# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import concurrent import gc import glob import numpy as np import os import psutil import time import torch from tqdm import tqdm from megatron import get_retro_args, print_rank_0 from tools.retro.db.utils import get_indexed_dataset_infos from tools.retro.external_libs import h5py def get_index_dir(): """Create sub-directory for this index.""" args = get_retro_args() # Directory path. index_dir_path = os.path.join( args.retro_workdir, "index", args.retro_index_type, args.retro_index_str, ) # Make directory. os.makedirs(index_dir_path, exist_ok=True) return index_dir_path def num_samples_to_block_ranges(num_samples): '''Split a range (length num_samples) into sequence of block ranges of size block_size.''' args = get_retro_args() block_size = args.retro_block_size start_idxs = list(range(0, num_samples, block_size)) end_idxs = [min(num_samples, s + block_size) for s in start_idxs] ranges = list(zip(start_idxs, end_idxs)) return ranges def get_training_data_root_dir(): args = get_retro_args() return os.path.join(args.retro_workdir, "index", "train_emb") def get_training_data_block_dir(): return os.path.join(get_training_data_root_dir(), "blocks") def get_training_data_block_paths(): return sorted(glob.glob(get_training_data_block_dir() + "/*.hdf5")) def get_training_data_merged_path(): args = get_retro_args() return os.path.join(get_training_data_root_dir(), "train_%.3f.bin" % args.retro_index_train_load_fraction) def get_added_codes_dir(): return os.path.join(get_index_dir(), "add_codes") def get_added_code_paths(): return sorted(glob.glob(get_added_codes_dir() + "/*.hdf5"))