# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import numpy as np import torch from tqdm import tqdm from .external_libs import transformers class IterableTextDataset(torch.utils.data.IterableDataset): '''Iterable over a text dataset.''' def __init__(self, text_dataset): self.text_dataset = text_dataset def __iter__(self): '''Remove 'endoftext' string.''' for sample_idx in range(len(self.text_dataset)): sample = self.text_dataset[sample_idx] text = sample["text"].replace("<|endoftext|>", "") yield text class MyFeatureExtractionPipeline(transformers.FeatureExtractionPipeline): def _forward(self, model_inputs): # Embed inputs. model_outputs = self.model(**model_inputs) # Attention mask. embeddings = model_outputs[0] masks = torch.sum(model_inputs['attention_mask'], dim=1) # Collect embeddings & check for nan. outputs = [] for embedding, mask in zip(embeddings, masks): output = torch.mean(embedding[1: mask - 1], dim=0) # Nans due to empty input sequences; so only check first element. if torch.isnan(output.view(-1)[0]).any(): output.zero_() outputs.append(output) # Sample. data = { "input" : model_inputs["input_ids"], "output" : outputs, } return data def postprocess(self, model_outputs): # Return input for analysis. return { "input" : model_outputs["input"].numpy(), "output" : model_outputs["output"].numpy(), } class HuggingfaceEmbedder: def __init__(self, batch_size, max_seq_length): # Model, tokenizer. self.model = transformers.BertModel.from_pretrained("bert-large-cased") self.tokenizer = transformers.AutoTokenizer.from_pretrained( "bert-large-cased", model_max_length=max_seq_length) # Feature extraction pipeline. self.pipe = MyFeatureExtractionPipeline( model=self.model, tokenizer=self.tokenizer, device=torch.cuda.current_device(), truncation=True, max_length=max_seq_length, ) self.batch_size = batch_size def embed_text_dataset(self, text_dataset, verbose=True): # Wrap dataset in iterable. dataset = IterableTextDataset(text_dataset) # Allocate output array. n_samples = len(text_dataset) embeddings = np.zeros((n_samples, 1024), dtype="f4") start_idx = 0 # Wrap iterator in tqdm for verbose output. _iter = self.pipe(dataset, batch_size=self.batch_size) if verbose: _iter = tqdm(_iter, "hf embed", total=n_samples) # Embed dataset. for idx, out_dict in enumerate(_iter): inp = out_dict["input"] out = out_dict["output"] embeddings[start_idx] = out start_idx += 1 return embeddings def embed_text(self, text): '''Embed a single text string. Primarily used for on-the-fly embeddings, particularly during analysis or debugging. For large scale, use 'embed_text_dataset()'. ''' class SingleTextDataset(torch.utils.data.Dataset): '''Dataset that holds single string.''' def __init__(self, text): assert isinstance(text, str) self.text = text def __len__(self): return 1 def __getitem__(self, i): return {"text": self.text} # Embed text. text_ds = SingleTextDataset(text) embed = self.embed_text_dataset(text_ds, verbose=False)[0] return embed