# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Prompting the pretrained language model to generate knowledge/response""" import json import torch import requests from nltk import word_tokenize from megatron import get_args from megatron import print_rank_0 from megatron import get_tokenizer from megatron.core import mpu from megatron.model import GPTModel from megatron.training import get_model from megatron.arguments import core_transformer_config_from_args from megatron.checkpointing import load_checkpoint from megatron.initialize import initialize_megatron from megatron.text_generation import generate_and_post_process def call_model_api(inputs, tokens_to_generate): """Calling the model api to get the output generations""" args = get_args() # The following is an example of using the Megatron API # You can also implement your own API function to place this part headers = {'Content-Type': 'application/json; charset=UTF-8'} data = {"prompts": [inputs], "tokens_to_generate": tokens_to_generate, "top_k": 1} data_json = json.dumps(data) outputs = requests.put(args.megatron_api_url, headers=headers, data=data_json).json()["text"][0] input_len = len(inputs) outputs = outputs[input_len:] outputs = outputs.split("\n")[0].strip() return outputs def read_prompts(prompt_path, prompt_type, n_example): """Read prompt data""" if prompt_type == "knowledge": # prompts for the knowledge generation prompt_examples_dict = {} # read prompt_path with open(prompt_path, "r") as f: for i, line in enumerate(f): line = line.strip() line_dict = json.loads(line) key = list(line_dict.keys())[0] if key not in prompt_examples_dict: prompt_examples = line_dict[key] prompt = "" for instance in prompt_examples: instance = instance.strip() prompt += instance + " \n" prompt_examples_dict[key] = prompt return prompt_examples_dict else: # prompts for the response generation # read prompt_path prompt = "" with open(prompt_path, "r") as f: prompt_examples = f.readlines() prompt_examples = prompt_examples[:n_example] for instance in prompt_examples: instance = instance.strip() prompt += instance + " \n" return prompt def generate_samples_by_calling_api(): """ Generate outputs by calling""" args = get_args() assert args.prompt_type in ["knowledge", "response"], \ "Please input a correct prompt type!" if args.prompt_type == "knowledge": # read knowledge generation prompts knwl_gen_prompt_dict = read_prompts( args.prompt_file, args.prompt_type, args.num_prompt_examples) else: resp_gen_prompt = read_prompts( args.prompt_file, args.prompt_type, args.num_prompt_examples) # read the test data fname = open(args.sample_input_file, "r") test_sample_list = fname.readlines() # create output file fname_out = open(args.sample_output_file, "w") # call the api to get the output generations for test_sample in test_sample_list: test_sample = test_sample.strip() splits = test_sample.split("\t") topic = splits[0] # prepare the inputs for the api if args.prompt_type == "knowledge": ## inputs = prompt + current test # get the prompt turns = splits[1].split(" [SEP] ") last_turn = turns[-1] key = topic + " " + last_turn inputs = knwl_gen_prompt_dict[key] # add current test inputs += "( " + last_turn + " ) " + topic + " =>" else: # inputs = prompt + current test # get the prompt inputs = resp_gen_prompt # add current test turns = splits[1].split(" [SEP] ") knowledge = splits[2] last_turn = turns[-1] last_turn = " ".join(word_tokenize(last_turn)) knowledge = " ".join(word_tokenize(knowledge)) knowledge = knowledge.strip() last_turn = last_turn.strip() inputs += "Topic: " + topic + ". " inputs += "User says: " + last_turn + " " inputs += "We know that: " + knowledge + " " inputs += "System replies:" # get the output generations from the api, # and write to the output file generations = call_model_api(inputs, args.out_seq_length) fname_out.write(generations) fname_out.write("\n") fname.close() fname_out.close() def model_provider(pre_process=True, post_process=True): """Build the model.""" config = core_transformer_config_from_args(get_args()) print_rank_0('building GPT model ...') model = GPTModel( config=config, num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process ) return model def generate_samples_by_prompting_input_from_file(model): """Prompt