#!/bin/bash if [[ $DEBUG -eq 1 ]]; then set -x env #LOG_LEVEL:0 - TRACE, 1 - DEBUG, 2 - INFO, 3 - WARNING, 4 - ERROR, 5 - CRITICAL, 6 - OFF export LOG_LEVEL_ALL_HCL=2 else export LOG_LEVEL_ALL_HCL=6 fi if [ -z $BASE_PATH ]; then BASE_PATH="$( cd "$(dirname "$(readlink -f ./defaults.cfg)" )" && pwd)" PYTHONPATH=${BASE_PATH}:$PYTHONPATH fi TRAIN_SCRIPT=${BASE_PATH}/TensorFlow/computer_vision/Resnets/resnet_keras/resnet_ctl_imagenet_main.py PT_VERSION=`python3 -c 'import sys; print(f"{sys.version_info[0]}.{sys.version_info[1]}")'` TF_VERSION=`python3 -c "import tensorflow as tf; print(tf.__version__.replace('.', '_'))"` PATCH_PATH=/usr/local/lib/python${PT_VERSION}/dist-packages/habana_frameworks/tensorflow/tf${TF_VERSION}/lib/habanalabs # This is required for HW profiling but does not hurt so we add it always export PYTHONPATH=${PATCH_PATH}:${PYTHONPATH} # Fixed varaibles, not inherited from launcher export TF_ALLOW_CONTROL_EDGES_IN_HABANA_OPS=1 export EXPERIMENTAL_PRELOADING=1 export ENABLE_TENSORBOARD=false export REPORT_ACCURACY_METRICS=true export DIST_EVAL=true export ENABLE_DEVICE_WARMUP=true export TF_DISABLE_MKL=1 export SYNTHETIC_DATA=${SYNTHETIC_DATA} if [[ $MODELING -eq 1 ]]; then ENABLE_CHECKPOINT=true else ENABLE_CHECKPOINT=false fi if [[ $TF_BF16_CONVERSION -eq 1 ]]; then DATA_TYPE="bf16" else DATA_TYPE="fp32" fi if [[ ${NO_EVAL} -eq 1 ]]; then SKIP_EVAL=true else SKIP_EVAL=false fi if [[ ${USE_LARS_OPTIMIZER} -eq 1 ]]; then OPTIMIZER="LARS" else OPTIMIZER="SGD" fi if [[ ${USE_HOROVOD} -eq 1 ]]; then DIST_EVAL=true USE_HOROVOD='--use_horovod' else DIST_EVAL=false USE_HOROVOD='' fi if [[ ${SYNTHETIC_DATA} -eq 1 ]]; then SYNTHETIC_DATA=true fi if [[ -n ${NUM_ACCUMULATION_STEPS} ]]; then NUM_ACCUMULATION_STEPS="--num_acc_steps=${NUM_ACCUMULATION_STEPS}" else NUM_ACCUMULATION_STEPS="" fi if [[ -n ${JPEG_IMAGENET_DIR} ]]; then JPEG_IMAGENET_DIR="--jpeg_data_dir=${JPEG_IMAGENET_DIR}" fi if [[ $SIGNALING_FROM_GRAPH -eq 1 ]]; then export HOROVOD_FUSION_THRESHOLD=0 export TF_USE_SIGNALING_FROM_ENCAP_OP=1 else export TF_USE_SIGNALING_FROM_ENCAP_OP=0 fi # clear cache PROC_FS=${PROC_FS:-"/proc"} sync && echo 3 > $PROC_FS/sys/vm/drop_caches TRAIN_COMMAND="python3 ${TRAIN_SCRIPT} --model_dir=${WORK_DIR} --data_dir=${IMAGENET_DIR} ${JPEG_IMAGENET_DIR} --batch_size=${BATCH_SIZE} --distribution_strategy=off --num_gpus=0 --data_format=channels_last --train_epochs=${TRAIN_EPOCHS} --train_steps=${TRAIN_STEPS} --experimental_preloading=${EXPERIMENTAL_PRELOADING} --log_steps=${DISPLAY_STEPS} --steps_per_loop=${STEPS_PER_LOOP} --enable_checkpoint_and_export=${ENABLE_CHECKPOINT} --enable_tensorboard=${ENABLE_TENSORBOARD} --epochs_between_evals=${EPOCHS_BETWEEN_EVALS} --base_learning_rate=${BASE_LEARNING_RATE} --warmup_epochs=${WARMUP_EPOCHS} --optimizer=${OPTIMIZER} --lr_schedule=polynomial --label_smoothing=${LABEL_SMOOTH} --weight_decay=${WEIGHT_DECAY} $NUM_ACCUMULATION_STEPS --single_l2_loss_op ${USE_HOROVOD} --modeling=${MODELING} --data_loader_image_type=${DATA_TYPE} --dtype=${DATA_TYPE} --eval_offset_epochs=${EVAL_OFFSET_EPOCHS} --report_accuracy_metrics=${REPORT_ACCURACY_METRICS} --dist_eval=${DIST_EVAL} --target_accuracy=${STOP_THRESHOLD} --enable_device_warmup=${ENABLE_DEVICE_WARMUP} --lars_decay_epochs=${LARS_DECAY_EPOCHS} --momentum=${LR_MOMENTUM} --skip_eval=${SKIP_EVAL} --use_synthetic_data=${SYNTHETIC_DATA} --dataset_cache=${DATASET_CACHE} --num_train_files=${NUM_TRAIN_FILES} --num_eval_files=${NUM_EVAL_FILES} " echo ${TRAIN_COMMAND} echo "[run] General Settings:" echo "[run] RESNET_SIZE" $RESNET_SIZE echo "[run] IMAGENET_DIR" $IMAGENET_DIR echo "[run] BATCH_SIZE" $BATCH_SIZE echo "[run] NUM_WORKERS" $NUM_WORKERS echo "[run] TRAIN_EPOCHS" $TRAIN_EPOCHS echo "[run] TRAIN_STEPS" $TRAIN_STEPS echo "[run] DISPLAY_STEPS" $DISPLAY_STEPS echo "[run] USE_LARS_OPTIMIZER" $USE_LARS_OPTIMIZER echo "[run] CPU_BIND_TYPE" $CPU_BIND_TYPE echo "[run] EPOCHS_BETWEEN_EVALS" $EPOCHS_BETWEEN_EVALS echo "[run] TRAIN_AND_EVAL" $TRAIN_AND_EVAL echo "[run] TF_BF16_CONVERSION" $TF_BF16_CONVERSION echo "[run] DATASET_CACHE" $DATASET_CACHE echo "[run] USE_HOROVOD" $USE_HOROVOD echo echo "[run] Learning Setting:" echo "[run] WEIGHT_DECAY" $WEIGHT_DECAY echo "[run] NUM_ACCUMULATION_STEPS" $NUM_ACCUMULATION_STEPS echo "[run] LABEL_SMOOTH" $LABEL_SMOOTH echo "[run] BASE_LEARNING_RATE" $BASE_LEARNING_RATE echo "[run] WARMUP_EPOCHS" $WARMUP_EPOCHS echo "[run] USE_MLPERF" $USE_MLPERF echo "[run] NO_EVAL" $NO_EVAL echo "[run] STOP_THRESHOLD" $STOP_THRESHOLD echo "[run] LR_MOMENTUM" $LR_MOMENTUM echo "[run] EVAL_OFFSET_EPOCHS" $EVAL_OFFSET_EPOCHS echo "[run] LARS_DECAY_EPOCHS" $LARS_DECAY_EPOCHS echo "[run] SYNTHETIC_DATA" $SYNTHETIC_DATA if [[ ! -z $USE_HOROVOD ]] && [[ $CPU_BIND_TYPE == "numa" ]]; then LOCAL_SNC_VALUE=$(( OMPI_COMM_WORLD_LOCAL_RANK )) if [[ $HLS_TYPE == "HLS2" ]]; then export NUMA_MAPPING_DIR=$BASE_PATH bash list_affinity_topology_bare_metal.sh CPU_RANGE=`cat $NUMA_MAPPING_DIR/.habana_moduleID$LOCAL_SNC_VALUE` fi LD_PRELOAD=${PRELOAD_PATH} numactl --physcpubind=${CPU_RANGE} ${TRAIN_COMMAND} else LD_PRELOAD=${PRELOAD_PATH} ${TRAIN_COMMAND} fi