peacock-data-public-datasets-idc-temp-code
/
cc-multilingual-main
/cc_net
/third_party
/kenlm
/lm
/builder
/pipeline.cc
namespace lm { namespace builder { | |
using util::stream::Sorts; | |
namespace { | |
void PrintStatistics(const std::vector<uint64_t> &counts, const std::vector<uint64_t> &counts_pruned, const std::vector<Discount> &discounts) { | |
std::cerr << "Statistics:\n"; | |
for (size_t i = 0; i < counts.size(); ++i) { | |
std::cerr << (i + 1) << ' ' << counts_pruned[i]; | |
if(counts[i] != counts_pruned[i]) | |
std::cerr << "/" << counts[i]; | |
for (size_t d = 1; d <= 3; ++d) | |
std::cerr << " D" << d << (d == 3 ? "+=" : "=") << discounts[i].amount[d]; | |
std::cerr << '\n'; | |
} | |
} | |
class Master { | |
public: | |
explicit Master(PipelineConfig &config, unsigned output_steps) | |
: config_(config), chains_(config.order), unigrams_(util::MakeTemp(config_.TempPrefix())), steps_(output_steps + 4) { | |
config_.minimum_block = std::max(NGram<BuildingPayload>::TotalSize(config_.order), config_.minimum_block); | |
} | |
const PipelineConfig &Config() const { return config_; } | |
util::stream::Chains &MutableChains() { return chains_; } | |
template <class T> Master &operator>>(const T &worker) { | |
chains_ >> worker; | |
return *this; | |
} | |
// This takes the (partially) sorted ngrams and sets up for adjusted counts. | |
void InitForAdjust(util::stream::Sort<SuffixOrder, CombineCounts> &ngrams, WordIndex types, std::size_t subtract_for_numbering) { | |
const std::size_t each_order_min = config_.minimum_block * config_.block_count; | |
// We know how many unigrams there are. Don't allocate more than needed to them. | |
const std::size_t min_chains = (config_.order - 1) * each_order_min + | |
std::min(types * NGram<BuildingPayload>::TotalSize(1), each_order_min); | |
// Prevent overflow in subtracting. | |
const std::size_t total = std::max<std::size_t>(config_.TotalMemory(), min_chains + subtract_for_numbering + config_.minimum_block); | |
// Do merge sort with calculated laziness. | |
const std::size_t merge_using = ngrams.Merge(std::min(total - min_chains - subtract_for_numbering, ngrams.DefaultLazy())); | |
std::vector<uint64_t> count_bounds(1, types); | |
CreateChains(total - merge_using - subtract_for_numbering, count_bounds); | |
ngrams.Output(chains_.back(), merge_using); | |
} | |
// For initial probabilities, but this is generic. | |
void SortAndReadTwice(const std::vector<uint64_t> &counts, Sorts<ContextOrder> &sorts, util::stream::Chains &second, util::stream::ChainConfig second_config) { | |
bool unigrams_are_sorted = !config_.renumber_vocabulary; | |
// Do merge first before allocating chain memory. | |
for (std::size_t i = 0; i < config_.order - unigrams_are_sorted; ++i) { | |
sorts[i].Merge(0); | |
} | |
// There's no lazy merge, so just divide memory amongst the chains. | |
CreateChains(config_.TotalMemory(), counts); | |
chains_.back().ActivateProgress(); | |
if (unigrams_are_sorted) { | |
chains_[0] >> unigrams_.Source(); | |
second_config.entry_size = NGram<BuildingPayload>::TotalSize(1); | |
second.push_back(second_config); | |
second.back() >> unigrams_.Source(); | |
} | |
for (std::size_t i = unigrams_are_sorted; i < config_.order; ++i) { | |
util::scoped_fd fd(sorts[i - unigrams_are_sorted].StealCompleted()); | |
chains_[i].SetProgressTarget(util::SizeOrThrow(fd.get())); | |
chains_[i] >> util::stream::PRead(util::DupOrThrow(fd.get()), true); | |
