Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- cc-multilingual-main/cc_net/build/lib/cc_net/__init__.py +5 -0
- cc-multilingual-main/cc_net/build/lib/cc_net/__main__.py +18 -0
- cc-multilingual-main/cc_net/build/lib/cc_net/dedup.py +478 -0
- cc-multilingual-main/cc_net/build/lib/cc_net/execution.py +248 -0
- cc-multilingual-main/cc_net/build/lib/cc_net/flat_hash_set.py +247 -0
- cc-multilingual-main/cc_net/build/lib/cc_net/get_wiki_cirrus.py +127 -0
- cc-multilingual-main/cc_net/build/lib/cc_net/jsonql.py +1340 -0
- cc-multilingual-main/cc_net/build/lib/cc_net/minify.py +304 -0
- cc-multilingual-main/cc_net/build/lib/cc_net/split_by_lang.py +151 -0
- cc-multilingual-main/cc_net/build/lib/cc_net/tokenizer.py +79 -0
- cc-multilingual-main/cc_net/cc_net/__init__.py +5 -0
- cc-multilingual-main/cc_net/cc_net/__init__.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__main__.py +18 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/__init__.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/__init__.cpython-312.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/__init__.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/__main__.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/__main__.cpython-312.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/__main__.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/dedup.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/dedup.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/execution.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/execution.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/flat_hash_set.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/flat_hash_set.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/jsonql.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/jsonql.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/mine.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/mine.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/minify.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/minify.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/perplexity.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/perplexity.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/process_wet_file.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/process_wet_file.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/regroup.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/regroup.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/split_by_lang.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/split_by_lang.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/text_normalizer.cpython-310.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/__pycache__/text_normalizer.cpython-38.pyc +0 -0
- cc-multilingual-main/cc_net/cc_net/break.ipynb +0 -0
- cc-multilingual-main/cc_net/cc_net/data/cutoff.csv +101 -0
- cc-multilingual-main/cc_net/cc_net/data/test_stats.json +38 -0
- cc-multilingual-main/cc_net/cc_net/dedup.py +478 -0
- cc-multilingual-main/cc_net/cc_net/execution.py +248 -0
- cc-multilingual-main/cc_net/cc_net/flat_hash_set.py +247 -0
- cc-multilingual-main/cc_net/cc_net/get_wiki_cirrus.py +127 -0
- cc-multilingual-main/cc_net/cc_net/jsonql.py +1340 -0
- cc-multilingual-main/cc_net/cc_net/mine.py +648 -0
cc-multilingual-main/cc_net/build/lib/cc_net/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
cc-multilingual-main/cc_net/build/lib/cc_net/__main__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
|
8 |
+
import func_argparse
|
9 |
+
|
10 |
+
import cc_net.mine
|
11 |
+
|
12 |
+
|
13 |
+
def main():
|
14 |
+
func_argparse.parse_and_call(cc_net.mine.get_main_parser())
|
15 |
+
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
main()
|
cc-multilingual-main/cc_net/build/lib/cc_net/dedup.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
"""
|
8 |
+
Tools to remove duplicate paragraphs across one or several shards.
|
9 |
+
"""
|
10 |
+
|
11 |
+
import argparse
|
12 |
+
import gc
|
13 |
+
import hashlib
|
14 |
+
import logging
|
15 |
+
import multiprocessing
|
16 |
+
import os
|
17 |
+
import tempfile
|
18 |
+
import time
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import Iterable, List, Optional, Set, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from cc_net import jsonql
|
25 |
+
from cc_net.flat_hash_set import HASH_TYPE, AbstractDedupHashSet, FlatHashSet
|
26 |
+
from cc_net.jsonql import mem_footprint_gb
|
27 |
+
from cc_net.text_normalizer import normalize_for_dedup
|
28 |
+
|
29 |
+
BYTE_ORDER = "little"
|
30 |
+
HASH_SIZE = HASH_TYPE(0).nbytes
|
31 |
+
DISABLE_MULTI_PROCESSING = False
|
32 |
+
|
33 |
+
FilesOrDir = Union[List[Path], Path]
|
34 |
+
|
35 |
+
|
36 |
+
def get_args():
|
37 |
+
parser = argparse.ArgumentParser(
|
38 |
+
description="Read a set of json files and allow to query them",
|
39 |
+
parents=[jsonql.io_parser()],
|
40 |
+
)
|
41 |
+
|
42 |
+
parser.add_argument("--field", type=str, default="raw_content")
|
43 |
+
parser.add_argument("--output_hashes", type=str)
|
44 |
+
parser.add_argument("--no_finalize", action="store_false", dest="finalize")
|
45 |
+
# parser.add_argument("--mem_gb", type=int)
|
46 |
+
parser.add_argument("--hashes", type=str)
|
47 |
+
|
48 |
+
return vars(parser.parse_args())
|
49 |
+
|
50 |
+
|
51 |
+
def _b2i(b: bytes) -> int:
|
52 |
+
return np.frombuffer(b[:HASH_SIZE], dtype=HASH_TYPE, count=1, offset=0).item(0)
|
53 |
+
|
54 |
+
|
55 |
+
def str_hash(s: str) -> int:
|
56 |
+
h = hashlib.sha1(bytes(s, encoding="utf-8"))
|
57 |
+
return _b2i(h.digest())
|
58 |
+
|
59 |
+
|
60 |
+
log = logging.getLogger(__name__).info
|
61 |
+
|
62 |
+
|
63 |
+
def run_par(processes):
|
64 |
+
# This is different from multiprocessing.map since it allows for kwargs.
|
65 |
+
processes = list(processes)
|
66 |
+
if len(processes) == 1 or DISABLE_MULTI_PROCESSING:
|
67 |
+
for f, args, kwargs in processes:
|
68 |
+
f(*args, **kwargs)
|
69 |
+
return
|
70 |
+
|
71 |
+
log(f"Starting {len(processes)} subprocess")
|
72 |
+
processes = [
|
73 |
+
multiprocessing.Process(target=f, args=a, kwargs=kw) for (f, a, kw) in processes
|
74 |
+
]
|
75 |
+
for p in processes:
|
76 |
+
p.start()
|
77 |
+
for p in processes:
|
78 |
+
p.join()
|
79 |
+
failed = 0
|
80 |
+
for p in processes:
|
81 |
+
if p.exitcode != 0:
|
82 |
+
log(f"Process failed with code {p.exitcode}: {p}")
|
83 |
+
failed += 1
|
84 |
+
assert failed == 0, f"{failed} processes failed..."
