peacock-data-public-datasets-idc-temp-code
/
cc-multilingual-main
/cc_net
/third_party
/kenlm
/lm
/interpolate
/pipeline.cc
namespace lm { namespace interpolate { namespace { | |
/* Put the original input files on chains and renumber them */ | |
void SetupInputs(std::size_t buffer_size, const UniversalVocab &vocab, util::FixedArray<ModelBuffer> &models, bool exclude_highest, util::FixedArray<util::stream::Chains> &chains, util::FixedArray<util::stream::ChainPositions> &positions) { | |
chains.clear(); | |
positions.clear(); | |
// TODO: much better memory sizing heuristics e.g. not making the chain larger than it will use. | |
util::stream::ChainConfig config(0, 2, buffer_size); | |
for (std::size_t i = 0; i < models.size(); ++i) { | |
chains.push_back(models[i].Order() - exclude_highest); | |
for (std::size_t j = 0; j < models[i].Order() - exclude_highest; ++j) { | |
config.entry_size = sizeof(WordIndex) * (j + 1) + sizeof(float) * 2; // TODO do not include wasteful backoff for highest. | |
chains.back().push_back(config); | |
} | |
if (i == models.size() - 1) | |
chains.back().back().ActivateProgress(); | |
models[i].Source(chains.back()); | |
for (std::size_t j = 0; j < models[i].Order() - exclude_highest; ++j) { | |
chains[i][j] >> Renumber(vocab.Mapping(i), j + 1); | |
} | |
} | |
for (std::size_t i = 0; i < chains.size(); ++i) { | |
positions.push_back(chains[i]); | |
} | |
} | |
template <class Compare> void SinkSort(const util::stream::SortConfig &config, util::stream::Chains &chains, util::stream::Sorts<Compare> &sorts) { | |
for (std::size_t i = 0; i < chains.size(); ++i) { | |
sorts.push_back(chains[i], config, Compare(i + 1)); | |
} | |
} | |
template <class Compare> void SourceSort(util::stream::Chains &chains, util::stream::Sorts<Compare> &sorts) { | |
// TODO memory management | |
for (std::size_t i = 0; i < sorts.size(); ++i) { | |
sorts[i].Merge(sorts[i].DefaultLazy()); | |
} | |
for (std::size_t i = 0; i < sorts.size(); ++i) { | |
sorts[i].Output(chains[i], sorts[i].DefaultLazy()); | |
} | |
} | |
} // namespace | |
void Pipeline(util::FixedArray<ModelBuffer> &models, const Config &config, int write_file) { | |
// Setup InterpolateInfo and UniversalVocab. | |
InterpolateInfo info; | |
info.lambdas = config.lambdas; | |
std::vector<WordIndex> vocab_sizes; | |
util::scoped_fd vocab_null(util::MakeTemp(config.sort.temp_prefix)); | |
std::size_t max_order = 0; | |
util::FixedArray<int> vocab_files(models.size()); | |
for (ModelBuffer *i = models.begin(); i != models.end(); ++i) { | |
info.orders.push_back(i->Order()); | |
vocab_sizes.push_back(i->Counts()[0]); | |
vocab_files.push_back(i->VocabFile()); | |
max_order = std::max(max_order, i->Order()); | |
} | |
util::scoped_ptr<UniversalVocab> vocab(new UniversalVocab(vocab_sizes)); | |
{ | |
ngram::ImmediateWriteWordsWrapper writer(NULL, vocab_null.get(), 0); | |
MergeVocab(vocab_files, *vocab, writer); | |
} | |
std::cerr << "Merging probabilities." << std::endl; | |
// Pass 1: merge probabilities | |
util::FixedArray<util::stream::Chains> input_chains(models.size()); | |
util::FixedArray<util::stream::ChainPositions> models_by_order(models.size()); | |
SetupInputs(config.BufferSize(), *vocab, models, false, input_chains, models_by_order); | |
util::stream::Chains merged_probs(max_order); | |
for (std::size_t i = 0; i < max_order; ++i) { | |
merged_probs.push_back(util::stream::ChainConfig(PartialProbGamma::TotalSize(info, i + 1), 2, config.BufferSize())); // TODO: not buffer_size | |
} | |
merged_probs >> MergeProbabilities(info, models_by_order); | |
std::vector<uint64_t> counts(max_order); | |
