# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import abc import numpy as np import os import torch from megatron import get_retro_args from tools.retro.external_libs import faiss from .utils import get_index_dir class Index(abc.ABC): '''Abstract base class for indexes. *Note* : While currently only Faiss-based classes are implemented, in the future, this class will be extended with other types of indexes that have different performance-accuracy trade-offs. The primary methods to override are: - train() : Train index on the sampled training chunks. - add() : Add all training chunks to index. ''' @classmethod def c_verbose(cls, index, v): '''Make index object verbose.''' assert isinstance(v, bool) faiss.ParameterSpace().set_index_parameter(index, "verbose", v) def get_empty_index_path(self): args = get_retro_args() return os.path.join( get_index_dir(), "empty_%.3f.faissindex" % args.retro_index_train_load_fraction, ) def get_empty_index(self): return faiss.read_index(self.get_empty_index_path()) def get_added_index_path(self): args = get_retro_args() return os.path.join( get_index_dir(), "added_%.3f_%.3f.faissindex" % ( args.retro_index_train_load_fraction, args.retro_index_add_load_fraction, ), ) def get_added_index(self): return faiss.read_index(self.get_added_index_path()) @abc.abstractmethod def train(self, *args): pass @abc.abstractmethod def add(self, *args): pass def embed_text_dataset_block(self, embedder, text_dataset, _range): '''Embed a range of a text dataset.''' sub_dataset = torch.utils.data.Subset(text_dataset, range(*_range)) return embedder.embed_text_dataset(sub_dataset)