peacock-data-public-datasets-idc-temp-code
/
cc-multilingual-main
/cc_net
/third_party
/kenlm
/lm
/builder
/interpolate.cc
namespace lm { namespace builder { | |
namespace { | |
/* Calculate q, the collapsed probability and backoff, as defined in | |
* @inproceedings{Heafield-rest, | |
* author = {Kenneth Heafield and Philipp Koehn and Alon Lavie}, | |
* title = {Language Model Rest Costs and Space-Efficient Storage}, | |
* year = {2012}, | |
* month = {July}, | |
* booktitle = {Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning}, | |
* address = {Jeju Island, Korea}, | |
* pages = {1169--1178}, | |
* url = {http://kheafield.com/professional/edinburgh/rest\_paper.pdf}, | |
* } | |
* This is particularly convenient to calculate during interpolation because | |
* the needed backoff terms are already accessed at the same time. | |
*/ | |
class OutputQ { | |
public: | |
explicit OutputQ(std::size_t order) : q_delta_(order) {} | |
void Gram(unsigned order_minus_1, float full_backoff, ProbBackoff &out) { | |
float &q_del = q_delta_[order_minus_1]; | |
if (order_minus_1) { | |
// Divide by context's backoff (which comes in as out.backoff) | |
q_del = q_delta_[order_minus_1 - 1] / out.backoff * full_backoff; | |
} else { | |
q_del = full_backoff; | |
} | |
out.prob = log10f(out.prob * q_del); | |
// TODO: stop wastefully outputting this! | |
out.backoff = 0.0; | |
} | |
private: | |
// Product of backoffs in the numerator divided by backoffs in the | |
// denominator. Does not include | |
std::vector<float> q_delta_; | |
}; | |
/* Default: output probability and backoff */ | |
class OutputProbBackoff { | |
public: | |
explicit OutputProbBackoff(std::size_t /*order*/) {} | |
void Gram(unsigned /*order_minus_1*/, float full_backoff, ProbBackoff &out) const { | |
// Correcting for numerical precision issues. Take that IRST. | |
out.prob = std::min(0.0f, log10f(out.prob)); | |
out.backoff = log10f(full_backoff); | |
} | |
}; | |
template <class Output> class Callback { | |
public: | |
Callback(float uniform_prob, const util::stream::ChainPositions &backoffs, const std::vector<uint64_t> &prune_thresholds, bool prune_vocab, const SpecialVocab &specials) | |
: backoffs_(backoffs.size()), probs_(backoffs.size() + 2), | |
prune_thresholds_(prune_thresholds), | |
prune_vocab_(prune_vocab), | |
output_(backoffs.size() + 1 /* order */), | |
specials_(specials) { | |
probs_[0] = uniform_prob; | |
for (std::size_t i = 0; i < backoffs.size(); ++i) { | |
backoffs_.push_back(backoffs[i]); | |
} | |
} | |
~Callback() { | |
for (std::size_t i = 0; i < backoffs_.size(); ++i) { | |
if(prune_vocab_ || prune_thresholds_[i + 1] > 0) | |
while(backoffs_[i]) | |
++backoffs_[i]; | |
if (backoffs_[i]) { | |
std::cerr << "Backoffs do not match for order " << (i + 1) << std::endl; | |
abort(); | |
} | |
} | |
} | |
void Enter(unsigned order_minus_1, void *data) { | |
NGram<BuildingPayload> gram(data, order_minus_1 + 1); | |
BuildingPayload &pay = gram.Value(); | |
pay.complete.prob = pay.uninterp.prob + pay.uninterp.gamma * probs_[order_minus_1]; | |
probs_[order_minus_1 + 1] = pay.complete.prob; | |
float out_backoff; | |
if (order_minus_1 < backoffs_.size() && *(gram.end() - 1) != specials_.UNK() && *(gram.end() - 1) != specials_.EOS() && backoffs_[order_minus_1]) { | |
if(prune_vocab_ || prune_thresholds_[order_minus_1 + 1] > 0) { | |
//Compute hash value for current context | |
uint64_t current_hash = util::MurmurHashNative(gram.begin(), gram.Order() * sizeof(WordIndex)); | |
const HashGamma *hashed_backoff = static_cast<const HashGamma*>(backoffs_[order_minus_1].Get()); | |
while(current_hash != hashed_backoff->hash_value && ++backoffs_[order_minus_1]) | |
hashed_backoff = static_cast<const HashGamma*>(backoffs_[order_minus_1].Get()); | |
if(current_hash == hashed_backoff->hash_value) { | |
out_backoff = hashed_backoff->gamma; | |
++backoffs_[order_minus_1]; | |
} else { | |
// Has been pruned away so it is not a context anymore | |
out_backoff = 1.0; | |
} | |
} else { | |
out_backoff = *static_cast<const float*>(backoffs_[order_minus_1].Get()); | |
++backoffs_[order_minus_1]; | |
} | |
} else { | |
// Not a context. | |
out_backoff = 1.0; | |
} | |
output_.Gram(order_minus_1, out_backoff, pay.complete); | |
} | |
void Exit(unsigned, void *) const {} | |
private: | |
util::FixedArray<util::stream::Stream> backoffs_; | |
std::vector<float> probs_; | |
const std::vector<uint64_t>& prune_thresholds_; | |
bool prune_vocab_; | |
Output output_; | |
const SpecialVocab specials_; | |
}; | |
} // namespace | |
Interpolate::Interpolate(uint64_t vocab_size, const util::stream::ChainPositions &backoffs, const std::vector<uint64_t>& prune_thresholds, bool prune_vocab, bool output_q, const SpecialVocab &specials) | |
: uniform_prob_(1.0 / static_cast<float>(vocab_size)), // Includes <unk> but excludes <s>. | |
backoffs_(backoffs), | |
prune_thresholds_(prune_thresholds), | |
prune_vocab_(prune_vocab), | |
output_q_(output_q), | |
specials_(specials) {} | |
// perform order-wise interpolation | |
void Interpolate::Run(const util::stream::ChainPositions &positions) { | |
assert(positions.size() == backoffs_.size() + 1); | |
if (output_q_) { | |
typedef Callback<OutputQ> C; | |
C callback(uniform_prob_, backoffs_, prune_thresholds_, prune_vocab_, specials_); | |
JointOrder<C, SuffixOrder>(positions, callback); | |
} else { | |
typedef Callback<OutputProbBackoff> C; | |
C callback(uniform_prob_, backoffs_, prune_thresholds_, prune_vocab_, specials_); | |
JointOrder<C, SuffixOrder>(positions, callback); | |
} | |
} | |
}} // namespaces | |