# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== ############################################################################### # Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company ############################################################################### from absl import flags from absl import logging from tensorflow.core.protobuf import debug_event_pb2 from tensorflow.python.debug.lib import debug_events_writer from tensorflow.python.framework import op_callbacks from tensorflow.python.ops import gen_debug_ops import tensorflow as tf import re import os import json try: import horovod.tensorflow as hvd except ImportError: hvd = None def horovod_enabled(): return hvd is not None and hvd.is_initialized() flags.DEFINE_string(name='dump_config', default=None, help='Defines config for tensor dumping') class _DumpCallback(object): def __init__(self, dump_root, tensor_debug_mode, circular_buffer_size, op_regex, output_regex=None): self._dump_root = dump_root if horovod_enabled(): self._dump_root = os.path.join( self._dump_root, f"rank_{hvd.rank()}") self._tensor_debug_mode = debug_event_pb2.TensorDebugMode.Value( tensor_debug_mode) self._circular_buffer_size = circular_buffer_size self._op_regex = re.compile(op_regex) if isinstance( op_regex, str) else op_regex self._output_regex = re.compile(output_regex) if isinstance( output_regex, str) else output_regex self._tfdbg_run_id = '' self._dump_op_counter = 0 debug_writer_args = { "dump_root": self._dump_root, "circular_buffer_size": self._circular_buffer_size } if not tf.__version__.startswith("2.2"): debug_writer_args["tfdbg_run_id"] = self._tfdbg_run_id self._writer = debug_events_writer.DebugEventsWriter( **debug_writer_args) def callback(self, op_type, inputs, attrs, outputs, op_name=None, graph=None): if op_name is not None and self._op_regex.match(op_name): graph_name = "missing-graph-name" if graph is not None and hasattr(graph, "name"): graph_name = graph.name logging.info("Adding dump op for '%s' of type '%s' from graph '%s'" % ( op_name, op_type, graph_name)) new_outputs = [] for output_slot, output in enumerate(outputs): if self._output_regex is not None and not self._output_regex.match(output.name): logging.info("Skipped output: " + output.name) new_outputs.append(output) continue debug_identity_op_kwargs = { "tfdbg_context_id": graph_name, "op_name": op_name, "output_slot": output_slot, "tensor_debug_mode": self._tensor_debug_mode, "debug_urls": ["file://%s" % self._dump_root], "name": "dump_%d" % self._dump_op_counter } if not tf.__version__.startswith("2.2"): debug_identity_op_kwargs["circular_buffer_size"] = self._circular_buffer_size debug_identity_op_kwargs["tfdbg_run_id"] = self._tfdbg_run_id self._dump_op_counter = self._dump_op_counter + 1 new_outputs.append(gen_debug_ops.debug_identity_v2( output, **debug_identity_op_kwargs)) return new_outputs else: return None def __enter__(self, *args, **kwargs): op_callbacks.add_op_callback(self.callback) logging.info("Enabled tensor dumping") def __exit__(self, *args, **kwargs): op_callbacks.remove_op_callback(self.callback) logging.info("Disabled tensor dumping") def __del__(self): self._writer.Close() class _Dummy(object): def __enter__(self, *args, **kwargs): pass def __exit__(self, *args, **kwargs): pass def dump_callback(config_file=None): if config_file is not None: kwargs = json.load(open(config_file, 'r')) return _DumpCallback(**kwargs) try: kwargs = json.load(open(flags.FLAGS.dump_config, 'r')) return _DumpCallback(**kwargs) except: return _Dummy()