# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import json import numpy as np import os import torch import types from megatron.global_vars import set_global_variables, set_retro_args from megatron.initialize import ( initialize_megatron, _initialize_distributed, _set_random_seed, _compile_dependencies, ) from tools.retro.db.utils import ( get_indexed_dataset_infos as get_db_indexed_dataset_infos, get_merged_train_dataset as get_db_dataset, ) from tools.retro.main import add_retro_args from tools.retro.query.retro_dataset import get_retro_datasets from tools.retro.utils import get_args_path, get_bert_tokenizer, get_gpt_tokenizer def shorten_str(s, n): s = "\\n".join(s.splitlines()) return s if len(s) <= n else "%s ... %s" % (s[:n//2], s[-n//2:]) class retro: args = None ############################################## # initialize. ############################################## @classmethod def parse_dtype_str(cls, dtype_str): return { "torch.float16" : torch.float16, "torch.float32" : torch.float32, "torch.bfloat16" : torch.bfloat16, }[dtype_str] @classmethod def init_megatron(cls, workdir): '''Custom initialization of Megatron.''' # Load args. args_path = get_args_path(workdir) assert os.path.exists(args_path), "args.json not found in workdir." with open(args_path) as f: cls.args = types.SimpleNamespace(**json.load(f)) cls.args.retro_workdir = workdir # just in case workdir moved cls.args.rank = 0 # override env cls.args.world_size = 1 # override env cls.args.params_dtype = cls.parse_dtype_str(cls.args.params_dtype) set_global_variables(cls.args) set_retro_args(cls.args) _initialize_distributed() _set_random_seed(cls.args.seed, cls.args.data_parallel_random_init) _compile_dependencies() @classmethod def init(cls, workdir): '''Initialize Megatron, tokenizers, and datasets.''' # Load args. cls.init_megatron(workdir) cls.tokenizers = types.SimpleNamespace( gpt=get_gpt_tokenizer(), bert=get_bert_tokenizer(), ) # Load data. cls.db_indexed_dataset_infos = get_db_indexed_dataset_infos() cls.db_dataset = get_db_dataset() pt_train_ds, pt_valid_ds, _ = get_retro_datasets(verify_sizes=False) cls.pt_datasets = types.SimpleNamespace( train=pt_train_ds, valid=pt_valid_ds, ) # Retrieve max saved neighbors. for key in vars(cls.pt_datasets): getattr(cls.pt_datasets, key).num_neighbors = \ cls.args.retro_query_num_neighbors_save # Print usage. cls.print_usage() ############################################## # utils. ############################################## @classmethod def gpt_to_text(cls, token_ids): '''GPT tokens to text.''' return cls.tokenizers.gpt.detokenize(token_ids.tolist() if isinstance(token_ids, np.ndarray) else token_ids) @classmethod def text_to_bert(cls, text): '''Text to Bert tokens.''' return cls.tokenizers.bert.tokenize(text) ############################################## # chunk db. ############################################## @classmethod def get_db_num_indexed_datasets(cls): '''Number of indexed datasets within blendable dataset.''' return len(cls.db_indexed_dataset_infos) @classmethod def get_db_indexed_dataset_infos(cls): '''Dataset infos, including number of training & sampled sets.''' return [(info["ratio"], info["name"]) for info in cls.db_indexed_dataset_infos] @classmethod def get_db_dataset(cls): return cls.db_dataset @classmethod def get_db_num_chunks(cls): '''Number of DB chunks.''' return len(cls.get_db_dataset()) @classmethod def get_db_chunk_gpt(cls, idx): '''Get DB chunk as GPT token ids.''' return cls.get_db_dataset()[idx]["text"].tolist() @classmethod def get_db_chunk_bert(cls, idx): '''Get DB chunk as Bert token ids.''' return cls.text_to_bert(cls.get_db_chunk_text(idx)) @classmethod def get_db_chunk_text(cls, idx): '''Get DB chunk as text.''' return cls.gpt_to_text(cls.get_db_chunk_gpt(idx)) @classmethod def get_db_chunk_and_continuation_text(cls, idx): '''Get DB chunk along with continuation, as text.''' # Modulus used here to match original implementation (i.e., last # chunks continuation wraps around to first chunk). return [ cls.get_db_chunk_text(idx), cls.get_db_chunk_text((idx + 1) % len(cls.get_db_dataset())), ] ############################################## # pretraining corpus. ############################################## @classmethod def get_pt_num_samples_and_chunks(cls, data_key): '''Number of samples & chunks (e.g., 32*n_samples) in corpus.''' assert hasattr(cls.pt_datasets, data_key), \ "pretraining set '%s' not found (choices: %s)." % ( data_key, ", ".join(vars(cls.pt_datasets).keys())) chunk_dataset = getattr(cls.pt_datasets, data_key).chunk_dataset return ( len(chunk_dataset.sample_dataset), len(chunk_dataset), ) @classmethod def get_pt_num_samples(cls, data_key): '''Number of pretraining samples.''' return cls.get_pt_num_samples_and_chunks(data_key)[0] @classmethod def get_pt_num_chunks(cls, data_key): '''Number of pretraining chunks (e.g., 32*n_samples).''' return cls.get_pt_num_samples_and_chunks(data_key)[1] @classmethod def get_pt_dataset(cls, data_key): return getattr(cls.pt_datasets, data_key) @classmethod def get_pt_sample(cls, data_key, idx): return getattr(cls.pt_datasets, data_key)[idx] @classmethod def get_neighbor_tokens(cls, sample_id, chunk_id, data_key="train"): try: sample = cls.get_pt_sample(data_key, sample_id) sample_token_ids = sample["text"] chunk_length = cls.args.retro_gpt_chunk_length chunk_start_idx = chunk_id * chunk_length chunk_end_idx = min(sample_token_ids.shape[0], chunk_start_idx + chunk_length) chunk_token_ids = sample_token_ids[chunk_start_idx:chunk_end_idx] neighbor_token_ids = sample["neighbor_tokens"][chunk_id] return { "chunk_tokens" : chunk_token_ids, "neighbor_tokens" : neighbor_token_ids, } except: return None @classmethod def print_neighbor_texts(cls, sample_id, chunk_id, data_key="train"): tokens = cls.get_neighbor_tokens(sample_id, chunk_id, data_key) print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") try: print("PRETRAINING CHUNK:") print(" - %s" % shorten_str(cls.gpt_to_text(tokens["chunk_tokens"]), 150)) print("NEIGHBOR_CHUNKS:") for token_ids in tokens["neighbor_tokens"]: print(" - %s" % shorten_str(cls.gpt_to_text(token_ids), 150)) except: print("" % sample_id) ############################################## # usage. ############################################## @classmethod def print_usage(cls): '''Print usage.''' print() print("+++++++++++++++++++++++++++++++++++++++++++++++++++") print("examples ... [ *note*: 'db' = chunk db; 'pt' = pretraining corpus. ]") print("+++++++++++++++++++++++++++++++++++++++++++++++++++") print() print("~~~~ indexed datasets ~~~~") print("retro.get_db_num_indexed_datasets() : %s" % cls.get_db_num_indexed_datasets()) print("retro.get_db_indexed_dataset_infos() :") for i, (ratio,prefix) in enumerate(cls.get_db_indexed_dataset_infos()): print(" %s(%f, %s)%s" % ( "[" if i == 0 else " ", ratio, prefix, "]" if i == len(cls.db_indexed_dataset_infos) - 1 else ",", )) print() print("~~~~ counts ~~~~") print("retro.get_db_num_chunks : %d." % cls.get_db_num_chunks()) print() for sq_key in ("sample", "chunk"): for data_key in ("train", "valid"): # test? print("retro.get_pt_num_%ss('%s') : %d." % ( sq_key, data_key, getattr(cls, f"get_pt_num_{sq_key}s")(data_key))) print() print("~~~~ tokens, text ~~~~") print("retro.get_db_chunk_gpt(chunk_id) : %s" % shorten_str(str(retro.get_db_chunk_gpt(0)), 50)) print("retro.get_db_chunk_bert(chunk_id) : %s" % shorten_str(str(retro.get_db_chunk_bert(0)), 50)) print("retro.get_db_chunk_text(chunk_id) : %s" % shorten_str(retro.get_db_chunk_text(0).strip(), 50)) print("retro.get_db_chunk_and_continuation_text(chunk_id) :") for i, t in enumerate(retro.get_db_chunk_and_continuation_text(0)): print(" %s'%s'%s" % ( "[" if i == 0 else " ", shorten_str(t.strip().replace("\n", " "), 50), "]" if i == 1 else ",", )) sample = cls.get_pt_sample("train", 0) sample_chunk_id = sample["neighbor_tokens"].shape[0] // 2 sample_neighbor_id = 0 print() print("retro.get_pt_sample('train', sample_id) :") print(" {") for k, v in sample.items(): print(" '%s' : %s" % (k, shorten_str(str(v), 50))) print(" }") print() print("(e.g., sample = retro.get_pt_sample(...))") print() print(" sample['text'].shape : %s" % str(sample["text"].shape)) print(" sample['neighbor_tokens'].shape : %s" % str(sample["neighbor_tokens"].shape)) print(" sample['text'] : %s" % shorten_str(str(sample["text"]), 50)) print(" sample['neighbor_tokens'][17][1] : %s" % shorten_str(str(sample["neighbor_tokens"][sample_chunk_id][sample_neighbor_id]), 50)) print(" retro.gpt_to_text(sample['text']) : %s" % shorten_str(cls.gpt_to_text(sample["text"]), 50)) print(" retro.gpt_to_text(sample['neighbor_tokens']) : %s" % shorten_str(cls.gpt_to_text(sample["neighbor_tokens"][sample_chunk_id][sample_neighbor_id]), 50)) print("+++++++++++++++++++++++++++++++++++++++++++++++++++")