# Copyright (c) 2023 Habana Labs, Ltd. an Intel Company. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import sys import os on_step_begin = [] on_step_end = [] def trigger(phase): [f() for f in phase] def setup_profiler(args, device): if args.profile is None: return start_step, end_step = map(int, args.profile_steps.split(',')) active_steps = end_step - start_step + 1 cur_step = 0 def on_step_begin_fn(): nonlocal cur_step cur_step = cur_step + 1 on_step_begin.append(on_step_begin_fn) def when(cond, clbk): def fn(): if cond(): clbk() return fn def is_start_step(): return cur_step == start_step def is_end_step(): return cur_step == end_step def is_capture_step(): return cur_step >= start_step and cur_step <= end_step if args.profile.startswith('pt'): schedule = torch.profiler.schedule(wait=0, warmup=0, active=active_steps, repeat=1) activities = [torch.profiler.ProfilerActivity.CPU] activities.extend([torch.profiler.ProfilerActivity.HPU] if device.startswith("hpu") else []) activities.extend([torch.profiler.ProfilerActivity.CUDA] if device.startswith("cuda") else []) full = args.profile == 'pt-full' profiler = torch.profiler.profile( schedule=schedule, activities=activities, on_trace_ready=torch.profiler.tensorboard_trace_handler(args.tensorboard_dir, use_gzip=True), with_stack=full) on_step_begin.append(when(is_start_step, profiler.start)) on_step_end.append(when(is_capture_step, profiler.step)) on_step_end.append(when(is_end_step, profiler.stop)) elif args.profile == 'hltv': sys.path.append(os.environ['PYTORCH_MODULES_ROOT_PATH']) from topologies.tools import SynapseProfilerApi, TraceType api = SynapseProfilerApi() def on_start_step(): nonlocal api api.profiler_start(TraceType.TraceAll, 0) def on_end_step(): nonlocal api import habana_frameworks.torch.hpu as hpu hpu.synchronize() api.profiler_stop(TraceType.TraceAll, 0) api.profiler_get_trace_json(TraceType.TraceAll, 0) on_step_begin.append(when(is_start_step, on_start_step)) on_step_end.append(when(is_end_step, on_end_step))