|
85 |
+
|
86 |
+
|
87 |
+
def split_file(file, n_splits):
|
88 |
+
for i in range(n_splits):
|
89 |
+
yield jsonql.SplitFile(file, i, n_splits)
|
90 |
+
|
91 |
+
|
92 |
+
def merge(hashes_1, hashes_2, output):
|
93 |
+
if isinstance(hashes_1, str):
|
94 |
+
h1 = FlatHashSet()
|
95 |
+
h1.load(hashes_1)
|
96 |
+
else:
|
97 |
+
h1 = hashes_1
|
98 |
+
|
99 |
+
if isinstance(hashes_2, str):
|
100 |
+
h2 = FlatHashSet()
|
101 |
+
h2.load(hashes_2)
|
102 |
+
else:
|
103 |
+
h2 = hashes_2
|
104 |
+
|
105 |
+
h2_np = np.fromiter(h2.keys(), dtype=FlatHashSet.dtype, count=len(h2))
|
106 |
+
dup = h1.__contains__(h2_np)
|
107 |
+
|
108 |
+
# Dups between h1 and h2 will be set to 1, keys unique to h2 are copied to
|
109 |
+
# h1 with their value.
|
110 |
+
h1[h2_np] = dup
|
111 |
+
if output:
|
112 |
+
h1.dump(output)
|
113 |
+
return h1
|
114 |
+
|
115 |
+
|
116 |
+
def merge_shard(hash_files, output):
|
117 |
+
h = FlatHashSet()
|
118 |
+
h.load(hash_files[0])
|
119 |
+
for hash_file in hash_files[1:]:
|
120 |
+
h = merge(h, hash_file, output=None)
|
121 |
+
print(f"Merged {hash_file}. We now have {len(h)} hashes.")
|
122 |
+
|
123 |
+
h.dump(output)
|
124 |
+
print(f"Saved {len(h)} hashes to {output}.")
|
125 |
+
|
126 |
+
|
127 |
+
def _dump_sentence_hashes(source: Path, output: Path, field: str):
|
128 |
+
treated = 0
|
129 |
+
started = time.time()
|
130 |
+
with open(output, "wb") as o:
|
131 |
+
for doc in jsonql.read_jsons(source):
|
132 |
+
content = doc.get(field)
|
133 |
+
if not content:
|
134 |
+
continue
|
135 |
+
h = compute_hashes(content)
|
136 |
+
if h is None:
|
137 |
+
continue
|
138 |
+
h.tofile(o)
|
139 |
+
treated += 1
|
140 |
+
if treated % 100_000 == 0:
|
141 |
+
delay = time.time() - started
|
142 |
+
log(
|
143 |
+
f"Computed {treated} documents hashes in {delay / 3600:.2f}h ({treated / delay} doc / s)"
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def _remove_duplicate_hashes(duplicates, source, output):
|
148 |
+
batch_size = 100_000
|
149 |
+
n_lines, n_lines_kept = 0, 0
|
150 |
+
with open(source, "rb") as f, open(output, "wb") as o:
|
151 |
+
log(f"Opening {source} with mode rb")
|
152 |
+
log(f"Opening {output} with mode wb")
|
153 |
+
while True:
|
154 |
+
hashes = np.fromfile(f, dtype=HASH_TYPE, count=batch_size)
|
155 |
+
if hashes.size == 0:
|
156 |
+
break
|
157 |
+
|
158 |
+
keep = duplicates[hashes] < 1
|
159 |
+
kept = keep.sum()
|
160 |
+
hashes *= keep
|
161 |
+
hashes.tofile(o)
|
162 |
+
|
163 |
+
n_lines += hashes.size
|
164 |
+
n_lines_kept += kept
|
165 |
+
|
166 |
+
removed = n_lines - n_lines_kept
|
167 |
+
selectivity = n_lines_kept / n_lines if n_lines else 0
|
168 |
+
log(f"Removed {removed} duplicate hashes with selectivity: {selectivity:3.1%}")
|
169 |
+
|
170 |
+
|
171 |
+
def remove_duplicates_sharded(
|
172 |
+
files: List[Path],
|
173 |
+
outputs: List[Path],
|
174 |
+
hashes_dir: FilesOrDir,
|
175 |
+
field: str,
|
176 |
+
group_hashes: int = 1,
|
177 |
+
tmp_dir: Path = None,
|
178 |
+
min_len: int = 0,
|
179 |
+
):
|
180 |
+
"""Remove duplicates in several passes, when all hashes don't fit in RAM.
|
181 |
+
|
182 |
+
Note: The current implementation is not doing a 'perfect' deduplication.
|
183 |
+
If a hash appear exactly once in each shard of hashes it won't be detected
|
184 |
+
as a duplicate. This can be fixed if hashes are fully dedup beforehand.
|
185 |
+
"""
|
186 |
+
assert len(files) == len(outputs)
|
187 |
+
|
188 |
+
if isinstance(hashes_dir, list):
|
189 |
+
hashes_files = hashes_dir
|
190 |
+
else:
|
191 |
+
hashes_files = sorted(
|
192 |
+
h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin"
|
193 |
+
)
|
194 |
+
|
195 |
+
assert len(hashes_files) > 0, f"no hashes files found in: {hashes_dir}"
|
196 |
+
|
197 |
+
if len(hashes_files) <= group_hashes:
|
198 |
+
log(f"All hashes can be done in one pass, using DuplicatesRemover on {files}")
|
199 |
+
rm_dups = DuplicatesRemover(field, hashes_files)
|
200 |
+
rm_dups._prepare()
|
201 |
+
run_par(
|
202 |
+
(jsonql.run_pipes, (rm_dups,), dict(file=f, output=o))
|
203 |
+
for f, o in zip(files, outputs)
|
204 |
+
)
|
205 |
+
return
|
206 |
+
|
207 |
+
log(f"Starting deduplicate_sharded on {files}.")
|
208 |
+
tmp_directory = tempfile.TemporaryDirectory(dir=str(tmp_dir) if tmp_dir else None)
|
209 |
+
|
210 |
+
def tmp_files(i):
|
211 |
+
return [
|
212 |
+
Path(tmp_directory.name) / (f.name.split(".")[0] + f".{i}.bin")
|
213 |
+
for f in files
|
214 |
+
]
|
215 |
+
|
216 |
+
last = tmp_files(0)
|
217 |
+
run_par((_dump_sentence_hashes, (f, tmp, field), {}) for f, tmp in zip(files, last))
|
218 |
+
|
219 |
+
if isinstance(hashes_dir, list):
|
220 |
+
hashes_files = hashes_dir
|
221 |
+
else:
|
222 |
+
hashes_files = sorted(
|
223 |
+
h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin"
|
224 |
+
)
|
225 |
+
for i, group in enumerate(jsonql.grouper(hashes_files, group_hashes)):
|
226 |
+
hashes = FlatHashSet()
|
227 |
+
for h in group:
|
228 |
+
hashes.load(h)
|
229 |
+
log(f"Loaded {h}, up to {len(hashes)} hashes ({mem_footprint_gb()}GB)")
|
230 |
+
|
231 |
+
intermediates = tmp_files(i + 1)
|
232 |
+
# Remove hashes in parallel. Since modern OS have "copy-on-write" and
|
233 |
+
# `hashes` is read-only, we will only have one version of it in RAM.
|
234 |
+
run_par(
|
235 |
+
(_remove_duplicate_hashes, (hashes, f, tmp), {})
|
236 |
+
for f, tmp in zip(last, intermediates)
|
237 |
+
)