a pretrained language model to generate knowledge/response""" # get tokenizer args = get_args() tokenizer = get_tokenizer() # Read the sample file and open the output file. assert args.sample_input_file is not None, \ 'sample input file is not provided.' if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0: fname = open(args.sample_input_file, "r") all_raw_text = fname.readlines() input_count = len(all_raw_text) if args.sample_output_file is None: sample_output_file = args.sample_input_file + ".out" print('`sample-output-file` not specified, setting ' 'it to {}'.format(sample_output_file)) else: sample_output_file = args.sample_output_file fname_out = open(sample_output_file, "w") # only two prompt types (i.e., knowledge and response) are allowed assert args.prompt_type in ["knowledge", "response"], \ "Please input a correct prompt type!" # Read the prompt file if args.prompt_type == "knowledge": # read the prompts for the knowledge generation prompt_examples_dict = {} with open(args.prompt_file, "r") as f: for i, line in enumerate(f): line = line.strip() line_dict = json.loads(line) key = list(line_dict.keys())[0] # get the prompt examples based on the key if key not in prompt_examples_dict: prompt_examples = line_dict[key] prompt = "" for instance in prompt_examples: instance = instance.strip() prompt += instance + " \n" prompt_examples_dict[key] = prompt else: # read the prompts for the response generation # prompts are fixed for all test samples with open(args.prompt_file, "r") as f: prompt_examples = f.readlines() prompt_examples = prompt_examples[:args.num_prompt_examples] prompt = "" for instance in prompt_examples: instance = instance.strip() prompt += instance + " \n" input_pos = 0 model.eval() # perform prompting with torch.no_grad(): while True: raw_text_len = 0 if mpu.is_pipeline_first_stage() \ and mpu.get_tensor_model_parallel_rank() == 0: input_str = all_raw_text[input_pos] input_str = input_str.strip() splits = input_str.split("\t") topic = splits[0] if args.prompt_type == "knowledge": # first add the prompt into the raw_text turns = splits[1].split(" [SEP] ") last_turn = turns[-1] key = topic + " " + last_turn raw_text = prompt_examples_dict[key] # construct inputs for knowledge generation # then add the constructed inputs into the raw_text raw_text += "( " + last_turn + " ) " + topic + " =>" else: # first add the prompt into the raw_text raw_text = prompt # construct inputs for response generation # then add the constructed inputs into the raw_text turns = splits[1].split(" [SEP] ") knowledge = splits[2] last_turn = turns[-1] last_turn = " ".join(word_tokenize(last_turn)) knowledge = " ".join(word_tokenize(knowledge)) knowledge = knowledge.strip() last_turn = last_turn.strip() raw_text += "Topic: " + topic + ". " raw_text += "User says: " + last_turn + " " raw_text += "We know that: " + knowledge + " " raw_text += "System replies:" input_pos += 1 raw_text_len = len(raw_text) else: raw_text = "EMPTY TEXT" if input_pos % 100 == 0: print_rank_0("input_pos: %d" % input_pos) outputs = generate_and_post_process( model=model, prompts=[raw_text], tokens_to_generate=args.out_seq_length, top_k_sampling=1) prompts_plus_generations = outputs[0] prompts_plus_generations = prompts_plus_generations[0] # write the generated output to the output file if mpu.get_tensor_model_parallel_rank() == 0: if mpu.is_pipeline_first_stage(): generations = prompts_plus_generations[raw_text_len:] generations = generations.split("\n")[0] generations = generations.strip() fname_out.write(generations) fname_out.write("\n") raw_text = None if input_pos == input_count: return def main(): args = get_args() if args.api_prompt: # obtain the generations by calling the api generate_samples_by_calling_api() return if args.num_layers_per_virtual_pipeline_stage is not None: print("Interleaved pipeline schedule is not yet supported for text generation.") exit() # Set up model and load checkpoint. model = get_model(model_provider, wrap_with_ddp=False) if args.load is not None: _ = load_checkpoint(model, None, None) assert len(model) == 1, "Above condition should have caught this" model = model[0] # perform the prompting generate_samples_by_prompting_input_from_file(model)