import argparse import datetime import glob import json import os import sys import time import random import numpy as np import torch import torchvision import copy try: import lightning.pytorch as pl except: import pytorch_lightning as pl from functools import partial from omegaconf import OmegaConf from prefetch_generator import BackgroundGenerator from torch.utils.data import DataLoader, Dataset try: from lightning.pytorch import seed_everything from lightning.pytorch.callbacks import Callback from lightning.pytorch.trainer import Trainer from lightning.pytorch.utilities import rank_zero_info LIGHTNING_PACK_NAME = "lightning.pytorch." except: from pytorch_lightning import seed_everything from pytorch_lightning.callbacks import Callback from pytorch_lightning.trainer import Trainer from pytorch_lightning.utilities import rank_zero_info LIGHTNING_PACK_NAME = "pytorch_lightning." from ldm.data.base import Txt2ImgIterableBaseDataset from ldm.util import instantiate_from_config import mlperf_logging_utils import mlperf_logging.mllog.constants as mllog_constants from mlperf_logging_utils import mllogger def get_parser(**parser_kwargs): # A function to create an ArgumentParser object and add arguments to it def str2bool(v): # A helper function to parse boolean values from command line arguments if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") # Create an ArgumentParser object with specifies kwargs parser = argparse.ArgumentParser(**parser_kwargs) # Add vairous command line arguments with their default balues and descriptions parser.add_argument( "-n", "--name", type=str, const=True, default="", nargs="?", help="postfix for logdir", ) parser.add_argument( "-r", "--resume", type=str, const=True, default="", nargs="?", help="resume from logdir or checkpoint in logdir", ) parser.add_argument( "-b", "--base", nargs="*", metavar="base_config.yaml", help="paths to base configs. Loaded from left-to-right. " "Parameters can be overwritten or added with command-line options of the form `--key value`.", default=list(), ) parser.add_argument( "-m", "--mode", type=str, default="train", choices=["train", "validate"], help="run mode, train or validation", ) parser.add_argument( "-v", "--validation", type=str2bool, const=True, default=False, nargs="?", help="validation", ) parser.add_argument( "-p", "--project", help="name of new or path to existing project", ) parser.add_argument( "-c", "--ckpt", type=str, const=True, default="", nargs="?", help="load pretrained checkpoint from stable AI", ) parser.add_argument( "-d", "--debug", type=str2bool, nargs="?", const=True, default=False, help="enable post-mortem debugging", ) parser.add_argument( "-s", "--seed", type=int, default=random.SystemRandom().randint(0, 2**32 - 1), help="seed for seed_everything", ) parser.add_argument( "--fid_threshold", type=int, default=90, help="halt training once this FID validation score or a smaller one is achieved." "if used with --clip_threshold, both metrics need to reach their targets.", ) parser.add_argument( "--clip_threshold", type=int, default=0.15, help="halt training once this CLIP validation score or a higher one is achieved." "if used with --fid_threshold, both metrics need to reach their targets.", ) parser.add_argument( "-f", "--postfix", type=str, default="", help="post-postfix for default name", ) parser.add_argument( "-l", "--logdir", type=str, default="/results", help="directory for logging dat shit", ) parser.add_argument( "--scale_lr", type=str2bool, nargs="?", const=True, default=True, help="scale base-lr by ngpu * batch_size * n_accumulate", ) parser.add_argument( "--train_log_interval", type=int, default=100, help="Training logging interval" ) parser.add_argument( "--validation_log_interval", type=int, default=10, help="Validation logging interval" ) parser.add_argument( "--hpus", type=int, default=0, help="number of hpu devices to run", ) parser.add_argument( "--use_lazy_mode", type=lambda x: x.lower() == 'true', default=True, help="Run Lazy or Eager Mode on HPU, default: lazy", ) parser.add_argument( "--batch_size", type=int, default=0, help="batch size for training", ) parser.add_argument( "--log_freq", type=int, default=50, help="frequency of logging loss.", ) parser.add_argument( "--autocast", dest="use_autocast", action="store_true", help="Use PyTorch autocast on Gaudi" ) parser.add_argument( "--warmup", dest="warmup_path", type=str, default=None, # Set a default