# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import argparse import os import random import numpy import torch import mpu from deepspeed.accelerator import get_accelerator class IdentityLayer(torch.nn.Module): def __init__(self, size, scale=1.0): super(IdentityLayer, self).__init__() self.weight = torch.nn.Parameter(scale * torch.randn(size)) def forward(self): return self.weight def set_random_seed(seed): """Set random seed for reproducability.""" random.seed(seed) numpy.random.seed(seed) torch.manual_seed(seed) mpu.model_parallel_cuda_manual_seed(seed) def initialize_distributed(backend='nccl'): """Initialize torch.distributed.""" # Get local rank in case it is provided. parser = argparse.ArgumentParser() parser.add_argument('--local_rank', type=int, default=None, help='local rank passed from distributed launcher') args = parser.parse_args() local_rank = args.local_rank # Get rank and world size. rank = int(os.getenv('RANK', '0')) world_size = int(os.getenv("WORLD_SIZE", '1')) print('> initializing torch.distributed with local rank: {}, ' 'rank: {}, world size: {}'.format(local_rank, rank, world_size)) # Set the device id. device = rank % get_accelerator().device_count() if local_rank is not None: device = local_rank get_accelerator().set_device(device) # Call the init process. init_method = 'tcp://' master_ip = os.getenv('MASTER_ADDR', 'localhost') master_port = os.getenv('MASTER_PORT', '6000') init_method += master_ip + ':' + master_port torch.distributed.init_process_group( backend=backend, world_size=world_size, rank=rank, init_method=init_method) def print_separator(message): torch.distributed.barrier() filler_len = (78 - len(message)) // 2 filler = '-' * filler_len string = '\n' + filler + ' {} '.format(message) + filler if torch.distributed.get_rank() == 0: print(string, flush=True) torch.distributed.barrier()