peacock-data-public-datasets-idc-temp-code
/
cc-multilingual-main
/cc_net
/third_party
/kenlm
/util
/double-conversion
/fixed-dtoa.cc
// Copyright 2010 the V8 project authors. All rights reserved. | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are | |
// met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above | |
// copyright notice, this list of conditions and the following | |
// disclaimer in the documentation and/or other materials provided | |
// with the distribution. | |
// * Neither the name of Google Inc. nor the names of its | |
// contributors may be used to endorse or promote products derived | |
// from this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
namespace double_conversion { | |
// Represents a 128bit type. This class should be replaced by a native type on | |
// platforms that support 128bit integers. | |
class UInt128 { | |
public: | |
UInt128() : high_bits_(0), low_bits_(0) { } | |
UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } | |
void Multiply(uint32_t multiplicand) { | |
uint64_t accumulator; | |
accumulator = (low_bits_ & kMask32) * multiplicand; | |
uint32_t part = static_cast<uint32_t>(accumulator & kMask32); | |
accumulator >>= 32; | |
accumulator = accumulator + (low_bits_ >> 32) * multiplicand; | |
low_bits_ = (accumulator << 32) + part; | |
accumulator >>= 32; | |
accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; | |
part = static_cast<uint32_t>(accumulator & kMask32); | |
accumulator >>= 32; | |
accumulator = accumulator + (high_bits_ >> 32) * multiplicand; | |
high_bits_ = (accumulator << 32) + part; | |
ASSERT((accumulator >> 32) == 0); | |
} | |
void Shift(int shift_amount) { | |
ASSERT(-64 <= shift_amount && shift_amount <= 64); | |
if (shift_amount == 0) { | |
return; | |
} else if (shift_amount == -64) { | |
high_bits_ = low_bits_; | |
low_bits_ = 0; | |
} else if (shift_amount == 64) { | |
low_bits_ = high_bits_; | |
high_bits_ = 0; | |
} else if (shift_amount <= 0) { | |
high_bits_ <<= -shift_amount; | |
high_bits_ += low_bits_ >> (64 + shift_amount); | |
low_bits_ <<= -shift_amount; | |
} else { | |
low_bits_ >>= shift_amount; | |
low_bits_ += high_bits_ << (64 - shift_amount); | |
high_bits_ >>= shift_amount; | |
} | |
} | |
// Modifies *this to *this MOD (2^power). | |
// Returns *this DIV (2^power). | |
int DivModPowerOf2(int power) { | |
if (power >= 64) { | |
int result = static_cast<int>(high_bits_ >> (power - 64)); | |
high_bits_ -= static_cast<uint64_t>(result) << (power - 64); | |
return result; | |
} else { | |
uint64_t part_low = low_bits_ >> power; | |
uint64_t part_high = high_bits_ << (64 - power); | |
int result = static_cast<int>(part_low + part_high); | |
high_bits_ = 0; | |
low_bits_ -= part_low << power; | |
return result; | |
} | |
} | |
bool IsZero() const { | |
return high_bits_ == 0 && low_bits_ == 0; | |
} | |
int BitAt(int position) const { | |
if (position >= 64) { | |
return static_cast<int>(high_bits_ >> (position - 64)) & 1; | |
} else { | |
return static_cast<int>(low_bits_ >> position) & 1; | |
} | |
} | |
private: | |
static const uint64_t kMask32 = 0xFFFFFFFF; | |
// Value == (high_bits_ << 64) + low_bits_ | |
uint64_t high_bits_; | |
uint64_t low_bits_; | |
}; | |
static const int kDoubleSignificandSize = 53; // Includes the hidden bit. | |
static void FillDigits32FixedLength(uint32_t number, int requested_length, | |
Vector<char> buffer, int* length) { | |
for (int i = requested_length - 1; i >= 0; --i) { | |
buffer[(*length) + i] = '0' + number % 10; | |
number /= 10; | |
} | |
*length += requested_length; | |
} | |
static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { | |
int number_length = 0; | |
// We fill the digits in reverse order and exchange them afterwards. | |
while (number != 0) { | |
int digit = number % 10; | |
number /= 10; | |
buffer[(*length) + number_length] = static_cast<char>('0' + digit); | |
number_length++; | |
} | |
// Exchange the digits. | |
int i = *length; | |
int j = *length + number_length - 1; | |
while (i < j) { | |
char tmp = buffer[i]; | |
buffer[i] = buffer[j]; | |
buffer[j] = tmp; | |
i++; | |
j--; | |
} | |
*length += number_length; | |
} | |
static void FillDigits64FixedLength(uint64_t number, | |
Vector<char> buffer, int* length) { | |
const uint32_t kTen7 = 10000000; | |
// For efficiency cut the number into 3 uint32_t parts, and print those. | |
uint32_t part2 = static_cast<uint32_t>(number % kTen7); | |
number /= kTen7; | |
uint32_t part1 = static_cast<uint32_t>(number % kTen7); | |
uint32_t part0 = static_cast<uint32_t>(number / kTen7); | |
FillDigits32FixedLength(part0, 3, buffer, length); | |
FillDigits32FixedLength(part1, 7, buffer, length); | |