|
238 |
+
# Force hashes to be freed, before we start allocating a new one.
|
239 |
+
del hashes
|
240 |
+
gc.collect()
|
241 |
+
|
242 |
+
for tmp in last:
|
243 |
+
os.remove(tmp)
|
244 |
+
last = intermediates
|
245 |
+
|
246 |
+
def finalize(source, dedup_hashes, min_len):
|
247 |
+
n_chars, n_chars_kept = 0, 0
|
248 |
+
with open(dedup_hashes, "rb") as hashes:
|
249 |
+
for doc in jsonql.read_jsons(source):
|
250 |
+
content = doc.get(field)
|
251 |
+
if not content or len(content) < min_len:
|
252 |
+
continue
|
253 |
+
sentences = content.split("\n")
|
254 |
+
doc_hashes = np.fromfile(hashes, dtype=HASH_TYPE, count=len(sentences))
|
255 |
+
chars, kept_chars = finalize_doc(doc, field, doc_hashes)
|
256 |
+
n_chars += chars
|
257 |
+
n_chars_kept += kept_chars
|
258 |
+
yield doc
|
259 |
+
selectivity = n_chars_kept / n_chars if n_chars else 0
|
260 |
+
log(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).")
|
261 |
+
|
262 |
+
dedup_hashes = last
|
263 |
+
run_par(
|
264 |
+
[
|
265 |
+
(
|
266 |
+
jsonql.run_pipe,
|
267 |
+
(finalize,),
|
268 |
+
dict(kwargs=dict(dedup_hashes=h, min_len=min_len), file=f, output=o),
|
269 |
+
)
|
270 |
+
for h, f, o in zip(dedup_hashes, files, outputs)
|
271 |
+
]
|
272 |
+
)
|
273 |
+
|
274 |
+
tmp_directory.cleanup()
|
275 |
+
|
276 |
+
|
277 |
+
def compute_hashes(content) -> Optional[np.ndarray]:
|
278 |
+
if not content:
|
279 |
+
return None
|
280 |
+
lines = content.split("\n")
|
281 |
+
# save hashes as bytes but reinterpret them as uint64.
|
282 |
+
hashes = np.fromiter(
|
283 |
+
(
|
284 |
+
hashlib.sha1(bytes(normalize_for_dedup(l), encoding="utf-8")).digest()[
|
285 |
+
:HASH_SIZE
|
286 |
+
]
|
287 |
+
for l in lines
|
288 |
+
),
|
289 |
+
dtype=np.dtype((bytes, HASH_SIZE)),
|
290 |
+
count=len(lines),
|
291 |
+
)
|
292 |
+
return np.ndarray(dtype=HASH_TYPE, buffer=hashes.data, shape=hashes.shape)
|
293 |
+
|
294 |
+
|
295 |
+
def finalize_doc(doc, field, hashes=None):
|
296 |
+
content = doc.get(field)
|
297 |
+
lines = content.split("\n")
|
298 |
+
n_chars = len(content)
|
299 |
+
if "original_nlines" not in doc:
|
300 |
+
doc["original_nlines"] = doc.get("nlines", len(lines))
|
301 |
+
if "original_length" not in doc:
|
302 |
+
doc["original_length"] = doc.get("length", n_chars)
|
303 |
+
if hashes is None:
|
304 |
+
hashes = doc.pop(field + "_hash")
|
305 |
+
|
306 |
+
# Remove duplicates inside doc
|
307 |
+
seen: Set[int] = set()
|
308 |
+
original_line_ids = doc.get("line_ids", range(len(hashes)))
|
309 |
+
line_ids = []
|
310 |
+
new_lines = []
|
311 |
+
for l, line, h in zip(original_line_ids, lines, hashes):
|
312 |
+
if h not in seen and h != 0:
|
313 |
+
line_ids.append(l)
|
314 |
+
new_lines.append(line)
|
315 |
+
seen.add(h)
|
316 |
+
|
317 |
+
doc[field] = "\n".join(new_lines)
|
318 |
+
doc["nlines"] = len(line_ids)
|
319 |
+
n_chars_kept = len(doc[field])
|
320 |
+
doc["length"] = n_chars_kept
|
321 |
+
doc["line_ids"] = line_ids
|
322 |
+
return n_chars, n_chars_kept
|
323 |
+
|
324 |
+
|
325 |
+
class HashesCollector(jsonql.Transformer):
|
326 |
+
"""
|
327 |
+
Collect all hashes found of lines found in the `field` of the source documents.
|
328 |
+
"""
|
329 |
+
|
330 |
+
parallelisable = False
|
331 |
+
|
332 |
+
def __init__(
|
333 |
+
self, field: str, output: Path = None, hashes: AbstractDedupHashSet = None
|
334 |
+
):
|
335 |
+
super().__init__()
|
336 |
+
self.n_lines = 0
|
337 |
+
self.field = field
|
338 |
+
self.output = output
|
339 |
+
self.hashes = FlatHashSet() if hashes is None else hashes
|
340 |
+
self.num_hashes_end = 0
|
341 |
+
self.num_hashes_start = len(self.hashes)
|
342 |
+
|
343 |
+
def summary(self) -> List[str]:
|
344 |
+
summ = super().summary()
|
345 |
+
h = self.num_hashes_end if self.hashes is None else len(self.hashes)
|
346 |
+
h = (h - self.num_hashes_start) // 1000
|
347 |
+
max_mem = mem_footprint_gb()
|
348 |
+
n = self.n_lines // 1000
|
349 |
+
summ.append(
|
350 |
+
f"Found {h:_}k unique hashes over {n:_}k lines. Using {max_mem:.1f}GB of RAM."
|
351 |
+
)
|
352 |
+
return summ
|
353 |
+
|
354 |
+
def do(self, doc: dict) -> None:
|
355 |
+
doc_hashes = compute_hashes(doc.get(self.field))
|
356 |
+
if doc_hashes is None:
|
357 |
+
return
|
358 |
+
self.hashes.add(doc_hashes)
|
359 |
+
self.n_lines += doc_hashes.size
|
360 |
+
|
361 |
+
def close(self):
|
362 |
+
if self.output and self.hashes:
|
363 |
+
self.hashes.dump(self.output)
|
364 |
+
self.log(f"Saved {len(self.hashes)} hashes to {self.output}")
|
365 |
+
# Save the number of hashes.
|
366 |
+
self.num_hashes_end = len(self.hashes)
|
367 |
+
# Free up mem even if the transformer is kept somewhere else.
|
368 |
+
self.hashes = None # type: ignore
|
369 |
+
|
370 |
+
|
371 |
+
class DuplicatesRemover(jsonql.Transformer):
|
372 |
+
"""DuplicatesRemover"""