second_config.entry_size = NGram<BuildingPayload>::TotalSize(i + 1); | |
second.push_back(second_config); | |
second.back() >> util::stream::PRead(fd.release(), true); | |
} | |
} | |
// There is no sort after this, so go for broke on lazy merging. | |
template <class Compare> void MaximumLazyInput(const std::vector<uint64_t> &counts, Sorts<Compare> &sorts) { | |
// Determine the minimum we can use for all the chains. | |
std::size_t min_chains = 0; | |
for (std::size_t i = 0; i < config_.order; ++i) { | |
min_chains += std::min(counts[i] * NGram<BuildingPayload>::TotalSize(i + 1), static_cast<uint64_t>(config_.minimum_block)); | |
} | |
std::size_t for_merge = min_chains > config_.TotalMemory() ? 0 : (config_.TotalMemory() - min_chains); | |
std::vector<std::size_t> laziness; | |
// Prioritize longer n-grams. | |
for (util::stream::Sort<SuffixOrder> *i = sorts.end() - 1; i >= sorts.begin(); --i) { | |
laziness.push_back(i->Merge(for_merge)); | |
assert(for_merge >= laziness.back()); | |
for_merge -= laziness.back(); | |
} | |
std::reverse(laziness.begin(), laziness.end()); | |
CreateChains(for_merge + min_chains, counts); | |
chains_.back().ActivateProgress(); | |
chains_[0] >> unigrams_.Source(); | |
for (std::size_t i = 1; i < config_.order; ++i) { | |
sorts[i - 1].Output(chains_[i], laziness[i - 1]); | |
} | |
} | |
template <class Compare> void SetupSorts(Sorts<Compare> &sorts, bool exclude_unigrams) { | |
sorts.Init(config_.order - exclude_unigrams); | |
// Unigrams don't get sorted because their order is always the same. | |
if (exclude_unigrams) chains_[0] >> unigrams_.Sink() >> util::stream::kRecycle; | |
for (std::size_t i = exclude_unigrams; i < config_.order; ++i) { | |
sorts.push_back(chains_[i], config_.sort, Compare(i + 1)); | |
} | |
chains_.Wait(true); | |
} | |
unsigned int Steps() const { return steps_; } | |
private: | |
// Create chains, allocating memory to them. Totally heuristic. Count | |
// bounds are upper bounds on the counts or not present. | |
void CreateChains(std::size_t remaining_mem, const std::vector<uint64_t> &count_bounds) { | |
std::vector<std::size_t> assignments; | |
assignments.reserve(config_.order); | |
// Start by assigning maximum memory usage (to be refined later). | |
for (std::size_t i = 0; i < count_bounds.size(); ++i) { | |
assignments.push_back(static_cast<std::size_t>(std::min( | |
static_cast<uint64_t>(remaining_mem), | |
count_bounds[i] * static_cast<uint64_t>(NGram<BuildingPayload>::TotalSize(i + 1))))); | |
} | |
assignments.resize(config_.order, remaining_mem); | |
// Now we know how much memory everybody wants. How much will they get? | |
// Proportional to this. | |
std::vector<float> portions; | |
// Indices of orders that have yet to be assigned. | |
std::vector<std::size_t> unassigned; | |
for (std::size_t i = 0; i < config_.order; ++i) { | |
portions.push_back(static_cast<float>((i+1) * NGram<BuildingPayload>::TotalSize(i+1))); | |
unassigned.push_back(i); | |
} | |
/*If somebody doesn't eat their full dinner, give it to the rest of the | |
* family. Then somebody else might not eat their full dinner etc. Ends | |
* when everybody unassigned is hungry. | |
*/ | |
float sum; | |
bool found_more; | |
std::vector<std::size_t> block_count(config_.order); | |
do { | |
sum = 0.0; | |
for (std::size_t i = 0; i < unassigned.size(); ++i) { | |
sum += portions[unassigned[i]]; | |
} | |
found_more = false; | |
