# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """General utilities.""" import sys import os import torch from torch.nn.parallel import DistributedDataParallel as torchDDP from deepspeed.accelerator import get_accelerator if get_accelerator().device_name() == 'cuda': from apex.multi_tensor_apply import multi_tensor_applier import amp_C from megatron import ( get_args, get_adlr_autoresume, get_num_microbatches ) from megatron.core import mpu from megatron.core.tensor_parallel import param_is_not_tensor_parallel_duplicate from megatron.model.module import param_is_not_shared from megatron.model.rotary_pos_embedding import RotaryEmbedding try: from habana_frameworks.torch.hpex.experimental.transformer_engine import recipe except (ImportError, ModuleNotFoundError): recipe = None def update_rotary_pos_emb(seq_length): args = get_args() rotary_dim = args.hidden_size // args.num_attention_heads \ if args.kv_channels is None else args.kv_channels if args.rotary_percent < 1.0: rotary_dim = int(rotary_dim * args.rotary_percent) # partial rotary embeddings, which is better than full rotary # Wang and Komatsuzaki et al # https://github.com/kingoflolz/mesh-transformer-jax/ rotary_pos_emb = RotaryEmbedding(rotary_dim)(seq_length).to( get_accelerator().current_device_name()) args.rotary_pos_emb = rotary_pos_emb def unwrap_model(model, module_instances=(torchDDP)): return_list = True if not isinstance(model, list): model = [model] return_list = False unwrapped_model = [] for model_module in model: while isinstance(model_module, module_instances): model_module = model_module.module unwrapped_model.append(model_module) if not return_list: return unwrapped_model[0] return unwrapped_model def calc_params_l2_norm(model): """Calculate l2 norm of parameters """ args = get_args() if not isinstance(model, list): model = [model] # Remove duplicate params. params_data = [] for model_ in model: for param in model_.parameters(): is_not_shared = param_is_not_shared(param) is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param) if is_not_shared and is_not_tp_duplicate: if args.bf16: params_data.append(param.data.float()) else: params_data.append(param.data) # Calculate norm dummy_overflow_buf = get_accelerator().IntTensor([0]) if get_accelerator().device_name() == 'cuda': norm, _ = multi_tensor_applier( amp_C.multi_tensor_l2norm, dummy_overflow_buf, [params_data], False # no per-parameter norm ) else : norm = torch.norm(params_data,p=2.0) norm_2 = norm * norm # Sum across all model-parallel GPUs. torch.distributed.all_reduce(norm_2, op=torch.distributed.ReduceOp.SUM, group=mpu.get_model_parallel_group()) return norm_2.item() ** 0.5 def average_losses_across_data_parallel_group(losses): """Reduce a tensor of losses across all GPUs.""" averaged_losses = torch.cat( [loss.clone().detach().view(1) for loss in losses]) torch.distributed.all_reduce(averaged_losses, group=mpu.get_data_parallel_group()) averaged_losses = averaged_losses / \ torch.distributed.get_world_size(group=mpu.get_data_parallel_group()) return averaged_losses def report_memory(name): """Simple GPU memory report.""" mega_bytes = 1024.0 * 1024.0 string = name + ' memory (MB)' string += ' | allocated: {}'.format( get_accelerator().memory_allocated() / mega_bytes) string += ' | max allocated: {}'.format( get_accelerator().max_memory_allocated() / mega_bytes) string += ' | reserved: {}'.format( get_accelerator().memory_reserved() / mega_bytes) string += ' | max reserved: {}'.format( get_accelerator().max_memory_reserved() / mega_bytes) if mpu.get_data_parallel_rank() == 0: print("[Rank {}] {}".format(torch.distributed.get_rank(), string), flush=True) def print_params_min_max_norm(optimizer, iteration): """Print min, max, and norm of all parameters.""" index = 0 rank = torch.distributed.get_rank() string = 'iteration, rank, index, tensor-model-parallel, min, max, norm\n' optimizer_ = optimizer.optimizer for param_group in optimizer_.param_groups: for param in param_group['params']: index += 1 min_ = param.data.min() max_ = param.data.max() norm = torch.linalg.norm(param.data) string += '{:7d}, {:4d}, {:4d}, {:2d}, '.format( iteration, rank, index, int(param.tensor_model_parallel)) string += '{:.6E}, {:.6E}, {:.6E}\n'.format(min_, max_, norm) print(string, flush=True) def check_adlr_autoresume_termination(iteration, model, optimizer, opt_param_scheduler): """Check for autoresume signal and exit if it is received.""" from megatron.checkpointing import save_checkpoint args = get_args() autoresume = get_adlr_autoresume() # Add barrier to ensure consistnecy. torch.distributed.barrier() if autoresume.termination_requested(): if args.save: save_checkpoint(iteration, model, optimizer, opt_param_scheduler) print_rank_0(">>> autoresume termination request found!") if torch.distributed.get_rank() == 0: autoresume.request_resume() print_rank_0(">>> training terminated. Returning") sys.exit(0) def get_ltor_masks_and_position_ids(data, eod_token, reset_position_ids, reset_attention_mask, eod_mask_loss, skip_mask=False, dummy_sample=None, labels=None): """Build masks and position id for left to right model.""" # Extract batch size and sequence length. micro_batch_size, seq_length = data.size() # Attention mask (lower triangular). if reset_attention_mask: att_mask_batch = micro_batch_size else: att_mask_batch = 1 attention_mask = None if not skip_mask: attention_mask = torch.tril(torch.ones( (att_mask_batch, seq_length, seq_length), device=data.device)).view(att_mask_batch, 1, seq_length, seq_length) # Loss mask. loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device) if eod_mask_loss: loss_mask[data == eod_token] = 0.0 if dummy_sample is not None: loss_mask[dummy_sample.bool()] = 0.0 if labels is not None: loss_mask[labels == -1] = 0.0 # Position ids. position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device) position_ids = position_ids.unsqueeze(0).expand_as(data) # We need to clone as the ids will be modifed based on batch index. if reset_position_ids: position_ids = position_ids.clone() if reset_position_ids or reset_attention_mask: # Loop through the batches: for b in range(micro_batch_size): # Find indecies where EOD token is. eod_index = position_ids[b, data[b] == eod_token] # Detach indecies from positions if going to modify positions. if reset_position_ids: eod_index = eod_index.clone() # Loop through EOD indecies: prev_index = 0 for j in range(eod_index.size()[0]): i = eod_index[j] # Mask attention loss. if reset_attention_mask and not skip_mask: attention_mask[b, 0, (i + 1):, :(i + 1)] = 0 # Reset positions. if reset_position_ids: position_ids[b, (i + 1):] -= (i + 1 - prev_index) prev_index = i + 1 # Convert attention mask to binary: if not skip_mask: attention_mask = (attention_mask < 0.5) return attention_mask, loss_mask, position_ids def print_rank_0(message): """If distributed is initialized, print only on rank 0.""" if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print(message, flush=True) else: print(message, flush=True) def is_last_rank(): return torch.distributed.get_rank() == ( torch.distributed.get_world_size() - 1) def print_rank_last(message): """If distributed is initialized, print only on last rank.""" if torch.distributed.is_initialized(): if is_last_rank(): print(message, flush=True) else: print(message, flush=True) def is_aml(): # Are we running inside an Azure Machine Learning (AML) environment? return 'AZUREML_EXPERIMENT_ID' in os.environ def is_rank_0(): """Check whether it is rank 0. For AML, check if it is rank 0 of a node""" if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0 or ( is_aml() and torch.distributed.get_rank() % get_accelerator().device_count() == 0 ): return True else: return False else: return True def get_parameters_in_billions(model): gpus_per_model = torch.distributed.get_world_size(group=mpu.get_model_parallel_group()) approx_parameters_in_billions = sum([sum([p.ds_numel if hasattr(p,'ds_id') else p.nelement() for p in model_module.parameters()]) for model_module in model]) return approx_parameters_in_billions*gpus_per_model/(1e9) def throughput_calculator(model, args, iteration_time, total_iterations): batch_size = args.micro_batch_size * get_num_microbatches() * args.data_parallel_size approx_parameters_in_billions = None if (model is None) else get_parameters_in_billions(model) elapsed_time_per_iter = iteration_time/total_iterations samples_per_second = batch_size / elapsed_time_per_iter #flops calculator hidden_size = args.hidden_size num_attention_heads = args.num_attention_heads head_dim = hidden_size // num_attention_heads ffn_hidden_size = args.ffn_hidden_size num_layers = args.num_layers vocab_size = args.padded_vocab_size gqa = args.num_attention_heads // args.num_key_value_heads ffn_multiplier = 3 if args.swiglu else 2 macs_per_flops = 2 # General TFLOPs formula (borrowed from Equation 3 in Section 5.1 of # https://arxiv.org/pdf/2104.04473.pdf). # correction has been made to TFLOPs formula due to incorrect behavior # observed with selective recompute when GQA not used and for all with GQA seq_len = args.seq_length if hasattr(args, 'actual_seq_length'): seq_len = args.actual_seq_length pre_and_post_mha_gemm_macs = batch_size * num_layers * (1 + (2 // gqa) + 1) * (hidden_size**2) * seq_len mha_bgemm_macs = batch_size * num_layers * 2 * head_dim * num_attention_heads * (seq_len**2) ffn_gemm_macs = batch_size * num_layers * ffn_multiplier * ffn_hidden_size * hidden_size * seq_len logit_lmhead_gemm_macs = batch_size * vocab_size * hidden_size * seq_len fwd_macs = pre_and_post_mha_gemm_macs + mha_bgemm_macs + ffn_gemm_macs + logit_lmhead_gemm_macs bwd_macs = 2 * fwd_macs fwd_bwd_macs = fwd_macs + bwd_macs if (hasattr(args, 'checkpoint_activations') and args.checkpoint_activations) or (hasattr(args, 'recompute_granularity') and args.recompute_granularity == 'full'): fwd_bwd_macs += fwd_macs if hasattr(args, 'recompute_granularity') and args.recompute_granularity == 'selective': fwd_bwd_macs += mha_bgemm_macs flops_per_iteration = fwd_bwd_macs * macs_per_flops tflops = flops_per_iteration / (elapsed_time_per_iter * args.world_size * (10**12)) return samples_per_second, tflops, approx_parameters_in_billions def checkpoint_throughput_calculator(model, latency_second): approx_parameters_in_billions = get_parameters_in_billions(model) checkpoint_multiplier = 14 # fp16 weights (2), fp32 weights (4), fp32 momentum (4), fp32 variance (4) checkpoint_GB = approx_parameters_in_billions * checkpoint_multiplier GB_per_second = checkpoint_GB / latency_second print_rank_0(f"Checkpoint Save GB: {round(checkpoint_GB, 3)}, GB/Sec: {round(GB_per_second,2)}, Latency(second): {round(latency_second, 3)}") def get_fingerprint_header(): return f"{'min':^13} {'max':^13} {'mean':^13} {'l2 norm':^12} metadata" def get_fingerprint(p): return f"{p.min():13.6e} {p.max():13.6e} {p.mean():13.6e} {p.norm():12.6e}" def dump_position_embed_weights(preamble, iteration, model): # return from deepspeed.utils import safe_get_full_fp32_param tp_rank = mpu.get_tensor_model_parallel_rank() pp_rank = mpu.get_pipeline_model_parallel_rank() dp_rank = mpu.get_data_parallel_rank() get_fingerprint_header() for n, p in model[0].named_parameters(): if 'position_embeddings' in n: tag = "pos_embed" elif "word_embeddings" in n: tag = "word_embed" else: continue print(f"iter {iteration} {preamble} {tag} lp {tp_rank}/{pp_rank}/{dp_rank}: {get_fingerprint(p)} {p.shape}\n") fp32_value = safe_get_full_fp32_param(p) if fp32_value is not None: print(f"iter {iteration} {preamble} {tag} hp {tp_rank}/{pp_rank}/{dp_rank}: {get_fingerprint(fp32_value)} {p.shape}\n") def dump_weights(preamble, iteration, model, optimizer, tensor=None): # return tp_rank = mpu.get_tensor_model_parallel_rank() pp_rank = mpu.get_pipeline_model_parallel_rank() dp_rank = mpu.get_data_parallel_rank() dp_size = mpu.get_data_parallel_world_size() fn = f"debug-bf16-{iteration}-pp{pp_rank}-tp{tp_rank}-dp{dp_rank}-{preamble}.txt" # only care for first and last pp stages and dp0 tp0 #if not (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()): # return #if not (tp_rank == 0 and dp_rank == 0): # return if tensor is not None: orig_tensor = tensor if hasattr(tensor, "_hp_param"): numel = tensor._hp_param.numel() # // dp_size tensor = tensor.flatten().narrow(0, 0, numel) #print(fn) with open(fn, "w") as fh: fh.write(f"{get_fingerprint_header()}\n") if tensor is not None: fh.write(f"{get_fingerprint(tensor)} tensor {tensor.shape}\n") else: for n, p in model[0].named_parameters(): fh.write(f"{get_fingerprint(p)} {n} {p.shape}\n") return # until we figure out how to dump the actual fp32 values don't do this fn = f"debug-fp32-{iteration}-pp{pp_rank}-tp{tp_rank}-dp{dp_rank}-{preamble}.txt" with open(fn, "w") as fh: fh.write(f"{get_fingerprint_header()}\n") if tensor is not None: tensor = orig_tensor if hasattr(tensor, "_hp_param"): fh.write(f"{get_fingerprint(tensor._hp_param)} tensor {tensor._hp_param.shape}\n") #fh.write(f"{get_fingerprint(tensor._hp_grad)} tensor grad\n") else: fh.write(f"{get_fingerprint(tensor)} tensor {tensor.shape}\n") #fh.write(f"{get_fingerprint(tensor.grad)} tensor grad\n") else: if hasattr(model[0].module.tied_modules, "embed"): p = model[0].module.tied_modules.embed.word_embeddings.weight._hp_param fh.write(f"{get_fingerprint(p)} module.tied_modules.embed.word_embeddings.weight._hp_param {p.shape}\n") def found_kill_switch(): args = get_args() if args.kill_switch_path is not None and os.path.exists(args.kill_switch_path): return True else: return False FP8_RECIPE=None def get_fp8_recipe(args): global FP8_RECIPE if FP8_RECIPE is None: if args.fp8_e5m2: fp8_format = recipe.Format.E5M2 elif args.fp8_hybrid: fp8_format = recipe.Format.HYBRID fp8_interval = get_args().fp8_interval FP8_RECIPE = recipe.DelayedScaling( margin=args.fp8_margin, interval=fp8_interval, fp8_format=fp8_format, amax_history_len=args.fp8_amax_history_len, amax_compute_algo=args.fp8_amax_compute_algo, reduce_amax=False, ) return FP8_RECIPE