|
373 |
+
|
374 |
+
# The hashes can't be pickled so they will have to be read back from disk.
|
375 |
+
warn_when_pickling = True
|
376 |
+
|
377 |
+
def __init__(self, field: str, hashes_files: List[Path], collect: bool = False):
|
378 |
+
"""
|
379 |
+
Remove duplicates
|
380 |
+
"""
|
381 |
+
super().__init__()
|
382 |
+
self.field = field
|
383 |
+
self.collect = collect
|
384 |
+
|
385 |
+
self.hashes_files = hashes_files
|
386 |
+
self.duplicates: Optional[AbstractDedupHashSet] = None
|
387 |
+
|
388 |
+
self.n_lines, self.n_lines_kept = 0, 0
|
389 |
+
self.n_chars, self.n_chars_kept = 0, 0
|
390 |
+
|
391 |
+
def _prepare(self):
|
392 |
+
if self.duplicates is not None:
|
393 |
+
return
|
394 |
+
self.duplicates = FlatHashSet()
|
395 |
+
|
396 |
+
start = time.time()
|
397 |
+
for h in self.hashes_files:
|
398 |
+
shard_start = time.time()
|
399 |
+
self.duplicates.load(str(h))
|
400 |
+
delay = time.time() - shard_start
|
401 |
+
self.log(
|
402 |
+
f"Loaded hashes from {h} ({mem_footprint_gb():.3f}GB total, took {delay / 60:.1}m)"
|
403 |
+
)
|
404 |
+
|
405 |
+
delay = time.time() - start
|
406 |
+
self.log(
|
407 |
+
f"Loaded {len(self.duplicates):_d} hashes from {len(self.hashes_files)} files. ({mem_footprint_gb():.1f}GB total, took {delay / 60:.1}m)"
|
408 |
+
)
|
409 |
+
|
410 |
+
def do(self, doc: dict) -> Optional[dict]:
|
411 |
+
content = doc.get(self.field)
|
412 |
+
if not content:
|
413 |
+
return None
|
414 |
+
doc_hashes = compute_hashes(content)
|
415 |
+
|
416 |
+
assert self.duplicates is not None
|
417 |
+
seen = (
|
418 |
+
self.duplicates.add(doc_hashes)
|
419 |
+
if self.collect
|
420 |
+
else self.duplicates[doc_hashes]
|
421 |
+
)
|
422 |
+
keep = seen < True
|
423 |
+
kept = keep.sum()
|
424 |
+
if kept == 0:
|
425 |
+
return None
|
426 |
+
doc_hashes = doc_hashes * keep
|
427 |
+
self.n_lines += keep.size
|
428 |
+
self.n_lines_kept += kept
|
429 |
+
chars, kept_chars = finalize_doc(doc, self.field, hashes=doc_hashes)
|
430 |
+
self.n_chars += chars
|
431 |
+
self.n_chars_kept += kept_chars
|
432 |
+
return doc
|
433 |
+
|
434 |
+
def summary(self) -> List[str]:
|
435 |
+
summ = super().summary()
|
436 |
+
end_time = time.time()
|
437 |
+
n_lines_kept, n_lines, n_docs = self.n_lines_kept, self.n_lines, self.processed
|
438 |
+
speed = n_docs / (end_time - self.start_time)
|
439 |
+
summ.append(
|
440 |
+
f"Processed {self.n_lines} lines in {n_docs} docs. [{speed:.1f} doc/s]"
|
441 |
+
)
|
442 |
+
selectivity = self.n_lines_kept / self.n_lines if n_lines else 0
|
443 |
+
summ.append(f"Kept {n_lines_kept} lines out of {n_lines} ({selectivity:.1%}).")
|
444 |
+
|
445 |
+
n_chars_kept, n_chars = self.n_chars_kept, self.n_chars
|
446 |
+
selectivity = n_chars_kept / n_chars if n_chars else 0
|
447 |
+
summ.append(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).")
|
448 |
+
return summ
|
449 |
+
|
450 |
+
|
451 |
+
def deduplicate(
|
452 |
+
file: jsonql.ReadableFileLike, field: str = "raw_content"
|
453 |
+
) -> Iterable[dict]:
|
454 |
+
"""Remove duplicates of the given file (but keep the first occurence)."""
|
455 |
+
dup_remover = DuplicatesRemover(field, [], collect=True)
|
456 |
+
return dup_remover.map(jsonql.read_jsons(file))
|
457 |
+
|
458 |
+
|
459 |
+
def deduplicate_two_pass(
|
460 |
+
file: jsonql.FileDescriptor, field: str = "raw_content"
|
461 |
+
) -> Iterable[dict]:
|
462 |
+
"""Remove duplicates of the given file (even removing the first occurence).
|
463 |
+
|
464 |
+
This is what is done in the paper, and in mine.py
|
465 |
+
"""
|
466 |
+
try:
|
467 |
+
if isinstance(file, Path):
|
468 |
+
hash_file: Path = file.with_suffix(".bin")
|
469 |
+
else:
|
470 |
+
hash_file = jsonql._tmp(Path("hashes.bin"))
|
471 |
+
jsonql.run_pipes(
|
472 |
+
jsonql.JsonReader(), HashesCollector(field, output=hash_file), file=file
|
473 |
+
)
|
474 |
+
dup_remover = DuplicatesRemover(field, [hash_file])
|
475 |
+
return dup_remover.map(jsonql.read_jsons(file))
|
476 |
+
finally:
|
477 |
+
if hash_file.exists():
|
478 |
+
hash_file.unlink()
|
cc-multilingual-main/cc_net/build/lib/cc_net/execution.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
import functools
|
8 |
+
import itertools
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
import time
|
13 |
+
import warnings
|
14 |
+
from pathlib import Path
|
15 |
+
from typing import Callable, Dict, Iterable, List, Optional, Sequence, Sized
|
16 |
+
|
17 |
+
import submitit
|
18 |
+
from typing_extensions import Protocol
|
19 |
+
# import pdb
|
20 |
+
from concurrent.futures import ThreadPoolExecutor
|
21 |
+
|
22 |
+
|
23 |
+
class Executor(Protocol):
|
24 |
+
def __call__(self, function: Callable[..., str], *args: Iterable) -> None:
|
25 |
+
...
|
26 |
+
|
27 |
+
|
28 |
+
class SubmititRetryOnTimeout(submitit.helpers.Checkpointable):
|
29 |
+
def __init__(self, fn: Callable):
|
30 |
+
self.fn = fn
|
31 |
+
self.__name__ = fn.__name__
|
32 |
+
|
33 |
+
def __call__(self, *args, **kwargs):
|
34 |
+
return self.fn(*args, **kwargs)
|
35 |
+
|
36 |
+
|
37 |
+
def get_executor(
|
38 |
+
name: str,
|
39 |
+
log_dir: Path,
|
40 |
+
execution: str,
|
41 |
+
timeout_hour: float = 1.0,
|
42 |
+
mem_gb: int = 1,
|
43 |
+
cpus: int = 1,
|
44 |
+
task_parallelism: int = -1,
|
45 |
+
options: dict = {},
|
46 |
+
) -> Executor:
|
47 |
+
|
48 |
+
execution_mode = execution.split(",")[0]
|
49 |
+
options.update(
|
50 |
+
{kv.split("=", 1)[0]: kv.split("=", 1)[1] for kv in execution.split(",")[1:]}
|
51 |
+
)
|
52 |
+
|
53 |
+
if execution_mode == "mp":
|
54 |
+
warnings.warn("Execution mode 'mp' is deprecated, use 'local'.")
