# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Blendable dataset.""" import hashlib import os import time import numpy as np import torch from deepspeed.accelerator import get_accelerator from megatron import print_rank_0 from megatron.core import mpu class BlendableDataset(torch.utils.data.Dataset): def __init__(self, datasets, weights, size, *, data_cache_path=None): self.datasets = datasets num_datasets = len(datasets) assert num_datasets == len(weights) self.size = size if size == -1: self.size = 0 for dataset in self.datasets: self.size += len(dataset) # Normalize weights. weights = np.array(weights, dtype=np.float64) sum_weights = np.sum(weights) assert sum_weights > 0.0 weights /= sum_weights # Build indicies. def _build_indices(): start_time = time.time() assert num_datasets < 255 dataset_index = np.zeros(self.size, dtype=np.uint8) dataset_sample_index = np.zeros(self.size, dtype=np.int64) from megatron.data import helpers helpers.build_blending_indices(dataset_index, dataset_sample_index, weights, num_datasets, self.size, torch.distributed.get_rank() == 0) print_rank_0('> elapsed time for building blendable dataset indices: ' '{:.2f} (sec)'.format(time.time() - start_time)) return dataset_index, dataset_sample_index desc = "Blendable dataset\n\n" desc += "Datasets:\n" for dataset in datasets: desc += dataset.desc + "\n\n" desc += f"Weights: {weights}\n" desc += f"Size: {size}\n" self.desc = desc if data_cache_path: desc_hash = hashlib.md5(desc.encode('utf-8')).hexdigest() desc_path = os.path.join(data_cache_path, desc_hash + ".dsc") index_path = os.path.join(data_cache_path, desc_hash + "_index.npy") sample_index_path = os.path.join(data_cache_path, desc_hash + "_sample_index.npy") cache_hit = os.path.isfile(index_path) and os.path.isfile(sample_index_path) cache_success = True if torch.distributed.get_rank() == 0 and not cache_hit: print(' > WARNING: could not find index map files for blendable' ' dataset, building indices on rank 0 ...', flush=True) dataset_index, dataset_sample_index = _build_indices() try: os.makedirs(os.path.dirname(index_path), exist_ok=True) with open(desc_path, 'wt') as fd: fd.write(desc) np.save(index_path, dataset_index, allow_pickle=True) np.save(sample_index_path, dataset_sample_index, allow_pickle=True) except OSError: print(f'There was an error trying to create the data cache directory ({data_cache_path})') print('or a file in it. This is set with the --data-cache-path argument. Please') print('ensure you have write access to this directory or specify one that you do have') print('write access to.') cache_success = False counts = get_accelerator().LongTensor([cache_success]) torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group()) torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group()) if counts[0].item() != ( torch.distributed.get_world_size() // torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()) // torch.distributed.get_world_size(group=mpu.get_sequence_parallel_group())): print_rank_0("Data index creation unsuccessful, exiting.") exit() # Load on all ranks. print_rank_0(f'> loading blendable dataset index: {index_path}') self.dataset_index = np.load(index_path, allow_pickle=True, mmap_mode='r') assert self.dataset_index.size == self.size print_rank_0(f'> loading blendable dataset sample index: {sample_index_path}') self.dataset_sample_index = np.load(sample_index_path, allow_pickle=True, mmap_mode='r') assert self.dataset_sample_index.size == self.size else: self.dataset_index, self.dataset_sample_index = _build_indices() # Check size _ = self.__getitem__(self.size - 1) try: _ = self.__getitem__(self.size) raise RuntimeError('BlendedDataset size is improperly bounded') except IndexError: pass print_rank_0('> size of blendable dataset: ' '{} samples'.format(self.size)) def __len__(self): return self.size def __getitem__(self, idx): dataset_idx = self.dataset_index[idx] sample_idx = self.dataset_sample_index[idx] return { "dataset_idx" : dataset_idx, **self.datasets[dataset_idx][sample_idx], }