# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the Apache license found in the # LICENSE file in the root directory of this source tree. # copied from https://github.com/facebookresearch/dino/blob/main/main_dino.py # reworked/refactored some parts to make it run in Megatron. import math import apex import einops import torch import numpy as np import torch.nn.functional as F from torch.nn.init import trunc_normal_ from megatron import get_args, print_rank_0 from megatron.model.utils import get_linear_layer from megatron.model.vision.vit_backbone import VitBackbone from megatron.model.module import MegatronModule from megatron.model.vision.mit_backbone import mit_b5_avg from megatron.model.vision.esvit_swin_backbone import get_swin class DINOLoss(torch.nn.Module): def __init__(self, out_dim, ncrops, warmup_teacher_temp, teacher_temp, warmup_teacher_temp_epochs, nepochs, student_temp=0.1, center_momentum=0.9): super().__init__() self.student_temp = student_temp self.center_momentum = center_momentum self.ncrops = ncrops self.register_buffer("center", torch.zeros(1, out_dim)) # we apply a warm up for the teacher temperature because # a too high temperature makes the training instable at the beginning self.teacher_temp_schedule = np.concatenate(( np.linspace(warmup_teacher_temp, teacher_temp, warmup_teacher_temp_epochs), np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp )) self.teacher_temp = teacher_temp def forward(self, student_output, teacher_output, iteration): """ Cross-entropy between softmax outputs of the teacher and student network. """ args = get_args() student_out = student_output / self.student_temp student_out = student_out.chunk(self.ncrops) epoch = iteration // args.iter_per_epoch # teacher centering and sharpening temp = self.teacher_temp_schedule[epoch] teacher_out = F.softmax((teacher_output - self.center) / temp, dim=-1) teacher_out = teacher_out.detach().chunk(2) total_loss = 0 n_loss_terms = 0 for iq, q in enumerate(teacher_out): for v in range(len(student_out)): if v == iq: # we skip cases where student and teacher operate on the same view continue loss = torch.sum(-q * F.log_softmax(student_out[v], dim=-1), dim=-1) total_loss += loss.mean() n_loss_terms += 1 total_loss /= n_loss_terms self.update_center(teacher_output) return total_loss @torch.no_grad() def update_center(self, teacher_output): """ Update center used for teacher output. """ batch_center = torch.sum(teacher_output, dim=0, keepdim=True) torch.distributed.all_reduce(batch_center) batch_center = batch_center / (len(teacher_output) * torch.distributed.get_world_size()) self.center = self.center * self.center_momentum + batch_center * (1 - self.center_momentum) class DINOHead(torch.nn.Module): def __init__(self, in_dim, out_dim, norm_last_layer=True, nlayers=3): super().__init__() args = get_args() hidden_dim = args.dino_head_hidden_size bottleneck_dim = args.dino_bottleneck_size nlayers = max(nlayers, 1) if nlayers == 1: self.mlp = torch.nn.Linear(in_dim, bottleneck_dim) else: layers = [torch.nn.Linear(in_dim, hidden_dim)] layers.append(torch.nn.GELU()) for _ in range(nlayers - 2): layers.append(torch.nn.Linear(hidden_dim, hidden_dim)) layers.append(torch.nn.GELU()) layers.append(torch.nn.Linear(hidden_dim, bottleneck_dim)) self.mlp = torch.nn.Sequential(*layers) self.apply(self._init_weights) self.last_layer = torch.nn.utils.weight_norm(torch.nn.Linear(bottleneck_dim, out_dim, bias=False)) self.last_layer.weight_g.data.fill_(1) if norm_last_layer: self.last_layer.weight_g.requires_grad = False def _init_weights(self, m): if isinstance(m, torch.nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, torch.nn.Linear) and m.bias is not None: torch.nn.init.constant_(m.bias, 0) def forward(self, x): x = self.mlp(x) x = torch.nn.functional.normalize(x, dim=-1, p=2) x = self.last_layer(x) return x class MultiCropWrapper(MegatronModule): """ Perform forward pass separately on each resolution input. The inputs corresponding to a single resolution are clubbed and single forward is run on the same resolution inputs. Hence we do several forward passes = number of different resolutions used. We then concatenate all the output features and run the head forward on these concatenated features. """ def __init__(self, backbone, head): super(MultiCropWrapper, self).