# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. from collections import defaultdict import glob import numpy as np import os import torch from tqdm import tqdm from megatron import print_rank_0 from megatron.core import parallel_state from .external_libs import h5py def save_data(data_map, *args): '''Save map of numpy arrays to hdf5 file.''' # Parse args. if len(args) == 1: path = args[0] elif len(args) == 2: dir_path, file_name = args path = os.path.join(dir_path, file_name) else: raise Exception("specialize for len(args) == %d." % len(args)) # Save data. if not os.path.isfile(path): f = h5py.File(path, "w") for k, v in data_map.items(): f.create_dataset(k, data=v) f.close() return path def load_data(paths): '''Load multiple hdf5 files to single numpy array.''' # Read data shapes. shape_map = defaultdict(lambda : (0, None)) for p in paths: f = h5py.File(p, "r") for k in f.keys(): shape = tuple(f[k].shape) shape_map[k] = (shape_map[k][0] + shape[0], shape[1]) f.close() # Allocate output array. data_map = { k : np.empty(s, dtype="f4") for k, s in shape_map.items() } start_map = { k : 0 for k in shape_map } # Load files. for pi, p in enumerate(tqdm(paths, "load data")): f = h5py.File(p, "r") for k in f.keys(): i0 = start_map[k] i1 = i0 + len(f[k]) data_map[k][i0:i1] = f[k] start_map[k] += len(f[k]) f.close() return data_map def get_missing_blocks(workdir, n_samples, block_size, validate=lambda f : None): '''Divide range [0, num_samples) to sequence of block ranges. This is a core method within the concept of block processing. The idea is to divide a range (size n_samples) into a sequence of blocks. Each block corresponds to a file within 'workdir' with name '{start_idx}-{end_idx}.hdf5'. This method checks for the existence of these files, and returns a list of the ones that are missing. ''' # Block ranges. block_start_idxs = list(range(0, n_samples, block_size)) block_end_idxs = [ min(n_samples, i + block_size) for i in block_start_idxs ] block_ranges = list(zip(block_start_idxs, block_end_idxs)) # All block files (existing + missing). n_digits = int(np.ceil(np.log(n_samples) / np.log(10)) + 1) all_blocks = [{ "range" : r, "path" : os.path.join( workdir, "%s-%s.hdf5" % tuple([ str(i).zfill(n_digits) for i in r ]), ) } for r in block_ranges] all_block_path_set = set(block["path"] for block in all_blocks) # Delete corrupt files. if torch.distributed.get_rank() == 0: existing_block_paths = [block["path"] for block in all_blocks if os.path.exists(block["path"])] for index, path in enumerate( tqdm(existing_block_paths, "validating block.")): assert path in all_block_path_set, "unexpected filename, '%s'." % path try: f = h5py.File(path, "r") except: # raise Exception("unable to open/validate '%s'." % path) os.remove(path) continue try: validate(f) except: # raise Exception("delete block file '%s'." % path) os.remove(path) finally: f.close() # Wait for files to be deleted. torch.distributed.barrier() # Filter missing files. missing_blocks = [block for block in all_blocks if not os.path.exists(block["path"])] return missing_blocks def get_missing_blocks_by_rank(workdir, n_samples, block_size, validate=lambda f : None): '''Divide missing blocks evenly across all ranks. See 'get_missing_blocks()' above for description. The returned list of missing blocks is split evenly across ranks via interleaving. This way, each rank has a roughly equal number of blocks to process for a downstream operation. ''' missing_blocks = get_missing_blocks(workdir, n_samples, block_size, validate) # This rank's missing files. data_parallel_rank = parallel_state.get_data_parallel_rank() data_parallel_world_size = parallel_state.get_data_parallel_world_size() rank_missing_blocks = missing_blocks[data_parallel_rank:len(missing_blocks):data_parallel_world_size] # Extend rank's missing blocks (with None) such that all ranks have equal # length lists. This allows for easier tracking of global progress. n_missing_tensor = torch.cuda.LongTensor([len(rank_missing_blocks)]) torch.distributed.all_reduce(n_missing_tensor, op=torch.distributed.ReduceOp.MAX) max_n_missing = n_missing_tensor.item() rank_missing_blocks += [None] * (max_n_missing - len(rank_missing_blocks)) return len(missing_blocks), rank_missing_blocks class BlockPathMap: '''Map an index to its containing block path. The common use for this class is to have a directory of files containing blocks of processed data, of uniform block size (e.g., 100k samples per file). Each file must follow a naming convention of 'startIdx-endIdx.[ext]', where 'endIdx' minus 'startIdx' must equal the block size, with the possible exception of the final block. Given an input index, this class maps the index to the containing block file. ''' @classmethod def from_dir(cls, _dir, block_size, ext="hdf5"): '''Get list of block files, and create map.''' assert os.path.isdir(_dir), f"directory not found, '{_dir}'." return cls(sorted(glob.glob(_dir + f"/*.{ext}")), block_size) def __init__(self, block_paths, block_size): self.max_idx = 0 self.block_path_map = {} for block_path in block_paths: name = os.path.splitext(os.path.basename(block_path))[0] start_idx, end_idx = [ int(i) for i in name.split("-") ] self.block_path_map[start_idx] = block_path self.max_idx = max(self.max_idx, end_idx) self.block_size = block_size def __str__(self): return "%d paths" % len(self.block_path_map) def __getitem__(self, idx): '''Get block path from index.''' block_start_idx = self.block_size * (idx // self.block_size) block_path = self.block_path_map[block_start_idx] return block_path