value if needed help="Path to the warmup dataset file" ) parser.add_argument( "--async_checkpoint", dest='async_checkpoint', action='store_true', help="Enables usage of asynchronous checkpoint saving during training." ) parser.add_argument( "--current_validation_iter", dest="current_validation_iter", type=int, default=1, help="Id of validation run" ) parser.add_argument( "--validation_iters", dest="validation_iters", type=int, default=5, help="Number of all validation runs" ) return parser # A function that returns the non-default arguments between two objects def nondefault_trainer_args(opt): # create an argument parsser parser = argparse.ArgumentParser() # parse the empty arguments to obtain the default values args = parser.parse_args([]) # return all non-default arguments return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k)) class ListEarlyStopping(Callback): # Early stopping class that accepts a list of metrics and all stopping_thresholds # must be met before stopping def __init__(self, monitor_metrics: list = ["validation/fid", "validation/clip"], mode_metrics: dict = {'validation/fid': 'min', 'validation/clip': 'max'}, stopping_thresholds: dict = {"validation/fid": None, "validation/clip": None}, check_finite: bool = False): super(ListEarlyStopping, self).__init__() self.monitor_metrics = monitor_metrics self.mode_metrics = mode_metrics self.stopping_thresholds = stopping_thresholds self.check_finite = check_finite def check_metrics(self, current_metrics): should_stop = [] for metric in self.monitor_metrics: if metric in current_metrics: current_value = current_metrics[metric] if self.check_finite and not torch.isfinite(torch.as_tensor(current_value)): raise ValueError(f"The monitored metric {metric} has become non-finite.") # Skip metrics without a stopping thresholds if self.stopping_thresholds[metric] is None: continue if self.mode_metrics[metric] == 'min': should_stop.append(current_value <= self.stopping_thresholds[metric]) if self.mode_metrics[metric] == 'max': should_stop.append(current_value >= self.stopping_thresholds[metric]) # A minimum of one metric should have been reviewed. return False if not should_stop else all(should_stop) def on_validation_end(self, trainer, pl_module): logs = trainer.callback_metrics should_stop = self.check_metrics(logs) if should_stop: rank_zero_info('Early stopping conditioned have been met. Stopping training.') trainer.should_stop = True class SetupCallback(Callback): # I nitialize the callback with the necessary parameters def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config): super().__init__() self.resume = resume self.now = now self.logdir = logdir self.ckptdir = ckptdir self.cfgdir = cfgdir self.config = config self.lightning_config = lightning_config # Save a checkpoint if training is interrupted with keyboard interrupt def on_keyboard_interrupt(self, trainer, pl_module): if trainer.global_rank == 0: print("Summoning checkpoint.") ckpt_path = os.path.join(self.ckptdir, "last.ckpt") # trainer.save_checkpoint(ckpt_path) # Create necessary directories and save configuration files before training starts # def on_pretrain_routine_start(self, trainer, pl_module): def on_fit_start(self, trainer, pl_module): if trainer.global_rank == 0: # Create logdirs and save configs os.makedirs(self.logdir, exist_ok=True) os.makedirs(self.ckptdir, exist_ok=True) os.makedirs(self.cfgdir, exist_ok=True) print("Project config") print(OmegaConf.to_yaml(self.config)) OmegaConf.save(self.config, os.path.join(self.cfgdir, "{}-project.yaml".format(self.now))) # Save project config and lightning config as YAML files print("Lightning config") print(OmegaConf.to_yaml(self.lightning_config)) OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}), os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now))) # Remove log directory if resuming training and directory already exists else: # ModelCheckpoint callback created log directory --- remove it if not self.resume and os.path.exists(self.logdir): dst, name = os.path.split(self.logdir) dst = os.path.join(dst, "child_runs", name) os.makedirs(os.path.split(dst)[0], exist_ok=True) try: os.rename(self.logdir, dst) except FileNotFoundError: pass # def on_fit_end(self, trainer, pl_module): # if trainer.global_rank == 0: # ckpt_path = os.path.join(self.ckptdir, "last.ckpt") # rank_zero_info(f"Saving final checkpoint in {ckpt_path}.") # trainer.save_checkpoint(ckpt_path) class