FillDigits32FixedLength(part2, 7, buffer, length); | |
} | |
static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { | |
const uint32_t kTen7 = 10000000; | |
// For efficiency cut the number into 3 uint32_t parts, and print those. | |
uint32_t part2 = static_cast<uint32_t>(number % kTen7); | |
number /= kTen7; | |
uint32_t part1 = static_cast<uint32_t>(number % kTen7); | |
uint32_t part0 = static_cast<uint32_t>(number / kTen7); | |
if (part0 != 0) { | |
FillDigits32(part0, buffer, length); | |
FillDigits32FixedLength(part1, 7, buffer, length); | |
FillDigits32FixedLength(part2, 7, buffer, length); | |
} else if (part1 != 0) { | |
FillDigits32(part1, buffer, length); | |
FillDigits32FixedLength(part2, 7, buffer, length); | |
} else { | |
FillDigits32(part2, buffer, length); | |
} | |
} | |
static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) { | |
// An empty buffer represents 0. | |
if (*length == 0) { | |
buffer[0] = '1'; | |
*decimal_point = 1; | |
*length = 1; | |
return; | |
} | |
// Round the last digit until we either have a digit that was not '9' or until | |
// we reached the first digit. | |
buffer[(*length) - 1]++; | |
for (int i = (*length) - 1; i > 0; --i) { | |
if (buffer[i] != '0' + 10) { | |
return; | |
} | |
buffer[i] = '0'; | |
buffer[i - 1]++; | |
} | |
// If the first digit is now '0' + 10, we would need to set it to '0' and add | |
// a '1' in front. However we reach the first digit only if all following | |
// digits had been '9' before rounding up. Now all trailing digits are '0' and | |
// we simply switch the first digit to '1' and update the decimal-point | |
// (indicating that the point is now one digit to the right). | |
if (buffer[0] == '0' + 10) { | |
buffer[0] = '1'; | |
(*decimal_point)++; | |
} | |
} | |
// The given fractionals number represents a fixed-point number with binary | |
// point at bit (-exponent). | |
// Preconditions: | |
// -128 <= exponent <= 0. | |
// 0 <= fractionals * 2^exponent < 1 | |
// The buffer holds the result. | |
// The function will round its result. During the rounding-process digits not | |
// generated by this function might be updated, and the decimal-point variable | |
// might be updated. If this function generates the digits 99 and the buffer | |
// already contained "199" (thus yielding a buffer of "19999") then a | |
// rounding-up will change the contents of the buffer to "20000". | |
static void FillFractionals(uint64_t fractionals, int exponent, | |
int fractional_count, Vector<char> buffer, | |
int* length, int* decimal_point) { | |
ASSERT(-128 <= exponent && exponent <= 0); | |
// 'fractionals' is a fixed-point number, with binary point at bit | |
// (-exponent). Inside the function the non-converted remainder of fractionals | |
// is a fixed-point number, with binary point at bit 'point'. | |
if (-exponent <= 64) { | |
// One 64 bit number is sufficient. | |
ASSERT(fractionals >> 56 == 0); | |
int point = -exponent; | |
for (int i = 0; i < fractional_count; ++i) { | |
if (fractionals == 0) break; | |
// Instead of multiplying by 10 we multiply by 5 and adjust the point | |
// location. This way the fractionals variable will not overflow. | |
// Invariant at the beginning of the loop: fractionals < 2^point. | |
// Initially we have: point <= 64 and fractionals < 2^56 | |
// After each iteration the point is decremented by one. | |
// Note that 5^3 = 125 < 128 = 2^7. | |
// Therefore three iterations of this loop will not overflow fractionals | |
// (even without the subtraction at the end of the loop body). At this | |
// time point will satisfy point <= 61 and therefore fractionals < 2^point | |
// and any further multiplication of fractionals by 5 will not overflow. | |
fractionals *= 5; | |
point--; | |
int digit = static_cast<int>(fractionals >> point); | |
ASSERT(digit <= 9); | |
buffer[*length] = static_cast<char>('0' + digit); | |
(*length)++; | |
fractionals -= static_cast<uint64_t>(digit) << point; | |
} | |
// If the first bit after the point is set we have to round up. | |
ASSERT(fractionals == 0 || point - 1 >= 0); | |
if ((fractionals != 0) && ((fractionals >> (point - 1)) & 1) == 1) { | |
RoundUp(buffer, length, decimal_point); | |
} | |
} else { // We need 128 bits. | |
ASSERT(64 < -exponent && -exponent <= 128); | |
UInt128 fractionals128 = UInt128(fractionals, 0); | |
fractionals128.Shift(-exponent - 64); | |
int point = 128; | |
for (int i = 0; i < fractional_count; ++i) { | |
if (fractionals128.IsZero()) break; | |
// As before: instead of multiplying by 10 we multiply by 5 and adjust the | |
// point location. | |
// This multiplication will not overflow for the same reasons as before. | |