|
55 |
+
execution_mode = "local"
|
56 |
+
|
57 |
+
cluster = None if execution_mode == "auto" else execution_mode
|
58 |
+
# use submitit to detect which executor is available
|
59 |
+
ex = submitit.AutoExecutor(log_dir, cluster=cluster)
|
60 |
+
ex.parameters['timeout_min'] = int(timeout_hour * 60)
|
61 |
+
|
62 |
+
if ex.cluster == "local":
|
63 |
+
# LocalExecutor doesn't respect task_parallelism
|
64 |
+
return functools.partial(custom_map_array, ex, task_parallelism)
|
65 |
+
if ex.cluster == "debug":
|
66 |
+
return debug_executor
|
67 |
+
# pdb.set_trace()
|
68 |
+
# We are on slurm
|
69 |
+
if task_parallelism == -1:
|
70 |
+
task_parallelism = 500
|
71 |
+
|
72 |
+
ex.update_parameters(
|
73 |
+
name=name,
|
74 |
+
timeout_min=int(timeout_hour * 60),
|
75 |
+
mem_gb=mem_gb,
|
76 |
+
cpus_per_task=cpus,
|
77 |
+
slurm_array_parallelism=task_parallelism,
|
78 |
+
**options,
|
79 |
+
)
|
80 |
+
return functools.partial(map_array_and_wait, ex)
|
81 |
+
|
82 |
+
|
83 |
+
def map_array_and_wait(
|
84 |
+
ex: submitit.AutoExecutor, function: Callable[..., str], *args: Iterable
|
85 |
+
):
|
86 |
+
f_name = function.__name__
|
87 |
+
|
88 |
+
assert len(args) > 0, f"No arguments passed to {f_name}"
|
89 |
+
approx_length = _approx_length(*args)
|
90 |
+
|
91 |
+
print(f"Submitting {f_name} in a job array ({approx_length} jobs)")
|
92 |
+
jobs = ex.map_array(function, *args)
|
93 |
+
if not jobs:
|
94 |
+
return
|
95 |
+
failed_jobs = []
|
96 |
+
done = 0
|
97 |
+
total = len(jobs)
|
98 |
+
job_array_id = jobs[0].job_id.split("_")[0]
|
99 |
+
# pdb.set_trace()
|
100 |
+
print(f"Started {f_name} in job array {job_array_id} ({len(jobs)} jobs).")
|
101 |
+
for job in submitit.helpers.as_completed(jobs):
|
102 |
+
done += 1
|
103 |
+
e = job.exception()
|
104 |
+
if not e:
|
105 |
+
print(f"Finished job {job.job_id} ({done} / {total}).", job.result())
|
106 |
+
continue
|
107 |
+
|
108 |
+
print(f"Failed job {job.job_id} ({done} / {total}):", e)
|
109 |
+
failed_jobs.append(job)
|
110 |
+
|
111 |
+
if failed_jobs:
|
112 |
+
n_failures = 10
|
113 |
+
message = f"{len(failed_jobs)} / {done} jobs failed while running {f_name}"
|
114 |
+
print(message)
|
115 |
+
for job in failed_jobs[:n_failures]:
|
116 |
+
print(f"Failed {job.job_id} -> {job.paths.stderr}")
|
117 |
+
if len(failed_jobs) > n_failures:
|
118 |
+
print(f"... ({len(failed_jobs) - n_failures} failed job skipped)")
|
119 |
+
raise Exception(message)
|
120 |
+
|
121 |
+
|
122 |
+
def debug_executor(function: Callable[..., Optional[str]], *args: Iterable) -> None:
|
123 |
+
logging.getLogger().setLevel(logging.DEBUG)
|
124 |
+
approx_length = _approx_length(*args)
|
125 |
+
for i, x in enumerate(zip(*args)):
|
126 |
+
try:
|
127 |
+
message = function(*x)
|
128 |
+
except Exception:
|
129 |
+
exit(1)
|
130 |
+
try:
|
131 |
+
import ipdb as pdb # type: ignore
|
132 |
+
except ImportError:
|
133 |
+
import pdb # type: ignore
|
134 |
+
import traceback
|
135 |
+
|
136 |
+
traceback.print_exc()
|
137 |
+
print("")
|
138 |
+
pdb.post_mortem()
|
139 |
+
sys.exit(1)
|
140 |
+
if message is not None:
|
141 |
+
print(message, f"({i + 1} / {approx_length})")
|
142 |
+
|
143 |
+
# def debug_executor(function: Callable[..., Optional[str]], *args: Iterable) -> None:
|
144 |
+
# logging.getLogger().setLevel(logging.DEBUG)
|
145 |
+
# approx_length = _approx_length(*args)
|
146 |
+
# with ThreadPoolExecutor(max_workers=4) as executor:
|
147 |
+
# futures = []
|
148 |
+
# for i, x in enumerate(zip(*args)):
|
149 |
+
# future = executor.submit(_execute_function, function, x, i + 1, approx_length)
|
150 |
+
# futures.append(future)
|
151 |
+
# for future in futures:
|
152 |
+
# future.result()
|
153 |
+
|
154 |
+
# def _execute_function(function: Callable[..., Optional[str]], args: tuple, index: int, total: int):
|
155 |
+
# try:
|
156 |
+
# message = function(*args)
|
157 |
+
# if message is not None:
|
158 |
+
# print(message, f"({index} / {total})")
|
159 |
+
# except Exception:
|
160 |
+
# # traceback.print_exc()
|
161 |
+
# sys.exit(1)
|
162 |
+
|
163 |
+
def _approx_length(*args: Iterable):
|
164 |
+
for a in args:
|
165 |
+
if isinstance(a, Sized):
|
166 |
+
return len(a)
|
167 |
+
return -1
|
168 |
+
|
169 |
+
|
170 |
+
def custom_map_array(
|
171 |
+
ex: submitit.AutoExecutor,
|
172 |
+
parallelism: int,
|
173 |
+
function: Callable[..., Optional[str]],
|
174 |
+
*args: Iterable,
|
175 |
+
) -> None:
|
176 |
+
f_name = function.__name__
|
177 |
+
assert len(args) > 0, f"No arguments passed to {f_name}"
|
178 |
+
|
179 |
+
jobs_args = list(zip(*args))
|
180 |
+
total = len(jobs_args)
|
181 |
+
if parallelism < 0:
|
182 |
+
parallelism = os.cpu_count() or 0
|
183 |
+
assert parallelism >= 0, f"Can't run any jobs with task_parallelism={parallelism}"
|
184 |
+
print(f"Submitting {total} jobs for {f_name}, with task_parallelism={parallelism}")
|
185 |
+
enqueued = 0
|
186 |
+
done = 0
|
187 |
+
running_jobs: List[submitit.Job] = []
|
188 |
+
failed_jobs: List[submitit.Job] = []
|
189 |
+
|
190 |
+
while done < len(jobs_args):
