from datasets import concatenate_datasets, load_dataset, load_from_disk import argparse from tokenizers import Tokenizer, decoders, models, pre_tokenizers, processors, trainers from transformers import GPT2TokenizerFast, AutoTokenizer from datasets import config import logging def initialize_logger(log_file): logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s: %(message)s') def log_parameters(vocab_size, batch_size, fertility_score, proportion_continued_words, log_file='parameters.log'): initialize_logger(log_file) logging.info(f"Vocabulary Size: {vocab_size}, Batch Size: {batch_size}, Fertility Score: {fertility_score}, Proportion of Continued word: {proportion_continued_words}") def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument( "--batch_size", type=int, required=True, help="Batch size to use for training" ) parser.add_argument( "--vocab_size", type=int, required=True, help="Vocabulary size to use for tokenizer" ) parser.add_argument( "--use_config", choices=['xlm-roberta', 'vanilla'], required=True, help="Use XLM-RoBERTa config or Vanilla BPE" ) parser.add_argument( "--do_evaluate", action='store_true', help="Enable evaluation." ) args = parser.parse_known_args() return args def calculate_proportion_continued_words(tokenizer, sentences): total_continued_words = 0 total_words = 0 for sentence in sentences: tok = tokenizer.encode_plus(sentence, return_tensors="pt") input_ids = tok['input_ids'].squeeze(0) continued_word = False for i in range(1, len(input_ids)): if input_ids[i] != tokenizer.pad_token_id: if continued_word: total_continued_words += 1 continued_word = True else: continued_word = False total_words += len(sentence.split()) proportion_continued_words = total_continued_words / total_words if total_words > 0 else 0 return proportion_continued_words def train_tokenizer(args): # configs = ['as', 'bd', 'bn', 'dg', 'en', 'gom', 'gu', 'hi', 'kha', 'kn', 'ks', 'mai', 'ml', 'mni', 'mr', 'ne', 'or', 'pa', 'sa', 'sat', 'sd', 'ta', 'te', 'ur'] indic_datasets = [] configs=['hi'] # for c in configs: # indic_dataset = load_dataset('satpalsr/indicCorpv2', c, split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/') # indic_datasets.extend(indic_dataset) # wikidataset= load_dataset('wiki40b', 'en', split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/') indic_datasets_hi= load_dataset('satpalsr/indicCorpv2', 'hi', split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/') indic_datasets_en= load_dataset('satpalsr/indicCorpv2', 'en', split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/') # = wikidataset.remove_columns(['wikidata_id', 'version_id']) print(indic_datasets) # print(wikidataset) dataset = concatenate_datasets([indic_datasets_en,indic_datasets_hi]) test_data = load_from_disk('samanantar_data') test_data = dataset['text'][:10000] print(f"[INFO] {len(test_data)}") print(f"[INFO] {len(dataset)}") # print(f"[INFO] {test_data[:10]}") def batch_iterator(): for idx in range(0, len(dataset), args.batch_size): yield dataset[idx: idx + args.batch_size]['text'] if args.use_config == 'vanilla': tokenizer = Tokenizer(models.BPE()) tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False) print(f"[INFO] The brown fox jumped over the lazy dog\n{tokenizer.pre_tokenizer.pre_tokenize_str('The brown fox jumped over the lazy dog')}") print(f"[INFO] Training...") trainer = trainers.BpeTrainer(vocab_size=args.vocab_size, special_tokens=["<|endoftext|>"]) tokenizer.train_from_iterator(batch_iterator(), trainer=trainer) tokenizer.post_processor = processors.ByteLevel(trim_offsets=False) tokenizer.decoder = decoders.ByteLevel() tokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer) elif args.use_config == 'xlm-roberta': print("skipped") tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base') trained_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(), vocab_size=args.vocab_size) trained_tokenizer.save_pretrained('hi-bgpt-bpe-tokenizer1') print(f"[INFO] Tokenizer saved to disk") if args.do_evaluate: print(f"[INFO] Running evaluation using fertility and fraction of continued words") tokenizer = AutoTokenizer.from_pretrained('hi-bgpt-bpe-tokenizer1') # tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base') fertility = 0 for sentence in test_data: tok=tokenizer(sentence) fertility += len(tok['input_ids']) / len(sentence.split()) average_fertility = fertility / len(test_data) proportion_continued_words = calculate_proportion_continued_words(tokenizer, test_data) log_parameters(args.vocab_size, args.batch_size, average_fertility, proportion_continued_words) def main(): args, _ = parse_arguments() train_tokenizer(args) if __name__ == "__main__": main()