# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Pretrain BERT""" from functools import partial import math import torch import torch.nn.functional as F from megatron import get_args from megatron import print_rank_0 from megatron import get_timers from megatron.core import tensor_parallel from megatron.core.enums import ModelType from megatron.data.dataset_utils import build_train_valid_test_datasets from megatron.model import BertModel from megatron.training import pretrain from megatron.utils import average_losses_across_data_parallel_group from megatron.arguments import core_transformer_config_from_args def model_provider(pre_process=True, post_process=True): """Build the model.""" print_rank_0('building BERT model ...') args = get_args() config = core_transformer_config_from_args(args) num_tokentypes = 2 if args.bert_binary_head else 0 model = BertModel( config=config, num_tokentypes=num_tokentypes, add_binary_head=args.bert_binary_head, parallel_output=True, pre_process=pre_process, post_process=post_process) return model def get_batch(data_iterator): """Build the batch.""" # Items and their type. keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask'] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) else: data = None data_b = tensor_parallel.broadcast_data(keys, data, datatype) # Unpack. tokens = data_b['text'].long() types = data_b['types'].long() sentence_order = data_b['is_random'].long() loss_mask = data_b['loss_mask'].float() lm_labels = data_b['labels'].long() padding_mask = data_b['padding_mask'].long() return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask def data_post_process(data, data_sampler_state_dict): args = get_args() if args.data_efficiency_curriculum_learning: if 'seqlen_truncate' in data_sampler_state_dict['current_difficulties']: effective_seqlen = data_sampler_state_dict['current_difficulties']['seqlen_truncate'] else: effective_seqlen = torch.count_nonzero(data['padding_mask'], dim=1) effective_seqlen = torch.max(effective_seqlen).to(torch.cuda.current_device()) torch.distributed.all_reduce(effective_seqlen, op=torch.distributed.ReduceOp.MAX, group=mpu.get_data_parallel_group()) effective_seqlen = effective_seqlen.item() # Has to be multiple of 8 to enable Tensor Core acceleration if effective_seqlen % 8 != 0: effective_seqlen = math.ceil(effective_seqlen / 8) * 8 if effective_seqlen < args.seq_length: data['text'] = data['text'][:, :effective_seqlen].contiguous() data['types'] = data['types'][:, :effective_seqlen].contiguous() data['loss_mask'] = data['loss_mask'][:, :effective_seqlen].contiguous() data['labels'] = data['labels'][:, :effective_seqlen].contiguous() data['padding_mask'] = data['padding_mask'][:, :effective_seqlen].contiguous() return data def loss_func(loss_mask, sentence_order, output_tensor): lm_loss_, sop_logits = output_tensor lm_loss_ = lm_loss_.float() loss_mask = loss_mask.float() lm_loss = torch.sum( lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() if sop_logits is not None: sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(), sentence_order.view(-1), ignore_index=-1) sop_loss = sop_loss.float() loss = lm_loss + sop_loss averaged_losses = average_losses_across_data_parallel_group( [lm_loss, sop_loss]) return loss, {'lm loss': averaged_losses[0], 'sop loss': averaged_losses[1]} else: loss = lm_loss averaged_losses = average_losses_across_data_parallel_group( [lm_loss]) return loss, {'lm loss': averaged_losses[0]} def forward_step(data_iterator, model): """Forward step.""" args = get_args() timers = get_timers() # Get the batch. timers('batch-generator', log_level=2).start() tokens, types, sentence_order, loss_mask, lm_labels, padding_mask = get_batch( data_iterator) timers('batch-generator').stop() if args.data_efficiency_curriculum_learning: args.curriculum_seqlen = tokens.size()[1] if not args.bert_binary_head: types = None # Forward pass through the model. output_tensor = model(tokens, padding_mask, tokentype_ids=types, lm_labels=lm_labels) return output_tensor, partial(loss_func, loss_mask, sentence_order) def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid, and test datasets.""" args = get_args() print_rank_0('> building train, validation, and test datasets ' 'for BERT ...') train_ds, valid_ds, test_ds = build_train_valid_test_datasets( data_prefix=args.data_path, data_impl=args.data_impl, splits_string=args.split, train_valid_test_num_samples=train_val_test_num_samples, max_seq_length=args.seq_length, masked_lm_prob=args.mask_prob, short_seq_prob=args.short_seq_prob, seed=args.seed, skip_warmup=(not args.mmap_warmup), binary_head=args.bert_binary_head) print_rank_0("> finished creating BERT datasets ...") return train_ds, valid_ds, test_ds if __name__ == "__main__": pretrain(train_valid_test_datasets_provider, model_provider, ModelType.encoder_or_decoder, forward_step, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'}, data_post_process=data_post_process)