// If the proportional assignment is more than needed, give it just what it needs. | |
for (std::vector<std::size_t>::iterator i = unassigned.begin(); i != unassigned.end();) { | |
if (assignments[*i] <= remaining_mem * (portions[*i] / sum)) { | |
remaining_mem -= assignments[*i]; | |
block_count[*i] = 1; | |
i = unassigned.erase(i); | |
found_more = true; | |
} else { | |
++i; | |
} | |
} | |
} while (found_more); | |
for (std::vector<std::size_t>::iterator i = unassigned.begin(); i != unassigned.end(); ++i) { | |
assignments[*i] = remaining_mem * (portions[*i] / sum); | |
block_count[*i] = config_.block_count; | |
} | |
chains_.clear(); | |
std::cerr << "Chain sizes:"; | |
for (std::size_t i = 0; i < config_.order; ++i) { | |
// Always have enough for at least one record. | |
// This was crashing if e.g. there was no 5-gram. | |
assignments[i] = std::max(assignments[i], block_count[i] * NGram<BuildingPayload>::TotalSize(i + 1)); | |
std::cerr << ' ' << (i+1) << ":" << assignments[i]; | |
chains_.push_back(util::stream::ChainConfig(NGram<BuildingPayload>::TotalSize(i + 1), block_count[i], assignments[i])); | |
} | |
std::cerr << std::endl; | |
} | |
PipelineConfig &config_; | |
util::stream::Chains chains_; | |
util::stream::FileBuffer unigrams_; | |
const unsigned int steps_; | |
}; | |
util::stream::Sort<SuffixOrder, CombineCounts> *CountText(int text_file /* input */, int vocab_file /* output */, Master &master, uint64_t &token_count, WordIndex &type_count, std::string &text_file_name, std::vector<bool> &prune_words) { | |
const PipelineConfig &config = master.Config(); | |
std::cerr << "=== 1/" << master.Steps() << " Counting and sorting n-grams ===" << std::endl; | |
const std::size_t vocab_usage = CorpusCount::VocabUsage(config.vocab_estimate); | |
UTIL_THROW_IF(config.TotalMemory() < vocab_usage, util::Exception, "Vocab hash size estimate " << vocab_usage << " exceeds total memory " << config.TotalMemory()); | |
std::size_t memory_for_chain = | |
// This much memory to work with after vocab hash table. | |
static_cast<float>(config.TotalMemory() - vocab_usage) / | |
// Solve for block size including the dedupe multiplier for one block. | |
(static_cast<float>(config.block_count) + CorpusCount::DedupeMultiplier(config.order)) * | |
// Chain likes memory expressed in terms of total memory. | |
static_cast<float>(config.block_count); | |
util::stream::Chain chain(util::stream::ChainConfig(NGram<BuildingPayload>::TotalSize(config.order), config.block_count, memory_for_chain)); | |
type_count = config.vocab_estimate; | |
util::FilePiece text(text_file, NULL, &std::cerr); | |
text_file_name = text.FileName(); | |
CorpusCount counter(text, vocab_file, true, token_count, type_count, prune_words, config.prune_vocab_file, chain.BlockSize() / chain.EntrySize(), config.disallowed_symbol_action); | |
chain >> boost::ref(counter); | |
util::scoped_ptr<util::stream::Sort<SuffixOrder, CombineCounts> > sorter(new util::stream::Sort<SuffixOrder, CombineCounts>(chain, config.sort, SuffixOrder(config.order), CombineCounts())); | |
chain.Wait(true); | |
return sorter.release(); | |
} | |
void InitialProbabilities(const std::vector<uint64_t> &counts, const std::vector<uint64_t> &counts_pruned, const std::vector<Discount> &discounts, Master &master, Sorts<SuffixOrder> &primary, util::FixedArray<util::stream::FileBuffer> &gammas, const std::vector<uint64_t> &prune_thresholds, bool prune_vocab, const SpecialVocab &specials) { | |