|
191 |
+
# Try to queue more job if we have some bandwidth.
|
192 |
+
if enqueued < total and len(running_jobs) < parallelism:
|
193 |
+
running_jobs.append(ex.submit(function, *jobs_args[enqueued]))
|
194 |
+
enqueued += 1
|
195 |
+
continue
|
196 |
+
|
197 |
+
# Else wait for some job to finish
|
198 |
+
if not running_jobs:
|
199 |
+
warnings.warn(
|
200 |
+
f"No more running jobs, yet we submitted only {enqueued} / {total} and finished {done} / {total}"
|
201 |
+
)
|
202 |
+
break
|
203 |
+
|
204 |
+
job = get_next_job(running_jobs)
|
205 |
+
running_jobs.remove(job)
|
206 |
+
done += 1
|
207 |
+
e = job.exception()
|
208 |
+
if not e:
|
209 |
+
print(f"Finished job {job.job_id} ({done} / {total}).", job.result())
|
210 |
+
continue
|
211 |
+
|
212 |
+
print(f"Failed job {job.job_id} ({done} / {total}):", e)
|
213 |
+
failed_jobs.append(job)
|
214 |
+
|
215 |
+
if failed_jobs:
|
216 |
+
n_failures = 10
|
217 |
+
message = f"{len(failed_jobs)} / {done} jobs failed while running {f_name}"
|
218 |
+
print(message)
|
219 |
+
for job in failed_jobs[:n_failures]:
|
220 |
+
print(f"Failed {job.job_id} -> {job.paths.stderr}")
|
221 |
+
if len(failed_jobs) > n_failures:
|
222 |
+
print(f"... ({len(failed_jobs) - n_failures} failed job skipped)")
|
223 |
+
raise Exception(message)
|
224 |
+
|
225 |
+
|
226 |
+
def get_next_job(
|
227 |
+
jobs: Sequence[submitit.Job], poll_frequency: float = 10
|
228 |
+
) -> submitit.Job:
|
229 |
+
"""
|
230 |
+
Waits for any of the job to finish and returns it.
|
231 |
+
|
232 |
+
jobs: list of jobs
|
233 |
+
poll_frequency: frequency in second at which we check job status
|
234 |
+
"""
|
235 |
+
start = time.time()
|
236 |
+
waiting = False
|
237 |
+
while True:
|
238 |
+
for job in jobs:
|
239 |
+
if job.done():
|
240 |
+
return job
|
241 |
+
if not waiting:
|
242 |
+
job_ids = [j.job_id for j in jobs[:4]]
|
243 |
+
suffix = "..." if len(jobs) > 4 else ""
|
244 |
+
print(
|
245 |
+
f"Waiting on {len(jobs)} running jobs. Job ids: {','.join(job_ids)}{suffix}"
|
246 |
+
)
|
247 |
+
waiting = True
|
248 |
+
time.sleep(poll_frequency)
|
cc-multilingual-main/cc_net/build/lib/cc_net/flat_hash_set.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
import warnings
|
10 |
+
from typing import Iterable, Iterator, Sequence, Sized, Tuple, Type
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
HASH_TYPE: Type[np.uint64] = np.uint64
|
15 |
+
|
16 |
+
GETPY_WARNING = False
|
17 |
+
|
18 |
+
|
19 |
+
class AbstractDedupHashSet(Sized, Iterable[np.uint64]):
|
20 |
+
"""A dict-like that returns `True` for keys that have been added more than once.
|
21 |
+
|
22 |
+
The API is batched and expect np.array as input. This batching grants better
|
23 |
+
perf when using the C++ implementation.
|
24 |
+
"""
|
25 |
+
|
26 |
+
dtype: Type[np.uint64] = HASH_TYPE
|
27 |
+
|
28 |
+
def __repr__(self):
|
29 |
+
implementation = type(self).__name__
|
30 |
+
return f"[{implementation}, len: {len(self)}"
|
31 |
+
|
32 |
+
def __len__(self) -> int:
|
33 |
+
...
|
34 |
+
|
35 |
+
def __contains__(self, values: Sequence[np.uint64]) -> np.ndarray:
|
36 |
+
...
|
37 |
+
|
38 |
+
def __getitem__(self, values) -> np.ndarray:
|
39 |
+
...
|
40 |
+
|
41 |
+
def __setitem__(self, keys, values) -> None:
|
42 |
+
...
|
43 |
+
|
44 |
+
def items(self) -> Iterable[Tuple[np.uint64, np.uint8]]:
|
45 |
+
...
|
46 |
+
|
47 |
+
def keys(self) -> Iterable[np.uint64]:
|
48 |
+
...
|
49 |
+
|
50 |
+
def __iter__(self) -> Iterator[np.uint64]:
|
51 |
+
return iter(self.keys())
|
52 |
+
|
53 |
+
def add(self, h, contains=None):
|
54 |
+
"""Add the given keys. First time a key is added the value is set to 0,
|
55 |
+
then it's set to one."""
|
56 |
+
if not isinstance(h, np.ndarray):
|
57 |
+
h = np.array(h, dtype=HASH_TYPE)
|
58 |
+
if contains is None:
|
59 |
+
contains = self.__contains__(h)
|
60 |
+
|
61 |
+
self.__setitem__(h, contains)
|
62 |
+
return contains
|
63 |
+
|
64 |
+
def merge(self, keys, values):
|
65 |
+
contains = self.__contains__(keys)
|
66 |
+
self.__setitem__(keys, contains | values)
|
67 |
+
|
68 |
+
def dump(self, filename):
|
69 |
+
return self.dump_np(filename)
|
70 |
+
|
71 |
+
def load(self, filename):
|
72 |
+
return self.load_np(filename)
|
73 |
+
|
74 |
+
def dump_np(self, filename):
|
75 |
+
kv_type = np.dtype([("k", HASH_TYPE), ("v", np.uint8)])
|
76 |
+
items = np.fromiter(self.items(), dtype=kv_type, count=len(self))
|
77 |
+
with open(filename, "wb") as f:
|
78 |
+
np.save(f, items)
|
79 |
+
|
80 |
+
def load_np(self, filename):
|
81 |
+
items = np.load(str(filename))
|
82 |
+
keys = items["k"].copy()
|
83 |
+
values = items["v"].copy()
|
84 |
+
self.merge(keys, values)
|
85 |
+
|
86 |
+
def dump_np2(self, filename):
|
87 |
+
keys = np.fromiter(
|
88 |
+
(k for (k, v) in self.items()), dtype=HASH_TYPE, count=len(self)
|
89 |
+
)
|
90 |
+
with open(filename, "wb") as f:
|
91 |
+
np.save(f, keys)
|
92 |
+
|
93 |
+
values = np.fromiter(
|
94 |
+
(v for (k, v) in self.items()), dtype=np.uint8, count=len(self)
|
95 |
+
)
|
96 |
+
with open(str(filename) + ".val", "wb") as f:
|
97 |
+
np.save(f, values)
|
98 |
+
|
99 |
+
def load_np2(self, filename):
|
100 |
+
keys = np.load(filename)
|
101 |
+
values = np.load(str(filename) + ".val")
|
102 |
+
self.merge(keys, values)
|
103 |
+
|
104 |
+
|
105 |
+
class NaiveHashSet(dict, AbstractDedupHashSet):
|
106 |
+
"""Pure python implementation of AbstractDedupHashSet.