CUDACallback(Callback): # see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py def on_train_start(self, trainer, pl_module): rank_zero_info("Training is starting") # the method is called at the end of each training epoch def on_train_end(self, trainer, pl_module): rank_zero_info("Training is ending") def on_train_epoch_start(self, trainer, pl_module): # Reset the memory use counter torch.cuda.reset_peak_memory_stats(trainer.strategy.root_device.index) torch.cuda.synchronize(trainer.strategy.root_device.index) self.start_time = time.time() def on_train_epoch_end(self, trainer, pl_module): torch.cuda.synchronize(trainer.strategy.root_device.index) max_memory = torch.cuda.max_memory_allocated(trainer.strategy.root_device.index) / 2**20 epoch_time = time.time() - self.start_time try: max_memory = trainer.strategy.reduce(max_memory) epoch_time = trainer.strategy.reduce(epoch_time) rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds") rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB") except AttributeError: pass class HPUCallback(Callback): def on_train_start(self, trainer, pl_module): rank_zero_info("Training is starting on HPU") # the method is called at the end of each training epoch def on_train_end(self, trainer, pl_module): rank_zero_info("Training is ending") def on_train_epoch_start(self, trainer, pl_module): # Reset the memory use counter torch.hpu.memory.reset_peak_memory_stats(trainer.strategy.root_device.index) torch.hpu.synchronize() self.start_time = time.time() def on_train_epoch_end(self, trainer, pl_module): torch.hpu.synchronize() max_memory = torch.hpu.memory.max_memory_allocated(trainer.strategy.root_device.index) / 2 ** 20 epoch_time = time.time() - self.start_time try: max_memory = trainer.strategy.reduce(max_memory) epoch_time = trainer.strategy.reduce(epoch_time) rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds") rank_zero_info(f"Average Peak memory {max_memory:.2f} MiB") except AttributeError: pass if __name__ == "__main__": # custom parser to specify config files, train, test and debug mode, # postfix, resume. # `--key value` arguments are interpreted as arguments to the trainer. # `nested.key=value` arguments are interpreted as config parameters. # configs are merged from left-to-right followed by command line parameters. # model: # base_learning_rate: float # target: path to lightning module # params: # key: value # data: # target: main.DataModuleFromConfig # params: # batch_size: int # wrap: bool # train: # target: path to train dataset # params: # key: value # validation: # target: path to validation dataset # params: # key: value # test: # target: path to test dataset # params: # key: value # lightning: (optional, has sane defaults and can be specified on cmdline) # trainer: # additional arguments to trainer # logger: # logger to instantiate # modelcheckpoint: # modelcheckpoint to instantiate # callbacks: # callback1: # target: importpath # params: # key: value parser = get_parser() opt, unknown = parser.parse_known_args() # get the current time to create a new logging directory now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") # add cwd for convenience and to make classes in this file available when # running as `python main.py` # (in particular `main.DataModuleFromConfig`) sys.path.append(os.getcwd()) # Veirfy the arguments are both specified if opt.name and opt.resume: raise ValueError("-n/--name and -r/--resume cannot be specified both." "If you want to resume training in a new log folder, " "use -n/--name in combination with --resume_from_checkpoint") if opt.log_freq >= opt.train_log_interval: raise ValueError("--log_freq should be lesser than --train_log_interval") # Check if the "resume" option is specified, resume training from the checkpoint if it is true ckpt = None if opt.resume: rank_zero_info("Resuming from {}".format(opt.resume)) if not os.path.exists(opt.resume): raise ValueError("Cannot find {}".format(opt.resume)) if os.path.isfile(opt.resume): paths = opt.resume.split("/") # idx = len(paths)-paths[::-1].index("logs")+1 # logdir = "/".join(paths[:idx]) logdir = "/".join(paths[:-2]) rank_zero_info("logdir: {}".format(logdir)) ckpt = opt.resume else: assert os.path.isdir(opt.resume), opt.resume logdir = opt.resume.rstrip("/") ckpt = os.path.join(logdir, "checkpoints", "last.ckpt") # Finds all ".yaml" configuration files in the log directory and adds them to the list of base