# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import numpy as np import torch from megatron import get_args, get_tokenizer from megatron.data.bert_dataset import build_training_sample class BertEmbeddingDataset(torch.utils.data.Dataset): '''Dataset to convert a text dataset to Bert tokens.''' def __init__(self, text_dataset, max_seq_length): super().__init__() args = get_args() # Dataset, tokenizer. self.text_dataset = text_dataset self.bert_tokenizer = get_tokenizer() # Params to store. self.max_seq_length = max_seq_length self.seed = args.seed self.masked_lm_prob = args.mask_prob # Vocab stuff. self.vocab_id_list = list(self.bert_tokenizer.inv_vocab.keys()) self.vocab_id_to_token_dict = self.bert_tokenizer.inv_vocab self.cls_id = self.bert_tokenizer.cls self.sep_id = self.bert_tokenizer.sep self.mask_id = self.bert_tokenizer.mask self.pad_id = self.bert_tokenizer.pad def __len__(self): return len(self.text_dataset) def __getitem__(self, idx): # Text. text_sample = self.text_dataset[idx] text = text_sample["text"] text = text.replace("<|endoftext|>", "") # Bert/Wordpiece tokens (+truncate). bert_token_ids = self.bert_tokenizer.tokenize(text) bert_token_ids = bert_token_ids[:self.max_seq_length - 2] # cls+sep. if not bert_token_ids: bert_token_ids = [ self.bert_tokenizer.pad_id ] # hack when empty seq # Note that this rng state should be numpy and not python since # python randint is inclusive whereas the numpy one is exclusive. # We % 2**32 since numpy requres the seed to be between 0 and 2**32 - 1 np_rng = np.random.RandomState(seed=((self.seed + idx) % 2**32)) # Build sample. sample = build_training_sample([bert_token_ids], len(bert_token_ids), len(bert_token_ids) + 2, # for cls+sep self.vocab_id_list, self.vocab_id_to_token_dict, self.cls_id, self.sep_id, self.mask_id, self.pad_id, self.masked_lm_prob, np_rng, binary_head=False) sample["seq_length"] = len(sample["text"]) return sample