# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Megatron global variables.""" import os import sys import torch from megatron import dist_signal_handler from megatron.tokenizer import build_tokenizer from .microbatches import build_num_microbatches_calculator from .timers import Timers _GLOBAL_ARGS = None _GLOBAL_RETRO_ARGS = None _GLOBAL_NUM_MICROBATCHES_CALCULATOR = None _GLOBAL_NUM_EVAL_MICROBATCHES_CALCULATOR = None _GLOBAL_TOKENIZER = None _GLOBAL_TENSORBOARD_WRITER = None _GLOBAL_ADLR_AUTORESUME = None _GLOBAL_TIMERS = None _GLOBAL_SIGNAL_HANDLER = None def get_args(): """Return arguments.""" _ensure_var_is_initialized(_GLOBAL_ARGS, 'args') return _GLOBAL_ARGS def get_retro_args(): """Return retro arguments.""" return _GLOBAL_RETRO_ARGS def get_num_microbatches(): return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get() def get_current_global_batch_size(): return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get_current_global_batch_size() def update_num_microbatches(consumed_samples, consistency_check=True): _GLOBAL_NUM_MICROBATCHES_CALCULATOR.update(consumed_samples, consistency_check) def get_num_eval_microbatches(): return _GLOBAL_NUM_EVAL_MICROBATCHES_CALCULATOR.get() # When using different micro batch size for training and evaluation/validation # we have different number of micro batches. def get_num_microbatches_by_mode(is_training): if is_training: return get_num_microbatches() else: return get_num_eval_microbatches() def get_tokenizer(): """Return tokenizer.""" _ensure_var_is_initialized(_GLOBAL_TOKENIZER, 'tokenizer') return _GLOBAL_TOKENIZER def get_tensorboard_writer(): """Return tensorboard writer. It can be None so no need to check if it is initialized.""" return _GLOBAL_TENSORBOARD_WRITER def get_adlr_autoresume(): """ADLR autoresume object. It can be None so no need to check if it is initialized.""" return _GLOBAL_ADLR_AUTORESUME def get_timers(): """Return timers.""" _ensure_var_is_initialized(_GLOBAL_TIMERS, 'timers') return _GLOBAL_TIMERS def get_signal_handler(): _ensure_var_is_initialized(_GLOBAL_SIGNAL_HANDLER, 'signal handler') return _GLOBAL_SIGNAL_HANDLER def _set_signal_handler(): global _GLOBAL_SIGNAL_HANDLER _ensure_var_is_not_initialized(_GLOBAL_SIGNAL_HANDLER, 'signal handler') _GLOBAL_SIGNAL_HANDLER = dist_signal_handler.DistributedSignalHandler().__enter__() def set_global_variables(args): """Set args, tokenizer, tensorboard-writer, adlr-autoresume, and timers.""" assert args is not None _ensure_var_is_not_initialized(_GLOBAL_ARGS, 'args') set_args(args) _build_num_microbatches_calculator(args) _ = _build_tokenizer(args) _set_tensorboard_writer(args) _set_adlr_autoresume(args) _set_timers(args) if args.exit_signal_handler: _set_signal_handler() def set_args(args): global _GLOBAL_ARGS _GLOBAL_ARGS = args def set_retro_args(retro_args): global _GLOBAL_RETRO_ARGS _GLOBAL_RETRO_ARGS = retro_args def _build_num_microbatches_calculator(args): global _GLOBAL_NUM_MICROBATCHES_CALCULATOR global _GLOBAL_NUM_EVAL_MICROBATCHES_CALCULATOR _ensure_var_is_not_initialized(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, 'num microbatches calculator') _ensure_var_is_not_initialized(_GLOBAL_NUM_EVAL_MICROBATCHES_CALCULATOR, 'num eval microbatches calculator') _GLOBAL_NUM_MICROBATCHES_CALCULATOR = build_num_microbatches_calculator( args, args.micro_batch_size) _GLOBAL_NUM_EVAL_MICROBATCHES_CALCULATOR = build_num_microbatches_calculator( args, args.eval_micro_batch_size) def _build_tokenizer(args): """Initialize tokenizer.""" global _GLOBAL_TOKENIZER _ensure_var_is_not_initialized(_GLOBAL_TOKENIZER, 'tokenizer') _GLOBAL_TOKENIZER = build_tokenizer(args) return _GLOBAL_TOKENIZER def rebuild_tokenizer(args): global _GLOBAL_TOKENIZER _GLOBAL_TOKENIZER = None return _build_tokenizer(args) def _set_tensorboard_writer(args): """Set tensorboard writer.""" global _GLOBAL_TENSORBOARD_WRITER _ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER, 'tensorboard writer') if hasattr(args, 'tensorboard_dir') and \ args.tensorboard_dir and args.rank == (args.world_size - 1): try: from torch.utils.tensorboard import SummaryWriter print('> setting tensorboard ...') _GLOBAL_TENSORBOARD_WRITER = SummaryWriter( log_dir=args.tensorboard_dir, max_queue=args.tensorboard_queue_size) except ModuleNotFoundError: print('WARNING: TensorBoard writing requested but is not ' 'available (are you using PyTorch 1.1.0 or later?), ' 'no TensorBoard logs will be written.', flush=True) def _set_adlr_autoresume(args): """Initialize ADLR autoresume.""" global _GLOBAL_ADLR_AUTORESUME _ensure_var_is_not_initialized(_GLOBAL_ADLR_AUTORESUME, 'adlr autoresume') if args.adlr_autoresume: if args.rank == 0: print('enabling autoresume ...', flush=True) sys.path.append(os.environ.get('SUBMIT_SCRIPTS', '.')) try: from userlib.auto_resume import AutoResume except BaseException: print('ADLR autoresume is not available, exiting ...') sys.exit() _GLOBAL_ADLR_AUTORESUME = AutoResume def _set_timers(args): """Initialize timers.""" global _GLOBAL_TIMERS _ensure_var_is_not_initialized(_GLOBAL_TIMERS, 'timers') _GLOBAL_TIMERS = Timers(args.timing_log_level, args.timing_log_option) def _ensure_var_is_initialized(var, name): """Make sure the input variable is not None.""" assert var is not None, '{} is not initialized.'.format(name) def _ensure_var_is_not_initialized(var, name): """Make sure the input variable is not None.""" assert var is None, '{} is already initialized.'.format(name)