length, micro batch size, hidden size] hidden_states = torch.ones((32, 2, mlp.config.hidden_size)) output, output_bias = mlp(hidden_states) assert output.shape[0] == 32 assert output.shape[1] == 2 assert output.shape[2] == mlp.config.hidden_size assert output_bias.shape[0] == mlp.config.hidden_size assert output.dtype == torch.float32 @pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available") def test_gpu_forward(self, mlp): mlp.cuda() # [sequence length, batch size, hidden size] hidden_states = torch.ones((32, 2, mlp.config.hidden_size)) hidden_states = hidden_states.cuda() output, output_bias = mlp(hidden_states) assert output.shape[0] == 32 assert output.shape[1] == 2 assert output.shape[2] == mlp.config.hidden_size assert output_bias.shape[0] == mlp.config.hidden_size assert output.dtype == torch.float32 assert output.device.type == 'cuda' assert output_bias.device.type == 'cuda'