configurations base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml"))) opt.base = base_configs + opt.base # Gets the name of the current log directory by splitting the path and taking the last element. _tmp = logdir.split("/") nowname = _tmp[-1] else: if opt.name: name = "_" + opt.name elif opt.base: rank_zero_info("Using base config {}".format(opt.base)) cfg_fname = os.path.split(opt.base[0])[-1] cfg_name = os.path.splitext(cfg_fname)[0] name = "_" + cfg_name else: name = "" nowname = now + name + opt.postfix logdir = os.path.join(opt.logdir, nowname) # Sets the checkpoint path of the 'ckpt' option is specified if opt.ckpt: ckpt = opt.ckpt # Create the checkpoint and configuration directories within the log directory. ckptdir = os.path.join(logdir, "checkpoints") cfgdir = os.path.join(logdir, "configs") # Sets the seed for the random number generator to ensure reproducibility seed_everything(opt.seed) is_success = False # Read timestamp for current checkpoint validation_timestamp = None if opt.mode == "validate": if os.path.exists(mllogger.filename): with open(mllogger.filename, 'r') as mllog_file: mllogs = mllog_file.readlines() step = opt.current_validation_iter * 1000 for mllog in mllogs: mllog = json.loads(mllog.replace(":::MLLOG ", "")) if mllog["key"] == "checkpoint_saved" and mllog["metadata"]["step_num"] == step: validation_timestamp = mllog["time_ms"] break # Intinalize and save configuratioon using the OmegaConf library. try: # init and save configs configs = [OmegaConf.load(cfg) for cfg in opt.base] cli = OmegaConf.from_dotlist(unknown) config = OmegaConf.merge(*configs, cli) lightning_config = config.pop("lightning", OmegaConf.create()) # merge trainer cli with config trainer_config = lightning_config.get("trainer", OmegaConf.create()) for k in nondefault_trainer_args(opt): trainer_config[k] = getattr(opt, k) if not opt.use_lazy_mode: os.environ["PT_HPU_LAZY_MODE"] = "2" if opt.hpus: trainer_config["devices"] = opt.hpus if opt.batch_size: config.data.params.train.params.batch_size = opt.batch_size if trainer_config["accelerator"] == "hpu": os.environ["PT_HPU_ENABLE_REFINE_DYNAMIC_SHAPES"] = "0" os.environ["PT_HPU_POOL_MEM_ACQUIRE_PERC"] = "99" os.environ["PT_ENABLE_INT64_SUPPORT"] = "true" # Check whether the accelerator is gpu or hpu if not trainer_config["accelerator"] == "gpu" and not trainer_config["accelerator"] == "hpu": del trainer_config["accelerator"] cpu = True else: cpu = False trainer_opt = argparse.Namespace(**trainer_config) lightning_config.trainer = trainer_config # model use_fp16 = trainer_config.get("precision", 32) == 16 if use_fp16: config.model["params"].update({"use_fp16": True}) else: config.model["params"].update({"use_fp16": False}) if ckpt is not None: # If a checkpoint path is specified in the ckpt variable, the code updates the "ckpt" key in the "params" dictionary of the config.model configuration with the value of ckpt config.model["params"].update({"ckpt": ckpt}) rank_zero_info("Using ckpt_path = {}".format(config.model["params"]["ckpt"])) if opt.use_autocast: config.model.params.use_autocast = opt.use_autocast config.model.params.hpu = trainer_config["accelerator"] == "hpu" model = instantiate_from_config(config.model) if opt.log_freq > 0: model.log_freq = opt.log_freq # Configure gradient accumulation if 'accumulate_grad_batches' in lightning_config.trainer: accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches else: accumulate_grad_batches = 1 lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches # Configure number of GPUs if not cpu: ngpu = trainer_config["devices"] * trainer_config["num_nodes"] else: ngpu = 1 # Configure batch size local_batch_size = config.data.params.train.params.batch_size global_batch_size = local_batch_size*ngpu # trainer and callbacks trainer_kwargs = dict() # config the logger # Default logger configs to log training metrics during the training process. # These loggers are specified as targets in the dictionary, along with the configuration settings specific to each logger. default_logger_cfgs = { "wandb": { "target": LIGHTNING_PACK_NAME + "loggers.WandbLogger", "params": { "name": nowname, "save_dir": logdir, "offline": opt.debug, "id": nowname, } }, "tensorboard": { "target": LIGHTNING_PACK_NAME + "loggers.TensorBoardLogger", "params": { "save_dir": logdir, "name": "diff_tb", "log_graph": True } } } # Set up the logger for TensorBoard default_logger_cfg = default_logger_cfgs["tensorboard"] if "logger" in lightning_config: logger_cfg = lightning_config.logger else: logger_cfg = default_logger_cfg logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg) trainer_kwargs["logger"] = instantiate_from_config(logger_cfg) # config the strategy, defualt is ddp if "strategy" in trainer_config: strategy_cfg = trainer_config["strategy"] strategy_cfg["target"] = LIGHTNING_PACK_NAME + strategy_cfg["target"] else: strategy_cfg = { "target": LIGHTNING_PACK_NAME + "strategies.DDPStrategy", "params": { "find_unused_parameters": False } } if trainer_config["accelerator"] == "hpu": if trainer_config["devices"] == 1: from lightning_habana.pytorch.strategies import SingleHPUStrategy from lightning_habana.pytorch.accelerator import HPUAccelerator trainer_kwargs["strategy"] = SingleHPUStrategy() trainer_kwargs["accelerator"] = HPUAccelerator() elif trainer_config["devices"] > 1: from lightning_habana.pytorch.strategies import HPUParallelStrategy from lightning_habana.pytorch.accelerator import HPUAccelerator parallel_hpus = [torch.device("hpu")] * trainer_config["devices"] trainer_kwargs["strategy"] = HPUParallelStrategy(parallel_devices=parallel_hpus, find_unused_parameters=False, gradient_as_bucket_view=True) trainer_kwargs["accelerator"] = HPUAccelerator() else: trainer_kwargs["strategy"] = instantiate_from_config(strategy_cfg) # Set up various callbacks, including logging, learning rate monitoring, and CUDA management # add callback which sets up log directory default_callbacks_cfg = { "setup_callback": { # callback to set up the training "target": "main.SetupCallback", "params": { "resume": opt.resume, # resume training if applicable "now": now, "logdir": logdir, # directory to save the log file "ckptdir": ckptdir, # directory to save the checkpoint file "cfgdir": cfgdir, # directory to save the configuration file "config": config, # configuration dictionary "lightning_config": lightning_config, # LightningModule configuration } }, "learning_rate_logger": { # callback to log learning rate "target": "lightning.pytorch.callbacks.LearningRateMonitor", "params": { "logging_interval": "step", # logging frequency (either 'step' or 'epoch') } }, "fid_clip_early_stop_callback" : { "target": "main.ListEarlyStopping", "params": { "stopping_thresholds": {"validation/fid": opt.fid_threshold, "validation/clip": opt.clip_threshold}, "check_finite": True } }, } if trainer_config["accelerator"] == "hpu": default_callbacks_cfg["hpu_callback"] = {"target": "main.HPUCallback"} elif trainer_config["accelerator"] == "gpu": default_callbacks_cfg["cuda_callback"] = {"target": "main.CUDACallback"} # If the LightningModule configuration has specified callbacks, use those # Otherwise, create an empty OmegaConf configuration object if "callbacks" in lightning_config: callbacks_cfg = lightning_config.callbacks else: callbacks_cfg = OmegaConf.create() # Merge the default callbacks configuration with the specified callbacks configuration, and instantiate the callbacks callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg) trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg] trainer_kwargs["callbacks"].append(mlperf_logging_utils.MLPerfLoggingCallback(logger=mllogger, train_log_interval=opt.train_log_interval, validation_log_interval=opt.validation_log_interval, validation_iter=opt.current_validation_iter, validation_timestamp=validation_timestamp, seed=opt.seed, gradient_accumulation_steps=accumulate_grad_batches, global_batch_size=global_batch_size)) # Set up ModelCheckpoint callback to save best models # modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to # specify which metric is used to determine best models default_modelckpt_cfg = { "target": LIGHTNING_PACK_NAME + "callbacks.ModelCheckpoint", "params": { "dirpath": ckptdir, "filename": "{epoch:06}-{step:09}", "verbose": True, "save_last": True, } } if "modelcheckpoint" in lightning_config: modelckpt_cfg = lightning_config.modelcheckpoint else: modelckpt_cfg = OmegaConf.create() modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg) trainer_kwargs["callbacks"].append(instantiate_from_config(modelckpt_cfg)) if opt.async_checkpoint: from lightning.fabric.plugins import TorchCheckpointIO from lightning.fabric.utilities import move_data_to_device from concurrent.futures import ThreadPoolExecutor class CustomCheckpointIO(TorchCheckpointIO): def save_checkpoint(self, checkpoint, path, storage_options=None): if getattr(self, '_executor', None) is None: self._executor = ThreadPoolExecutor(max_workers=1) def _save_checkpoint(checkpoint, filepath) -> None: torch.save(checkpoint, filepath) checkpoint = move_data_to_device(checkpoint, torch.device("cpu")) # log timestamp of current checkpoint if "step" in path: file_name = os.path.basename(path) step_num = int(file_name.split("step=")[1].split('.')