# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Processing large data for pretraining.""" import argparse import math import json import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) import time import gzip import glob import torch import numpy as np import multiprocessing try: import nltk nltk_available = True except ImportError: nltk_available = False from megatron.tokenizer import build_tokenizer from megatron.data import indexed_dataset # https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars): _period_context_fmt = r""" \S* # some word material %(SentEndChars)s # a potential sentence ending \s* # <-- THIS is what I changed (?=(?P %(NonWord)s # either other punctuation | (?P\S+) # <-- Normally you would have \s+ here ))""" class IdentitySplitter(object): def tokenize(self, *text): return text class Encoder(object): def __init__(self, args): self.args = args def initializer(self): # Use Encoder class as a container for global data Encoder.tokenizer = build_tokenizer(self.args) if self.args.split_sentences: if not nltk_available: print("NLTK is not available to split sentences.") exit() library = "tokenizers/punkt/{}.pickle".format(self.args.lang) splitter = nltk.load(library) if self.args.keep_newlines: # this prevents punkt from eating newlines after sentences Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer( train_text = splitter._params, lang_vars = CustomLanguageVars()) else: Encoder.splitter = splitter else: Encoder.splitter = IdentitySplitter() def split(self, json_line): data = json.loads(json_line) output = {} for key in self.args.json_keys: text = data[key] max_len = 1000000 tokens_list = [Encoder.splitter.tokenize(text[i:i+max_len]) for i in range(0, len(text), max_len)] output[key] = [tokens for partial in tokens_list for tokens in partial] return json.dumps(output), len(json_line) def encode(self, json_line): data = json.loads(json_line) ids = {} lens = {} for key in self.args.json_keys: text = data[key] if isinstance(text, list): sentences = text else: sentences = [text] doc_ids = [] sentence_lens = [] for sentence in sentences: sentence_ids = Encoder.tokenizer.tokenize(sentence) if len(sentence_ids) > 0: doc_ids.extend(sentence_ids) sentence_lens.append(len(sentence_ids)) if len(doc_ids) > 0 and self.args.append_eod: doc_ids.append(Encoder.tokenizer.eod) ids[key] = doc_ids lens[key] = sentence_lens return ids, lens, len(json_line) class Partition(object): def __init__(self, args, workers): self.args = args self.workers = workers def print_processing_stats(self, count, proc_start, total_bytes_processed): if count % self.args.log_interval == 0: current = time.time() elapsed = current - proc_start mbs = total_bytes_processed/elapsed/1024/1024 print(f"Processed {count} documents", f"({count/elapsed} docs/s, {mbs} MB/s).", file=sys.stderr) def split_sentences(self, file_name): input_file_name, output_file_name = file_name print("Opening", input_file_name) fin = open(input_file_name, 'r', encoding='utf-8') fout = open(output_file_name, 'w') encoder = Encoder(self.args) pool = multiprocessing.Pool(self.workers, initializer=encoder.initializer) split_docs = pool.imap(encoder.split, fin, 32) proc_start = time.time() total_bytes_processed = 0 for i, (doc, bytes_processed) in enumerate(split_docs, start=1): total_bytes_processed += bytes_processed fout.write(doc + "\n") self.print_processing_stats(i, proc_start, total_bytes_processed) fin.close() fout.close() def process_json_file(self, file_name): input_file_name, output_prefix = file_name print("Opening", input_file_name) fin = open(input_file_name, 'r', encoding='utf-8') startup_start = time.time() encoder = Encoder(self.args) tokenizer = build_tokenizer(self.args) pool = multiprocessing.Pool(self.workers, initializer=encoder.initializer) encoded_docs = pool.imap(encoder.encode, fin, 32) level = "document" if self.args.split_sentences: level = "sentence" output_bin_files = {} output_idx_files = {} builders = {} for key in self.args.json_keys: output_bin_files[key] = "{}_{}_{}.bin".format(output_prefix, key, level) output_idx_files[key] = "{}_{}_{}.idx".format(output_prefix, key, level) builders[key] = indexed_dataset.make_builder(output_bin_files[key], impl=self.args.dataset_impl, vocab_size=tokenizer.vocab_size) startup_end = time.time() proc_start = time.time() total_bytes_processed = 0 print("Time to startup:", startup_end - startup_start) for i, (doc, sentence_lens, bytes_processed) in enumerate(encoded_docs, start=1): total_bytes_processed += bytes_processed for key in doc.keys(): builders[key].add_doc(doc[key], sentence_lens[key]) self.print_processing_stats(i, proc_start, total_bytes_processed) fin.close() builders[key].finalize(output_idx_files[key]) def get_args(): parser = argparse.ArgumentParser() group = parser.add_argument_group(title='input data') group.add_argument('--input', type=str, required=True, help='Path to input JSON') group.add_argument('--json-keys', nargs='+', default=['text'], help='space separate listed of keys to extract from json') group.add_argument('--split-sentences', action='store_true', help='Split documents into sentences.') group.add_argument('--keep-newlines', action='store_true', help='Keep newlines between sentences when splitting.') group = parser.add_argument_group(title='tokenizer') group.add_argument('--tokenizer-type', type=str, required=True, choices=['BertWordPieceLowerCase','BertWordPieceCase', 'GPT2BPETokenizer', 'SentencePieceTokenizer', 'GPTSentencePieceTokenizer', 'NullTokenizer'], help='What type of tokenizer to use.') group.add_argument('--tokenizer-model', type=str, default=None, help='YTTM