const PipelineConfig &config = master.Config(); | |
util::stream::Chains second(config.order); | |
{ | |
Sorts<ContextOrder> sorts; | |
master.SetupSorts(sorts, !config.renumber_vocabulary); | |
PrintStatistics(counts, counts_pruned, discounts); | |
lm::ngram::ShowSizes(counts_pruned); | |
std::cerr << "=== 3/" << master.Steps() << " Calculating and sorting initial probabilities ===" << std::endl; | |
master.SortAndReadTwice(counts_pruned, sorts, second, config.initial_probs.adder_in); | |
} | |
util::stream::Chains gamma_chains(config.order); | |
InitialProbabilities(config.initial_probs, discounts, master.MutableChains(), second, gamma_chains, prune_thresholds, prune_vocab, specials); | |
// Don't care about gamma for 0. | |
gamma_chains[0] >> util::stream::kRecycle; | |
gammas.Init(config.order - 1); | |
for (std::size_t i = 1; i < config.order; ++i) { | |
gammas.push_back(util::MakeTemp(config.TempPrefix())); | |
gamma_chains[i] >> gammas[i - 1].Sink() >> util::stream::kRecycle; | |
} | |
// Has to be done here due to gamma_chains scope. | |
master.SetupSorts(primary, true); | |
} | |
void InterpolateProbabilities(const std::vector<uint64_t> &counts, Master &master, Sorts<SuffixOrder> &primary, util::FixedArray<util::stream::FileBuffer> &gammas, Output &output, const SpecialVocab &specials) { | |
std::cerr << "=== 4/" << master.Steps() << " Calculating and writing order-interpolated probabilities ===" << std::endl; | |
const PipelineConfig &config = master.Config(); | |
master.MaximumLazyInput(counts, primary); | |
util::stream::Chains gamma_chains(config.order - 1); | |
for (std::size_t i = 0; i < config.order - 1; ++i) { | |
util::stream::ChainConfig read_backoffs(config.read_backoffs); | |
if(config.prune_vocab || config.prune_thresholds[i + 1] > 0) | |
read_backoffs.entry_size = sizeof(HashGamma); | |
else | |
read_backoffs.entry_size = sizeof(float); | |
gamma_chains.push_back(read_backoffs); | |
gamma_chains.back() >> gammas[i].Source(true); | |
} | |
master >> Interpolate(std::max(master.Config().vocab_size_for_unk, counts[0] - 1 /* <s> is not included */), util::stream::ChainPositions(gamma_chains), config.prune_thresholds, config.prune_vocab, config.output_q, specials); | |
gamma_chains >> util::stream::kRecycle; | |
output.SinkProbs(master.MutableChains()); | |
} | |
class VocabNumbering { | |
public: | |
VocabNumbering(int final_vocab, StringPiece temp_prefix, bool renumber) | |
: final_vocab_(final_vocab), | |
renumber_(renumber), | |
specials_(kBOS, kEOS) { | |
if (renumber) { | |
temporary_.reset(util::MakeTemp(temp_prefix)); | |
} | |
} | |
int WriteOnTheFly() const { return renumber_ ? temporary_.get() : final_vocab_; } | |
// Compute the vocabulary mapping and return the memory used. | |
std::size_t ComputeMapping(WordIndex type_count) { | |
if (!renumber_) return 0; | |
ngram::SortedVocabulary::ComputeRenumbering(type_count, temporary_.get(), final_vocab_, vocab_mapping_); | |
temporary_.reset(); | |
return sizeof(WordIndex) * vocab_mapping_.size(); | |
} | |
void ApplyRenumber(util::stream::Chains &chains) { | |
if (!renumber_) return; | |
for (std::size_t i = 0; i < chains.size(); ++i) { | |
chains[i] >> Renumber(&*vocab_mapping_.begin(), i + 1); | |
} | |
specials_ = SpecialVocab(vocab_mapping_[specials_.BOS()], vocab_mapping_[specials_.EOS()]); | |
} | |
const SpecialVocab &Specials() const { return specials_; } | |