__init__() # disable layers dedicated to ImageNet labels classification #backbone.fc, backbone.head = torch.nn.Identity(), torch.nn.Identity() self.backbone = backbone self.head = head def forward(self, x): # convert to list if not isinstance(x, list): x = [x] idx_crops = torch.cumsum(torch.unique_consecutive( torch.tensor([inp.shape[-1] for inp in x]), return_counts=True, )[1], 0) start_idx = 0 for end_idx in idx_crops: _out = self.backbone(torch.cat(x[start_idx: end_idx])) if start_idx == 0: output = _out else: output = torch.cat((output, _out)) start_idx = end_idx # Run the head forward on the concatenated features. if self.training: return self.head(output) else: return output def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_epochs > 0: warmup_schedule = \ np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = final_value + 0.5 * (base_value - final_value) \ * (1 + np.cos(np.pi * iters / len(iters))) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def get_student_backbone_and_num_features(config, pre_process=True, post_process=True): args = get_args() if args.vision_backbone_type == 'vit': student = VitBackbone(config, pre_process=pre_process, post_process=post_process, drop_path_rate=0.1, single_token_output=True) num_features = args.hidden_size elif args.vision_backbone_type == 'mit': student = mit_b5_avg(drop_path_rate=0.1) num_features = 512 elif args.vision_backbone_type == 'swin': student = get_swin() num_features = student.num_features else: raise Exception('{} vision backbone is not supported.'.format( args.vision_backbone_type)) return student, num_features def get_teacher_backbone_and_num_features(config, pre_process=True, post_process=True): args = get_args() if args.vision_backbone_type == 'vit': teacher = VitBackbone(config, pre_process=pre_process, post_process=post_process, single_token_output=True) num_features = args.hidden_size elif args.vision_backbone_type == 'mit': teacher = mit_b5_avg(drop_path_rate=0.0) num_features = 512 elif args.vision_backbone_type == 'swin': teacher = get_swin(is_teacher=True) num_features = teacher.num_features else: raise Exception('{} vision backbone is not supported.'.format( args.vision_backbone_type)) return teacher, num_features class DINOPretrainModel(MegatronModule): def __init__(self, config, pre_process=True, post_process=True): super(DINOPretrainModel, self).__init__() args = get_args() self.out_dim = 65536 self.dino_loss = DINOLoss( self.out_dim, args.dino_local_crops_number + 2, args.dino_warmup_teacher_temp, args.dino_teacher_temp, args.dino_warmup_teacher_temp_epochs, 300, ) self.pre_process = pre_process self.post_process = post_process self.momentum_teacher = 0.996 student_backbone, num_features = \ get_student_backbone_and_num_features(config, pre_process, post_process) self.student = MultiCropWrapper( student_backbone, DINOHead(num_features, self.out_dim, norm_last_layer=args.dino_norm_last_layer) ) self.momentum_schedule = cosine_scheduler( self.momentum_teacher, 1, args.train_iters // args.iter_per_epoch, args.iter_per_epoch ) teacher_backbone, num_features = \ get_teacher_backbone_and_num_features(config, pre_process, post_process) self.teacher = MultiCropWrapper( teacher_backbone, DINOHead(num_features, self.out_dim) ) self.teacher.load_state_dict(self.student.state_dict()) for p in self.teacher.parameters(): if hasattr(p, "requires_grad") and p.requires_grad is not None: p.requires_grad = False def set_input_tensor(self, tensor): pass def forward(self, input): student_output = None if self.training: student_output = self.student(input) teacher_output = self.teacher(input[:2]) else: teacher_output = self.teacher(input) return student_output, teacher_output def cancel_gradients_last_layer(self, iteration): args = get_args() epoch = iteration // args.iter_per_epoch if epoch < args.dino_freeze_last_layer: for n, p in self.student.named_parameters(): if "last_layer" in n: p.grad = None def update_momentum(self, iteration): with torch.no_grad(): m = self.momentum_schedule[iteration] for param_q, param_k in zip(self.student.parameters(), self.teacher.parameters()): param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)