[0]) mllogger.event(key="checkpoint_saved", metadata={mllog_constants.STEP_NUM: step_num}) self._executor.submit(_save_checkpoint, checkpoint, path) trainer_kwargs["plugins"] = [CustomCheckpointIO()] # Create a Trainer object with the specified command-line arguments and keyword arguments, and set the log directory if opt.warmup_path is not None: trainer_opt_copy = copy.deepcopy(trainer_opt) trainer_opt_copy.max_steps=100 trainer_opt_copy.max_epochs=1 if "strategy" in trainer_opt_copy: delattr(trainer_opt_copy, 'strategy') trainer_warmup = Trainer(**vars(trainer_opt_copy), strategy=copy.deepcopy(trainer_kwargs["strategy"])) if "logger" in trainer_kwargs: delattr(trainer_opt, 'logger') if "strategy" in trainer_kwargs: delattr(trainer_opt, 'strategy') if "accelerator" in trainer_kwargs: delattr(trainer_opt, 'accelerator') trainer = Trainer(**vars(trainer_opt), **trainer_kwargs) trainer.logdir = logdir # Create a data module based on the configuration file data = instantiate_from_config(config.data) # Configure learning rate based on the batch size, base learning rate and number of GPUs # If scale_lr is true, calculate the learning rate based on additional factors base_lr = config.model.base_learning_rate if opt.scale_lr: model.learning_rate = accumulate_grad_batches * ngpu * local_batch_size * base_lr rank_zero_info( "Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (local_batch_size) * {:.2e} (base_lr)" .format(model.learning_rate, accumulate_grad_batches, ngpu, local_batch_size, base_lr)) else: model.learning_rate = base_lr rank_zero_info("++++ NOT USING LR SCALING ++++") rank_zero_info(f"Setting learning rate to {model.learning_rate:.2e}") # Allow checkpointing via USR1 def melk(*args, **kwargs): # run all checkpoint hooks if trainer.global_rank == 0: print("Summoning checkpoint.") ckpt_path = os.path.join(ckptdir, "last.ckpt") trainer.save_checkpoint(ckpt_path) def divein(*args, **kwargs): if trainer.global_rank == 0: import pudb pudb.set_trace() import signal # Assign melk to SIGUSR1 signal and divein to SIGUSR2 signal signal.signal(signal.SIGUSR1, melk) signal.signal(signal.SIGUSR2, divein) # Run the training and validation if opt.mode=="train": try: if opt.warmup_path is not None: training_url = config.data.params.train.params.urls config.data.params.train.params.urls = opt.warmup_path # Warmup trainer_warmup.fit(model, data) # Actual training config.data.params.train.params.urls = training_url trainer.fit(model, data) except Exception: melk() raise elif opt.mode=="validate": trainer.validate(model, data) else: raise ValueError(f"Unknown mode {opt.mode}") if opt.mode == "validate": # Default is True in case thresholds are not defined fid_success = True clip_success = True if opt.fid_threshold is not None: fid_success = "validation/fid" in trainer.callback_metrics and opt.fid_threshold >= trainer.callback_metrics["validation/fid"].item() if opt.clip_threshold is not None: clip_success = "validation/clip" in trainer.callback_metrics and opt.clip_threshold <= trainer.callback_metrics["validation/clip"].item() is_success = fid_success and clip_success except Exception: # If there's an exception, debug it if opt.debug is true and the trainer's global rank is 0 if opt.debug and trainer.global_rank == 0: try: import pudb as debugger except ImportError: import pdb as debugger debugger.post_mortem() raise finally: # Move the log directory to debug_runs if opt.debug is true and the trainer's global if opt.debug and not opt.resume and trainer.global_rank == 0: dst, name = os.path.split(logdir) dst = os.path.join(dst, "debug_runs", name) os.makedirs(os.path.split(dst)[0], exist_ok=True) os.rename(logdir, dst) if trainer.global_rank == 0: print(trainer.profiler.summary()) if opt.mode == "validate": is_last_run = opt.current_validation_iter == opt.validation_iters if is_success or is_last_run: mllogger.end( mllog_constants.RUN_STOP, time_ms=validation_timestamp, metadata={mllog_constants.STATUS: mllog_constants.SUCCESS if is_success else mllog_constants.ABORTED} )