private: | |
int final_vocab_; | |
// Out of order vocab file created on the fly. | |
util::scoped_fd temporary_; | |
bool renumber_; | |
std::vector<WordIndex> vocab_mapping_; | |
SpecialVocab specials_; | |
}; | |
} // namespace | |
void Pipeline(PipelineConfig &config, int text_file, Output &output) { | |
// Some fail-fast sanity checks. | |
if (config.sort.buffer_size * 4 > config.TotalMemory()) { | |
config.sort.buffer_size = config.TotalMemory() / 4; | |
std::cerr << "Warning: changing sort block size to " << config.sort.buffer_size << " bytes due to low total memory." << std::endl; | |
} | |
if (config.minimum_block < NGram<BuildingPayload>::TotalSize(config.order)) { | |
config.minimum_block = NGram<BuildingPayload>::TotalSize(config.order); | |
std::cerr << "Warning: raising minimum block to " << config.minimum_block << " to fit an ngram in every block." << std::endl; | |
} | |
UTIL_THROW_IF(config.sort.buffer_size < config.minimum_block, util::Exception, "Sort block size " << config.sort.buffer_size << " is below the minimum block size " << config.minimum_block << "."); | |
UTIL_THROW_IF(config.TotalMemory() < config.minimum_block * config.order * config.block_count, util::Exception, | |
"Not enough memory to fit " << (config.order * config.block_count) << " blocks with minimum size " << config.minimum_block << ". Increase memory to " << (config.minimum_block * config.order * config.block_count) << " bytes or decrease the minimum block size."); | |
Master master(config, output.Steps()); | |
// master's destructor will wait for chains. But they might be deadlocked if | |
// this thread dies because e.g. it ran out of memory. | |
try { | |
VocabNumbering numbering(output.VocabFile(), config.TempPrefix(), config.renumber_vocabulary); | |
uint64_t token_count; | |
WordIndex type_count; | |
std::string text_file_name; | |
std::vector<bool> prune_words; | |
util::scoped_ptr<util::stream::Sort<SuffixOrder, CombineCounts> > sorted_counts( | |
CountText(text_file, numbering.WriteOnTheFly(), master, token_count, type_count, text_file_name, prune_words)); | |
std::cerr << "Unigram tokens " << token_count << " types " << type_count << std::endl; | |
// Create vocab mapping, which uses temporary memory, while nothing else is happening. | |
std::size_t subtract_for_numbering = numbering.ComputeMapping(type_count); | |
std::cerr << "=== 2/" << master.Steps() << " Calculating and sorting adjusted counts ===" << std::endl; | |
master.InitForAdjust(*sorted_counts, type_count, subtract_for_numbering); | |
sorted_counts.reset(); | |
std::vector<uint64_t> counts; | |
std::vector<uint64_t> counts_pruned; | |
std::vector<Discount> discounts; | |
master >> AdjustCounts(config.prune_thresholds, counts, counts_pruned, prune_words, config.discount, discounts); | |
numbering.ApplyRenumber(master.MutableChains()); | |
{ | |
util::FixedArray<util::stream::FileBuffer> gammas; | |
Sorts<SuffixOrder> primary; | |
InitialProbabilities(counts, counts_pruned, discounts, master, primary, gammas, config.prune_thresholds, config.prune_vocab, numbering.Specials()); | |
output.SetHeader(HeaderInfo(text_file_name, token_count, counts_pruned)); | |
// Also does output. | |
InterpolateProbabilities(counts_pruned, master, primary, gammas, output, numbering.Specials()); | |
} | |
} catch (const util::Exception &e) { | |
std::cerr << e.what() << std::endl; | |
abort(); | |
} | |
} | |
}} // namespaces | |