# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import numpy as np import os import torch from megatron import get_args, get_retro_args from tools.bert_embedding.utils import BlockPathMap from tools.retro.db.utils import get_merged_train_dataset as get_db_dataset from tools.retro.external_libs import h5py from .chunk_dataset import get_chunk_dataset_map from .utils import get_neighbor_dirname class RetroDataset(torch.utils.data.Dataset): '''Dataset of retro samples. Each sample contains the original GPT sample, along with the token IDs of each neighbor of each chunk within the sequence. Neighbor array has shape (num_chunks_per_sample, num_neighbors, num_retrieved_tokens). ''' def __init__(self, num_neighbors, num_retrieved_chunks, block_size, db_dataset, chunk_dataset, neighbor_path_map): '''Note: chunk dataset wraps original GPT dataset (see chunk_dataset.py).''' super().__init__() self.num_neighbors = num_neighbors self.num_retrieved_chunks = num_retrieved_chunks self.block_size = block_size self.db_dataset = db_dataset self.chunk_dataset = chunk_dataset self.neighbor_path_map = neighbor_path_map def __len__(self): return len(self.chunk_dataset.sample_dataset) def __getitem__(self, sample_idx): n_chunks_per_sample = self.chunk_dataset.n_chunks_per_sample # Get standard sample. sample = self.chunk_dataset.sample_dataset[sample_idx] # Sample idx to chunk idxs. chunk_idxs = list(range( sample_idx * n_chunks_per_sample, (sample_idx + 1) * n_chunks_per_sample, )) # Collect retrieved tokens. all_retrieved_chunk_ids = [] all_retrieved_token_ids = [] for chunk_idx in chunk_idxs: # Neighbor chunk ids. neighbor_path = self.neighbor_path_map[chunk_idx] with h5py.File(neighbor_path, "r") as f: neighbor_chunk_ids = f["neighbors"] \ [chunk_idx % self.block_size, :self.num_neighbors].tolist() # Retrieved (neighbor + continuation) token ids. retrieved_chunk_ids = [] retrieved_token_ids = [] for neighbor_chunk_id in neighbor_chunk_ids: current_chunk_ids = [ i % len(self.db_dataset) for i in range( neighbor_chunk_id, neighbor_chunk_id + self.num_retrieved_chunks)] current_token_ids = [self.db_dataset[ci]["text"] for ci in current_chunk_ids] retrieved_chunk_ids.append(current_chunk_ids) retrieved_token_ids.append(current_token_ids) # Collect retrieved tokens. all_retrieved_chunk_ids.append(retrieved_chunk_ids) all_retrieved_token_ids.append(retrieved_token_ids) # Reshape retrieved tokens. all_retrieved_chunk_ids = np.array(all_retrieved_chunk_ids) \ .reshape((n_chunks_per_sample, self.num_neighbors, -1)) all_retrieved_token_ids = np.array(all_retrieved_token_ids) \ .reshape((n_chunks_per_sample, self.num_neighbors, -1)) # Sample. sample = { **sample, "neighbor_chunks" : all_retrieved_chunk_ids, "neighbor_tokens" : all_retrieved_token_ids, } return sample def get_retro_datasets(verify_sizes=True): '''Get train, valid, test retro datasets.''' args = get_args() retro_args = get_retro_args() # DB dataset. db_dataset = get_db_dataset() # Retro datasets. chunk_ds_info_map = get_chunk_dataset_map() retro_dataset_map = {} for data_key, chunk_ds_info in chunk_ds_info_map.items(): chunk_dataset = chunk_ds_info["data"] neighbor_dir = chunk_ds_info["neighbor_dir"] neighbor_path_map = BlockPathMap.from_dir(neighbor_dir, retro_args.retro_block_size) # Verify dataset prefixes. expected_dir = get_neighbor_dirname(data_key, chunk_dataset.sample_dataset) assert expected_dir == neighbor_dir, \ "inconsistent dataset source; '%s' vs. '%s'." % \ (expected_dir, neighbor_dir) # Verify num chunks. n_sample_chunks = len(chunk_dataset) n_neighbor_chunks = neighbor_path_map.max_idx if not os.path.isdir(neighbor_dir): if torch.distributed.get_rank() == 0: raise Exception("neighbor directory '%s' not found; please " "compare --train-samples, --seq-length, --seed, " "--eval-iters, and --eval-interval, with " "retro preprocessing args." % neighbor_dir) torch.distributed.barrier() exit() if verify_sizes and n_sample_chunks != n_neighbor_chunks: if torch.distributed.get_rank() == 0: print("neighbor_dir : %s" % neighbor_dir) print("neighbor_path_map : %s" % neighbor_path_map) raise Exception("num sampled chunks (%d) != num neighbor chunks " "(%d); did you complete querying the entire " "pretraining dataset?" % (n_sample_chunks, n_neighbor_chunks)) torch.distributed.barrier() exit() # Retro dataset. retro_dataset_map[data_key] = RetroDataset( num_neighbors=args.retro_num_neighbors, num_retrieved_chunks=args.retro_num_retrieved_chunks, block_size=retro_args.retro_block_size, db_dataset=db_dataset, chunk_dataset=chunk_dataset, neighbor_path_map=neighbor_path_map, ) # Extract datasets. train_ds = retro_dataset_map.get("train", None) valid_ds = retro_dataset_map.get("valid", None) test_ds = retro_dataset_map.get("test", None) return train_ds, valid_ds, test_ds