for (std::size_t i = 0; i < max_order; ++i) { | |
merged_probs[i] >> util::stream::CountRecords(&counts[i]); | |
} | |
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) { | |
*i >> util::stream::kRecycle; | |
} | |
// Pass 2: normalize. | |
{ | |
util::stream::Sorts<ContextOrder> sorts(merged_probs.size()); | |
SinkSort(config.sort, merged_probs, sorts); | |
merged_probs.Wait(true); | |
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) { | |
i->Wait(true); | |
} | |
SourceSort(merged_probs, sorts); | |
} | |
std::cerr << "Normalizing" << std::endl; | |
SetupInputs(config.BufferSize(), *vocab, models, true, input_chains, models_by_order); | |
util::stream::Chains probabilities(max_order), backoffs(max_order - 1); | |
std::size_t block_count = 2; | |
for (std::size_t i = 0; i < max_order; ++i) { | |
// Careful accounting to ensure RewindableStream can fit the entire vocabulary. | |
block_count = std::max<std::size_t>(block_count, 2); | |
// This much needs to fit in RewindableStream. | |
std::size_t fit = NGram<float>::TotalSize(i + 1) * counts[0]; | |
// fit / (block_count - 1) rounded up | |
std::size_t min_block = (fit + block_count - 2) / (block_count - 1); | |
std::size_t specify = std::max(config.BufferSize(), min_block * block_count); | |
probabilities.push_back(util::stream::ChainConfig(NGram<float>::TotalSize(i + 1), block_count, specify)); | |
} | |
for (std::size_t i = 0; i < max_order - 1; ++i) { | |
backoffs.push_back(util::stream::ChainConfig(sizeof(float), 2, config.BufferSize())); | |
} | |
Normalize(info, models_by_order, merged_probs, probabilities, backoffs); | |
util::FixedArray<util::stream::FileBuffer> backoff_buffers(backoffs.size()); | |
for (std::size_t i = 0; i < max_order - 1; ++i) { | |
backoff_buffers.push_back(util::MakeTemp(config.sort.temp_prefix)); | |
backoffs[i] >> backoff_buffers.back().Sink() >> util::stream::kRecycle; | |
} | |
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) { | |
*i >> util::stream::kRecycle; | |
} | |
merged_probs >> util::stream::kRecycle; | |
// Pass 3: backoffs in the right place. | |
{ | |
util::stream::Sorts<SuffixOrder> sorts(probabilities.size()); | |
SinkSort(config.sort, probabilities, sorts); | |
probabilities.Wait(true); | |
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) { | |
i->Wait(true); | |
} | |
backoffs.Wait(true); | |
merged_probs.Wait(true); | |
// destroy universal vocab to save RAM. | |
vocab.reset(); | |
SourceSort(probabilities, sorts); | |
} | |
std::cerr << "Reunifying backoffs" << std::endl; | |
util::stream::ChainPositions prob_pos(max_order - 1); | |
util::stream::Chains combined(max_order - 1); | |
for (std::size_t i = 0; i < max_order - 1; ++i) { | |
if (i == max_order - 2) | |
backoffs[i].ActivateProgress(); | |
backoffs[i].SetProgressTarget(backoff_buffers[i].Size()); | |
backoffs[i] >> backoff_buffers[i].Source(true); | |
prob_pos.push_back(probabilities[i].Add()); | |
combined.push_back(util::stream::ChainConfig(NGram<ProbBackoff>::TotalSize(i + 1), 2, config.BufferSize())); | |
} | |
util::stream::ChainPositions backoff_pos(backoffs); | |
ReunifyBackoff(prob_pos, backoff_pos, combined); | |
util::stream::ChainPositions output_pos(max_order); | |
for (std::size_t i = 0; i < max_order - 1; ++i) { | |
output_pos.push_back(combined[i].Add()); | |
} | |
output_pos.push_back(probabilities.back().Add()); | |
probabilities >> util::stream::kRecycle; | |
backoffs >> util::stream::kRecycle; | |
combined >> util::stream::kRecycle; | |
// TODO genericize to ModelBuffer etc. | |
PrintARPA(vocab_null.get(), write_file, counts).Run(output_pos); | |
} | |
}} // namespaces | |