peacock-data-public-datasets-idc-temp-code
/
cc-multilingual-main
/cc_net
/third_party
/kenlm
/lm
/quantize.cc
/* Quantize into bins of equal size as described in | |
* M. Federico and N. Bertoldi. 2006. How many bits are needed | |
* to store probabilities for phrase-based translation? In Proc. | |
* of the Workshop on Statistical Machine Translation, pages | |
* 94–101, New York City, June. Association for Computa- | |
* tional Linguistics. | |
*/ | |
namespace lm { | |
namespace ngram { | |
namespace { | |
void MakeBins(std::vector<float> &values, float *centers, uint32_t bins) { | |
std::sort(values.begin(), values.end()); | |
std::vector<float>::const_iterator start = values.begin(), finish; | |
for (uint32_t i = 0; i < bins; ++i, ++centers, start = finish) { | |
finish = values.begin() + ((values.size() * static_cast<uint64_t>(i + 1)) / bins); | |
if (finish == start) { | |
// zero length bucket. | |
*centers = i ? *(centers - 1) : -std::numeric_limits<float>::infinity(); | |
} else { | |
*centers = std::accumulate(start, finish, 0.0) / static_cast<float>(finish - start); | |
} | |
} | |
} | |
const char kSeparatelyQuantizeVersion = 2; | |
} // namespace | |
void SeparatelyQuantize::UpdateConfigFromBinary(const BinaryFormat &file, uint64_t offset, Config &config) { | |
unsigned char buffer[3]; | |
file.ReadForConfig(buffer, 3, offset); | |
char version = buffer[0]; | |
config.prob_bits = buffer[1]; | |
config.backoff_bits = buffer[2]; | |
if (version != kSeparatelyQuantizeVersion) UTIL_THROW(FormatLoadException, "This file has quantization version " << (unsigned)version << " but the code expects version " << (unsigned)kSeparatelyQuantizeVersion); | |
} | |
void SeparatelyQuantize::SetupMemory(void *base, unsigned char order, const Config &config) { | |
prob_bits_ = config.prob_bits; | |
backoff_bits_ = config.backoff_bits; | |
// We need the reserved values. | |
if (config.prob_bits == 0) UTIL_THROW(ConfigException, "You can't quantize probability to zero"); | |
if (config.backoff_bits == 0) UTIL_THROW(ConfigException, "You can't quantize backoff to zero"); | |
if (config.prob_bits > 25) UTIL_THROW(ConfigException, "For efficiency reasons, quantizing probability supports at most 25 bits. Currently you have requested " << static_cast<unsigned>(config.prob_bits) << " bits."); | |
if (config.backoff_bits > 25) UTIL_THROW(ConfigException, "For efficiency reasons, quantizing backoff supports at most 25 bits. Currently you have requested " << static_cast<unsigned>(config.backoff_bits) << " bits."); | |
// Reserve 8 byte header for bit counts. | |
actual_base_ = static_cast<uint8_t*>(base); | |
float *start = reinterpret_cast<float*>(actual_base_ + 8); | |
for (unsigned char i = 0; i < order - 2; ++i) { | |
tables_[i][0] = Bins(prob_bits_, start); | |
start += (1ULL << prob_bits_); | |
tables_[i][1] = Bins(backoff_bits_, start); | |
start += (1ULL << backoff_bits_); | |
} | |
longest_ = tables_[order - 2][0] = Bins(prob_bits_, start); | |
} | |
void SeparatelyQuantize::Train(uint8_t order, std::vector<float> &prob, std::vector<float> &backoff) { | |
TrainProb(order, prob); | |
// Backoff | |
float *centers = tables_[order - 2][1].Populate(); | |
*(centers++) = kNoExtensionBackoff; | |
*(centers++) = kExtensionBackoff; | |
MakeBins(backoff, centers, (1ULL << backoff_bits_) - 2); | |
} | |
void SeparatelyQuantize::TrainProb(uint8_t order, std::vector<float> &prob) { | |
float *centers = tables_[order - 2][0].Populate(); | |
MakeBins(prob, centers, (1ULL << prob_bits_)); | |
} | |
void SeparatelyQuantize::FinishedLoading(const Config &config) { | |
uint8_t *actual_base = actual_base_; | |
*(actual_base++) = kSeparatelyQuantizeVersion; // version | |
*(actual_base++) = config.prob_bits; | |
*(actual_base++) = config.backoff_bits; | |
} | |
} // namespace ngram | |
} // namespace lm | |