tokenizer model.') group.add_argument('--vocab-file', type=str, default=None, help='Path to the vocab file') group.add_argument('--vocab-size', default=786, help='size of vocab for use with NullTokenizer') group.add_argument('--merge-file', type=str, default=None, help='Path to the BPE merge file (if necessary).') group.add_argument('--append-eod', action='store_true', help='Append an token to the end of a document.') group.add_argument('--lang', type=str, default='english', help='Language to use for NLTK-powered sentence splitting.') group = parser.add_argument_group(title='output data') group.add_argument('--output-prefix', type=str, required=True, help='Path to binary output file without suffix') group.add_argument('--dataset-impl', type=str, default='mmap', choices=['lazy', 'cached', 'mmap']) group = parser.add_argument_group(title='runtime') group.add_argument('--workers', type=int, required=True, help=('Number of worker processes to launch.' 'A good default for fast pre-processing ' 'is: (workers * partitions) = available CPU cores.')) group.add_argument('--partitions', type=int, default=1, help='Number of file partitions') group.add_argument('--log-interval', type=int, default=1000, help='Interval between progress updates') args = parser.parse_args() args.keep_empty = False if args.tokenizer_type.lower().startswith('bert') and not args.split_sentences: print("Are you sure you don't want to split sentences?") # some default/dummy values for the tokenizer args.rank = 1 args.make_vocab_size_divisible_by = 128 args.tensor_model_parallel_size = 1 args.vocab_extra_ids = 0 return args def get_file_name(args, file_id): file_name, extension = os.path.splitext(args.input) input_file_name = file_name + "_" + str(file_id) + extension sentence_split_file = file_name + "_ss_" + str(file_id) + extension output_prefix = args.output_prefix + "_" + str(file_id) file_names = { 'partition': input_file_name, 'sentence_split': sentence_split_file, 'output_prefix': output_prefix} return file_names def check_files_exist(in_ss_out_names, key, num_partitions): for i in range(num_partitions): if not os.path.exists(in_ss_out_names[i][key]): return False return True def main(): args = get_args() if args.split_sentences: if nltk_available: nltk.download("punkt", quiet=True) else: raise Exception( "nltk library required for sentence splitting is not available.") in_ss_out_names = [] if args.partitions == 1: file_name, extension = os.path.splitext(args.input) sentence_split_file = file_name + "_ss" + extension file_names = { 'partition': args.input, 'sentence_split': sentence_split_file, 'output_prefix': args.output_prefix} in_ss_out_names.append(file_names) else: in_file_names = glob.glob(args.input) # create .jsonl parition files for idx in range(args.partitions): in_ss_out_name = get_file_name(args, idx) in_ss_out_names.append(in_ss_out_name) # check to see if paritions were already created partitions_present = check_files_exist(in_ss_out_names, 'partition', args.partitions) # check to see if paritions with split sentences already created split_sentences_present = check_files_exist(in_ss_out_names, 'sentence_split', args.partitions) if not partitions_present and not split_sentences_present: # populate .jsonl partition files from parent files partitioned_input_files = [] for idx in range(args.partitions): partitioned_input_file = open(in_ss_out_names[idx]['partition'], 'w') partitioned_input_files.append(partitioned_input_file) index = 0 for in_file_name in in_file_names: # support for gzip files if in_file_name.endswith(".gz"): fin = gzip.open(in_file_name, 'rt') else: fin = open(in_file_name, 'r', encoding='utf-8') for line in fin: partitioned_input_files[index].write(line) index = (index + 1)%args.partitions fin.close() for idx in range(args.partitions): partitioned_input_files[idx].close() assert args.workers % args.partitions == 0 partition = Partition(args, args.workers//args.partitions) # check to see if paritions with split sentences already created split_sentences_present = check_files_exist(in_ss_out_names, 'sentence_split', args.partitions) # split sentences in partition files if args.split_sentences and not split_sentences_present: processes = [] for name in in_ss_out_names: p = multiprocessing.Process(target=partition.split_sentences, args=((name['partition'], name['sentence_split']),)) p.start() processes.append(p) for p in processes: p.join() if args.partitions == 1: return # encode partition files in parallel processes = [] input_key = 'sentence_split' if args.split_sentences else 'partition' for name in in_ss_out_names: p = multiprocessing.Process(target=partition.process_json_file, args=((name[input_key], name['output_prefix']),)) p.start() processes.append(p) for p in processes: p.join() if args.partitions == 1: return # merge bin/idx partitions level = "document" if args.split_sentences: level = "sentence" output_bin_files = {} output_idx_files = {} builders = {} tokenizer = build_tokenizer(args) for key in args.json_keys: output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix, key, level) output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix, key, level) builders[key] = indexed_dataset.make_builder(output_bin_files[key], impl=args.dataset_impl, vocab_size=tokenizer.vocab_size) for name in in_ss_out_names: parition_output_prefix = name['output_prefix'] full_partition_output_prefix = "{}_{}_{}".format(parition_output_prefix, key, level) builders[key].merge_file_(full_partition_output_prefix) builders[key].finalize(output_idx_files[key]) if __name__ == '__main__': main()