# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import os import torch import types from megatron import get_retro_args from megatron.tokenizer.tokenizer import ( _BertWordPieceTokenizer, _GPT2BPETokenizer, _GPTSentencePieceTokenizer, ) def get_args_path(workdir): '''Argument copy stored within retro workdir.''' return os.path.join(workdir, "args.json") def get_num_chunks_per_sample(): '''Compute seq_length // chunk_length.''' args = get_retro_args() sample_length = args.retro_gpt_seq_length chunk_length = args.retro_gpt_chunk_length assert sample_length % chunk_length == 0 return sample_length // chunk_length def get_gpt_tokenizer(): '''GPT (BPE) tokenizer.''' args = get_retro_args() tokenizer_type = args.retro_gpt_tokenizer_type if tokenizer_type == "GPT2BPETokenizer": assert args.retro_gpt_vocab_file and args.retro_gpt_merge_file return _GPT2BPETokenizer( vocab_file=args.retro_gpt_vocab_file, merge_file=args.retro_gpt_merge_file, ) elif tokenizer_type == 'GPTSentencePieceTokenizer': assert args.retro_gpt_tokenizer_model is not None return _GPTSentencePieceTokenizer(args.retro_gpt_tokenizer_model) else: raise Exception("unrecognized gpt tokenizer, '%s'." % tokenizer_type) def get_bert_tokenizer(): '''Bert (Wordpiece) tokenizer.''' args = get_retro_args() lower_case = { "BertWordPieceLowerCase" : True, "BertWordPieceCase" : False, }[args.retro_bert_tokenizer_type] return _BertWordPieceTokenizer( vocab_file=args.retro_bert_vocab_file, lower_case=lower_case, ) class GPTToTextDataset(torch.utils.data.Dataset): '''Dataset to convert GPT tokens to text.''' def __init__(self, gpt_dataset): super().__init__() self.gpt_dataset = gpt_dataset self.gpt_tokenizer = get_gpt_tokenizer() def __len__(self): return len(self.gpt_dataset) def __getitem__(self, idx): gpt_token_ids = self.gpt_dataset[idx]["text"].tolist() text = self.gpt_tokenizer.detokenize(gpt_token_ids) return {"text": text}