|
107 |
+
|
108 |
+
This implementation is quite fast, since Python dict are heavily optimized.
|
109 |
+
"""
|
110 |
+
|
111 |
+
def __init__(self, iterable=None):
|
112 |
+
super().__init__()
|
113 |
+
global GETPY_WARNING
|
114 |
+
if GETPY_WARNING:
|
115 |
+
warnings.warn(
|
116 |
+
"Module 'getpy' not found. Deduplication will take more RAM."
|
117 |
+
" Try `pip install cc_net[getpy]"
|
118 |
+
)
|
119 |
+
GETPY_WARNING = False
|
120 |
+
|
121 |
+
def __contains__(self, values):
|
122 |
+
"""Returns `True` if the object has been added at list once."""
|
123 |
+
contains_point = super().__contains__
|
124 |
+
return np.fromiter(
|
125 |
+
map(contains_point, values), count=len(values), dtype=np.uint8
|
126 |
+
)
|
127 |
+
|
128 |
+
def __getitem__(self, values):
|
129 |
+
"""Returns `True` if the object has been added at list twice."""
|
130 |
+
get_point = super().get
|
131 |
+
return np.fromiter(
|
132 |
+
map(lambda x: get_point(x, False), values),
|
133 |
+
count=len(values),
|
134 |
+
dtype=np.uint8,
|
135 |
+
)
|
136 |
+
|
137 |
+
def __setitem__(self, keys, values):
|
138 |
+
assert len(keys) == len(values)
|
139 |
+
for k, v in zip(keys, values):
|
140 |
+
dict.__setitem__(self, k, v)
|
141 |
+
|
142 |
+
|
143 |
+
try:
|
144 |
+
import getpy as gp # type: ignore
|
145 |
+
|
146 |
+
class _FlatHashSet(gp.Dict, AbstractDedupHashSet):
|
147 |
+
"""C++ backed implementation of AbstractDedupHashSet.
|
148 |
+
|
149 |
+
This implementation is slightly slower than the Python one but uses
|
150 |
+
3x less RAM.
|
151 |
+
See https://github.com/atom-moyer/getpy.
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(self):
|
155 |
+
super().__init__(HASH_TYPE, np.uint8, default_value=False)
|
156 |
+
|
157 |
+
def __contains__(self, h):
|
158 |
+
"""Returns `True` if the object has been added at list once."""
|
159 |
+
if not isinstance(h, np.ndarray):
|
160 |
+
h = np.array(h, dtype=HASH_TYPE)
|
161 |
+
c = gp.Dict.__contains__(self, h)
|
162 |
+
c.dtype = np.uint8
|
163 |
+
return c
|
164 |
+
|
165 |
+
def dump(self, filename):
|
166 |
+
return self.dump_gp(filename)
|
167 |
+
|
168 |
+
def load(self, filename):
|
169 |
+
return self.load_gp(filename)
|
170 |
+
|
171 |
+
def dump_gp(self, filename):
|
172 |
+
return gp.Dict.dump(self, str(filename))
|
173 |
+
|
174 |
+
def load_gp(self, filename):
|
175 |
+
"""Override gp.Dict.load, to correctly merge values instead of overwriting."""
|
176 |
+
other = gp.Dict(HASH_TYPE, np.uint8, default_value=False)
|
177 |
+
other.load(str(filename))
|
178 |
+
n = len(other)
|
179 |
+
keys = np.fromiter(
|
180 |
+
(k for (k, v) in other.items()), dtype=HASH_TYPE, count=n
|
181 |
+
)
|
182 |
+
values = np.fromiter(
|
183 |
+
(v for (k, v) in other.items()), dtype=np.uint8, count=n
|
184 |
+
)
|
185 |
+
self.merge(keys, values)
|
186 |
+
|
187 |
+
FlatHashSet: Type[AbstractDedupHashSet] = _FlatHashSet
|
188 |
+
except ImportError:
|
189 |
+
GETPY_WARNING = True
|
190 |
+
FlatHashSet = NaiveHashSet
|
191 |
+
|
192 |
+
|
193 |
+
def timeit(message, function, *args):
|
194 |
+
start = time.time()
|
195 |
+
function(*args)
|
196 |
+
end = time.time()
|
197 |
+
print(message, f"took {end - start:.0f}s")
|
198 |
+
|
199 |
+
|
200 |
+
def compare_load(*filenames):
|
201 |
+
assert filenames, "No file given"
|
202 |
+
|
203 |
+
def load_list():
|
204 |
+
hashes = []
|
205 |
+
for f in filenames:
|
206 |
+
h = FlatHashSet()
|
207 |
+
h.load(f)
|
208 |
+
print(f"Loaded {h} from {f}.")
|
209 |
+
hashes.append(h)
|
210 |
+
return hashes
|
211 |
+
|
212 |
+
def load_all(load, ext):
|
213 |
+
hashes = FlatHashSet()
|
214 |
+
for f in filenames:
|
215 |
+
load(hashes, f + ext)
|
216 |
+
|
217 |
+
def dump_all(hashes, dump, ext):
|
218 |
+
for h, f in zip(hashes, filenames):
|
219 |
+
dump(h, f + ext)
|
220 |
+
|
221 |
+
hashes = load_list()
|
222 |
+
dump_gp = getattr(FlatHashSet, "dump_gp")
|
223 |
+
if dump_gp is not None:
|
224 |
+
timeit("Dumping using gp.dump", dump_all, hashes, dump_gp, ".gp.test")
|
225 |
+
timeit("Dumping using dump_np", dump_all, hashes, FlatHashSet.dump_np, ".npy.test")
|
226 |
+
timeit(
|
227 |
+
"Dumping using dump_np2", dump_all, hashes, FlatHashSet.dump_np2, ".npy2.test"
|
228 |
+
)
|
229 |
+
|
230 |
+
load_gp = getattr(FlatHashSet, "load_gp")
|
231 |
+
if load_gp is not None:
|
232 |
+
timeit("Loading using gp.load", load_all, load_gp, ".gp.test")
|
233 |
+
timeit("Loading using load_np", load_all, FlatHashSet.load_np, ".npy.test")
|
234 |
+
timeit("Loading using load_np2", load_all, FlatHashSet.load_np2, ".npy2.test")
|
235 |
+
|
236 |
+
# Loading 10 shards:
|
237 |
+
# [dedup] Dumping using gp.dump took 52s
|
238 |
+
# [dedup] Dumping using dump_np took 270s
|
239 |
+
# [dedup] Dumping using dump_np2 took 483s
|
240 |
+
#
|
241 |
+
# [dedup] Loading using gp.load took 654s
|
242 |
+
# [dedup] Loading using load_np took 82s
|
243 |
+
# [dedup] Loading using load_np2 took 76s
|
244 |
+
|
245 |
+
|
246 |
+
if __name__ == "__main__":
|
247 |
+
compare_load(*sys.argv[1:])
|
cc-multilingual-main/cc_net/build/lib/cc_net/get_wiki_cirrus.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
"""
|
8 |
+
Creates mono-lingual corpus from Wikipedia.
