#!/usr/bin/env python3 # coding=utf-8 # Copyright 2021 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### # Copyright (C) 2021-2022 Habana Labs, Ltd. an Intel Company ############################################################################### # Changes: # - renamed from t2t_decoder.py to decoder.py # - added shebang # - organized imports # - added support for HPU # - renamed t2t_trainer to trainer # - added use_hpu hparam # - added workarounds to run on HPU # - added support for recipe cache # - added support for fast inference # - added support for horovod r"""Decode from trained T2T models. This binary performs inference using the Estimator API. Example usage to decode from dataset: ./decoder.py \ --data_dir ~/data \ --problem=algorithmic_identity_binary40 \ --model=transformer --hparams_set=transformer_base Set FLAGS.decode_interactive or FLAGS.decode_from_file for alternative decode sources. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil from TensorFlow.nlp.transformer import trainer from TensorFlow.nlp.transformer.data_generators import problem # pylint: disable=unused-import from TensorFlow.nlp.transformer.data_generators import text_encoder from TensorFlow.nlp.transformer.utils import decoding from TensorFlow.nlp.transformer.utils import registry from TensorFlow.nlp.transformer.utils import trainer_lib from TensorFlow.nlp.transformer.utils import usr_dir import tensorflow.compat.v1 as tf flags = tf.flags FLAGS = flags.FLAGS # Additional flags in trainer.py and utils/flags.py flags.DEFINE_string("checkpoint_path", None, "Path to the model checkpoint. Overrides output_dir.") flags.DEFINE_bool("keep_timestamp", False, "Set the mtime of the decoded file to the " "checkpoint_path+'.index' mtime.") flags.DEFINE_bool("decode_interactive", False, "Interactive local inference mode.") flags.DEFINE_integer("decode_shards", 1, "Number of decoding replicas.") flags.DEFINE_string("score_file", "", "File to score. Each line in the file " "must be in the format input \t target.") flags.DEFINE_bool("decode_in_memory", False, "Decode in memory.") flags.DEFINE_bool("disable_grappler_optimizations", False, "Disable Grappler if need be to avoid tensor format errors.") flags.DEFINE_bool("use_fast_inference", True, "Use fast inference with static shapes") def create_hparams(): hparams_path = None if FLAGS.output_dir: hparams_path = os.path.join(FLAGS.output_dir, "hparams.json") return trainer_lib.create_hparams( FLAGS.hparams_set, FLAGS.hparams, data_dir=os.path.expanduser(FLAGS.data_dir), problem_name=FLAGS.problem, hparams_path=hparams_path) def create_decode_hparams(): decode_hp = decoding.decode_hparams(FLAGS.decode_hparams) decode_hp.shards = FLAGS.decode_shards decode_hp.shard_id = FLAGS.worker_id decode_in_memory = FLAGS.decode_in_memory or decode_hp.decode_in_memory decode_hp.decode_in_memory = decode_in_memory decode_hp.decode_to_file = FLAGS.decode_to_file decode_hp.decode_reference = FLAGS.decode_reference return decode_hp def decode(estimator, hparams, decode_hp): """Decode from estimator. Interactive, from file, or from dataset.""" if FLAGS.decode_interactive: if estimator.config.use_tpu: raise ValueError("TPU can only decode from dataset.") decoding.decode_interactively(estimator, hparams, decode_hp, checkpoint_path=FLAGS.checkpoint_path) elif FLAGS.decode_from_file: decoding.decode_from_file(estimator, FLAGS.decode_from_file, hparams, decode_hp, FLAGS.decode_to_file, checkpoint_path=FLAGS.checkpoint_path) if FLAGS.checkpoint_path and FLAGS.keep_timestamp: ckpt_time = os.path.getmtime(FLAGS.checkpoint_path + ".index") os.utime(FLAGS.decode_to_file, (ckpt_time, ckpt_time)) else: decoding.decode_from_dataset( estimator, FLAGS.problem, hparams, decode_hp, decode_to_file=FLAGS.decode_to_file, dataset_split="test" if FLAGS.eval_use_test_set else None, checkpoint_path=FLAGS.checkpoint_path) def score_file(filename): """Score each line in a file and return the scores.""" # Prepare model. hparams = create_hparams() encoders = registry.problem(FLAGS.problem).feature_encoders(FLAGS.data_dir) has_inputs = "inputs" in encoders # Prepare features for feeding into the model. if has_inputs: inputs_ph = tf.placeholder(dtype=tf.int32) # Just length dimension. batch_inputs = tf.reshape(inputs_ph, [1, -1, 1, 1]) # Make it 4D. targets_ph = tf.placeholder(dtype=tf.int32) # Just length dimension. batch_targets = tf.reshape(targets_ph, [1, -1, 1, 1]) # Make it 4D. if has_inputs: features = {"inputs": batch_inputs, "targets": batch_targets} else: features = {"targets": batch_targets} # Prepare the model and the graph when model runs on features. model = registry.model(FLAGS.model)(hparams, tf.estimator.ModeKeys.EVAL) _, losses = model(features) saver = tf.train.Saver() with tf.Session() as sess: # Load weights from checkpoint. if FLAGS.checkpoint_path is None: ckpts = tf.train.get_checkpoint_state(FLAGS.output_dir) ckpt = ckpts.model_checkpoint_path else: ckpt = FLAGS.checkpoint_path saver.restore(sess, ckpt) # Run on each line. with tf.gfile.Open(filename) as f: lines = f.readlines() results = [] for line in lines: tab_split = line.split("\t") if len(tab_split) > 2: raise ValueError("Each line must have at most one tab separator.") if len(tab_split) == 1: targets = tab_split[0].strip() else: targets = tab_split[1].strip() inputs = tab_split[0].strip() # Run encoders and append EOS symbol. targets_numpy = encoders["targets"].encode( targets) + [text_encoder.EOS_ID] if has_inputs: inputs_numpy = encoders["inputs"].encode(inputs) + [text_encoder.EOS_ID] # Prepare the feed. if has_inputs: feed = {inputs_ph: inputs_numpy, targets_ph: targets_numpy} else: feed = {targets_ph: targets_numpy} # Get the score. np_loss = sess.run(losses["training"], feed) results.append(np_loss) return results def get_workaround_flag(name): return f'WA_{name}' def is_workaround_enabled(name): flag = get_workaround_flag(name) is_enabled = os.environ.get(flag, 'true') == 'true' if is_enabled: print(f"Warning! Workaround {flag} is enabled. Run with {flag}=false to disable it.") return is_enabled def main(_): tf.disable_v2_behavior() tf.enable_resource_variables() tf.logging.set_verbosity(tf.logging.INFO) trainer_lib.set_random_seed(FLAGS.random_seed) usr_dir.import_usr_dir(FLAGS.t2t_usr_dir) if FLAGS.use_hpu: from habana_frameworks.tensorflow import load_habana_module load_habana_module() hvd = trainer.init_multinode() if FLAGS.use_hpu: if FLAGS.recipe_cache: trainer.prepare_recipe_cache() if FLAGS.use_bf16: if not is_workaround_enabled('FORCE_FP32'): os.environ['TF_BF16_CONVERSION'] = FLAGS.bf16_config_path else: print("Warning! BF16 precision is not supported in inference mode. Switching back to fp32...") if is_workaround_enabled('DISABLE_DYNAMIC_SHAPES'): os.environ['TF_ENABLE_DYNAMIC_SHAPES'] = 'false' if FLAGS.score_file: filename = os.path.expanduser(FLAGS.score_file) if not tf.gfile.Exists(filename): raise ValueError("The file to score doesn't exist: %s" % filename) results = score_file(filename) if not FLAGS.decode_to_file: raise ValueError("To score a file, specify --decode_to_file for results.") write_file = tf.gfile.Open(os.path.expanduser(FLAGS.decode_to_file), "w") for score in results: write_file.write("%.6f\n" % score) write_file.close() return hp = create_hparams() hp.add_hparam("use_hpu", FLAGS.use_hpu) hp.add_hparam("use_horovod", FLAGS.use_horovod) decode_hp = create_decode_hparams() decode_hp.add_hparam("use_horovod", hp.use_horovod) if FLAGS.use_horovod: hp.add_hparam("hvd_worker_id", hvd.rank()) hp.add_hparam("hvd_size", hvd.size()) decode_hp.add_hparam("hvd_worker_id", hp.hvd_worker_id) decode_hp.add_hparam("hvd_size", hp.hvd_size) run_config = trainer.create_run_config(hp) if FLAGS.disable_grappler_optimizations: run_config.session_config.graph_options.rewrite_options.disable_meta_optimizer = True assert FLAGS.use_fast_inference or not FLAGS.use_horovod, "Multinode inference is only supported with use_fast_inference=True" # summary-hook in tf.estimator.EstimatorSpec requires # hparams.model_dir to be set. hp.add_hparam("model_dir", run_config.model_dir) estimator = trainer_lib.create_estimator( FLAGS.model, hp, run_config, decode_hparams=decode_hp, use_tpu=FLAGS.use_tpu) decode(estimator, hp, decode_hp) if __name__ == "__main__": tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()