fractionals128.Multiply(5); | |
point--; | |
int digit = fractionals128.DivModPowerOf2(point); | |
ASSERT(digit <= 9); | |
buffer[*length] = static_cast<char>('0' + digit); | |
(*length)++; | |
} | |
if (fractionals128.BitAt(point - 1) == 1) { | |
RoundUp(buffer, length, decimal_point); | |
} | |
} | |
} | |
// Removes leading and trailing zeros. | |
// If leading zeros are removed then the decimal point position is adjusted. | |
static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { | |
while (*length > 0 && buffer[(*length) - 1] == '0') { | |
(*length)--; | |
} | |
int first_non_zero = 0; | |
while (first_non_zero < *length && buffer[first_non_zero] == '0') { | |
first_non_zero++; | |
} | |
if (first_non_zero != 0) { | |
for (int i = first_non_zero; i < *length; ++i) { | |
buffer[i - first_non_zero] = buffer[i]; | |
} | |
*length -= first_non_zero; | |
*decimal_point -= first_non_zero; | |
} | |
} | |
bool FastFixedDtoa(double v, | |
int fractional_count, | |
Vector<char> buffer, | |
int* length, | |
int* decimal_point) { | |
const uint32_t kMaxUInt32 = 0xFFFFFFFF; | |
uint64_t significand = Double(v).Significand(); | |
int exponent = Double(v).Exponent(); | |
// v = significand * 2^exponent (with significand a 53bit integer). | |
// If the exponent is larger than 20 (i.e. we may have a 73bit number) then we | |
// don't know how to compute the representation. 2^73 ~= 9.5*10^21. | |
// If necessary this limit could probably be increased, but we don't need | |
// more. | |
if (exponent > 20) return false; | |
if (fractional_count > 20) return false; | |
*length = 0; | |
// At most kDoubleSignificandSize bits of the significand are non-zero. | |
// Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero | |
// bits: 0..11*..0xxx..53*..xx | |
if (exponent + kDoubleSignificandSize > 64) { | |
// The exponent must be > 11. | |
// | |
// We know that v = significand * 2^exponent. | |
// And the exponent > 11. | |
// We simplify the task by dividing v by 10^17. | |
// The quotient delivers the first digits, and the remainder fits into a 64 | |
// bit number. | |
// Dividing by 10^17 is equivalent to dividing by 5^17*2^17. | |
const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17 | |
uint64_t divisor = kFive17; | |
int divisor_power = 17; | |
uint64_t dividend = significand; | |
uint32_t quotient; | |
uint64_t remainder; | |
// Let v = f * 2^e with f == significand and e == exponent. | |
// Then need q (quotient) and r (remainder) as follows: | |
// v = q * 10^17 + r | |
// f * 2^e = q * 10^17 + r | |
// f * 2^e = q * 5^17 * 2^17 + r | |
// If e > 17 then | |
// f * 2^(e-17) = q * 5^17 + r/2^17 | |
// else | |
// f = q * 5^17 * 2^(17-e) + r/2^e | |
if (exponent > divisor_power) { | |
// We only allow exponents of up to 20 and therefore (17 - e) <= 3 | |
dividend <<= exponent - divisor_power; | |
quotient = static_cast<uint32_t>(dividend / divisor); | |
remainder = (dividend % divisor) << divisor_power; | |
} else { | |
divisor <<= divisor_power - exponent; | |
quotient = static_cast<uint32_t>(dividend / divisor); | |
remainder = (dividend % divisor) << exponent; | |
} | |
FillDigits32(quotient, buffer, length); | |
FillDigits64FixedLength(remainder, buffer, length); | |
*decimal_point = *length; | |
} else if (exponent >= 0) { | |
// 0 <= exponent <= 11 | |
significand <<= exponent; | |
FillDigits64(significand, buffer, length); | |
*decimal_point = *length; | |
} else if (exponent > -kDoubleSignificandSize) { | |
// We have to cut the number. | |
uint64_t integrals = significand >> -exponent; | |
uint64_t fractionals = significand - (integrals << -exponent); | |
if (integrals > kMaxUInt32) { | |
FillDigits64(integrals, buffer, length); | |
} else { | |
FillDigits32(static_cast<uint32_t>(integrals), buffer, length); | |
} | |
*decimal_point = *length; | |
FillFractionals(fractionals, exponent, fractional_count, | |
buffer, length, decimal_point); | |
} else if (exponent < -128) { | |
// This configuration (with at most 20 digits) means that all digits must be | |
// 0. | |
ASSERT(fractional_count <= 20); | |
buffer[0] = '\0'; | |
*length = 0; | |
*decimal_point = -fractional_count; | |
} else { | |
*decimal_point = 0; | |
FillFractionals(significand, exponent, fractional_count, | |
buffer, length, decimal_point); | |
} | |
TrimZeros(buffer, length, decimal_point); | |
buffer[*length] = '\0'; | |
if ((*length) == 0) { | |
// The string is empty and the decimal_point thus has no importance. Mimick | |
// Gay's dtoa and and set it to -fractional_count. | |
*decimal_point = -fractional_count; | |
} | |
return true; | |
} | |
} // namespace double_conversion | |