# This code is originally from https://github.com/bigscience-workshop/Megatron-DeepSpeed # under the license https://huggingface.co/spaces/bigscience/license # Downloads the specified taks in the evaluation harness # This is particularly useful when running in environments where the GPU nodes # do not have internet access. This way we can pre-download them and use the cached data-set during evaluation. from lm_eval import tasks from lm_eval.tasks import ALL_TASKS import argparse import os parser = argparse.ArgumentParser(description='Download evaluation harness', allow_abbrev=False) parser.add_argument('--task_list', type=str, default = "all", help='Either "all" or comma separated list of tasks to download.') args = parser.parse_args() def main(): task_list = ALL_TASKS if args.task_list == 'all' else args.task_list.split(',') tasks.get_task_dict(task_list) if __name__ == '__main__': main()