|
9 |
+
"""
|
10 |
+
|
11 |
+
import functools
|
12 |
+
import re
|
13 |
+
import subprocess
|
14 |
+
import urllib.request
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Dict
|
17 |
+
|
18 |
+
import func_argparse
|
19 |
+
from bs4 import BeautifulSoup # type: ignore
|
20 |
+
|
21 |
+
from cc_net import jsonql, text_normalizer
|
22 |
+
|
23 |
+
CIRRUS_URL = "https://dumps.wikimedia.org/other/cirrussearch"
|
24 |
+
CIRRUS_DUMP_RE = re.compile(r"^(.*)wiki-\d+-cirrussearch-content\.json\.gz")
|
25 |
+
|
26 |
+
|
27 |
+
def tmp(file: Path) -> Path:
|
28 |
+
return file.parent / ("tmp." + file.name)
|
29 |
+
|
30 |
+
|
31 |
+
def opening(file: Path, output: Path = None, n_docs: int = 1_000_000):
|
32 |
+
"""Will dump the tokenized opening text of the given Wikipedia.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
- file: File containing the Wikipedia dump.
|
36 |
+
- output: Output file.
|
37 |
+
- n_docs: How many docs to parse
|
38 |
+
- tokenize: whether to tokenize the text
|
39 |
+
- lang: Language code used to chose the tokenizer
|
40 |
+
"""
|
41 |
+
assert file.exists()
|
42 |
+
return jsonql.run_pipes(
|
43 |
+
functools.partial(extract_opening_text, n_docs=n_docs),
|
44 |
+
file=file,
|
45 |
+
output=tmp(output) if output else None,
|
46 |
+
)
|
47 |
+
if output:
|
48 |
+
tmp(output).replace(output)
|
49 |
+
|
50 |
+
|
51 |
+
def extract_opening_text(source, n_docs: int = 10_000):
|
52 |
+
i = 0
|
53 |
+
for doc in jsonql.read_jsons(source):
|
54 |
+
if not doc:
|
55 |
+
continue
|
56 |
+
|
57 |
+
text = doc.get("opening_text")
|
58 |
+
if not text:
|
59 |
+
continue
|
60 |
+
|
61 |
+
yield text_normalizer.normalize(text)
|
62 |
+
i += 1
|
63 |
+
if i >= n_docs:
|
64 |
+
break
|
65 |
+
|
66 |
+
|
67 |
+
def dl(lang: str, output_dir: Path, date: str = None):
|
68 |
+
"""Download the cirrus extract for the given lang.
|
69 |
+
|
70 |
+
See https://dumps.wikimedia.org/other/cirrussearch for the full list of files.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
- lang: The Wikipedia code for the language.
|
74 |
+
- output_dir: Output directory. File will be `{lang}.json.gz`
|
75 |
+
- date: Date of a specific Cirrus dump.
|
76 |
+
"""
|
77 |
+
|
78 |
+
urls = get_cirrus_urls(date)
|
79 |
+
assert (
|
80 |
+
lang in urls
|
81 |
+
), f"--lang {lang} not found. Available languages are: {urls.keys()}"
|
82 |
+
|
83 |
+
assert output_dir, "--output_dir folder needed."
|
84 |
+
output_dir.mkdir(exist_ok=True)
|
85 |
+
output = output_dir / (lang + ".json.gz")
|
86 |
+
print(f"Downloading {lang} wiki from {urls[lang]} to {output}")
|
87 |
+
wget(urls[lang], output)
|
88 |
+
|
89 |
+
|
90 |
+
def get_cirrus_urls(date: str = None) -> Dict[str, str]:
|
91 |
+
if date is None:
|
92 |
+
cirrus_page = BeautifulSoup(
|
93 |
+
urllib.request.urlopen(CIRRUS_URL), features="html.parser"
|
94 |
+
)
|
95 |
+
dumps = [a.get("href").strip("/") for a in cirrus_page.findAll("a")]
|
96 |
+
dumps.remove("..")
|
97 |
+
dumps.remove("current")
|
98 |
+
# We take the oldest dump since the most recent might be incomplete.
|
99 |
+
# The page only link to the N latest dumps so the dump won't be too old.
|
100 |
+
date = min(dumps)
|
101 |
+
|
102 |
+
cirrus_url = "/".join((CIRRUS_URL, date))
|
103 |
+
print("Will use the Wikipedia dump from:", date, cirrus_url)
|
104 |
+
cirrus_page = BeautifulSoup(
|
105 |
+
urllib.request.urlopen(cirrus_url), features="html.parser"
|
106 |
+
)
|
107 |
+
urls = {}
|
108 |
+
for link in cirrus_page.findAll("a"):
|
109 |
+
match = CIRRUS_DUMP_RE.match(link.get("href"))
|
110 |
+
if not match:
|
111 |
+
continue
|
112 |
+
|
113 |
+
urls[match.group(1)] = "/".join([cirrus_url, link.get("href")])
|
114 |
+
assert urls, f"No valid download urls found at {cirrus_url}"
|
115 |
+
return urls
|
116 |
+
|
117 |
+
|
118 |
+
def wget(url: str, output: Path):
|
119 |
+
subprocess.run(["wget", url, "-O", tmp(output), "-q"], check=True)
|
120 |
+
tmp(output).replace(output)
|
121 |
+
assert (
|
122 |
+
output.stat().st_size > 10_000
|
123 |
+
), f"File {output} downloaded from {url} looks too small"
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
func_argparse.main(dl, opening)
|
cc-multilingual-main/cc_net/build/lib/cc_net/jsonql.py
ADDED
@@ -0,0 +1,1340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
"""
|
8 |
+
Manipulate files containing one json per line.
|
9 |
+
"""
|
10 |
+
import argparse
|
11 |
+
import collections
|
12 |
+
import contextlib
|
13 |
+
import functools
|
14 |
+
import glob
|
15 |
+
import gzip
|
16 |
+
import importlib
|
17 |
+
import inspect
|
18 |
+
import io
|
19 |
+
import itertools
|
20 |
+
import json
|
21 |
+
import logging
|
22 |
+
import multiprocessing
|
23 |
+
import os
|
24 |
+
import re
|
25 |
+
import sys
|
26 |
+
import tempfile
|
27 |
+
import time
|
28 |
+
import typing as tp
|
29 |
+
import warnings
|
30 |
+
import zlib
|
31 |
+
from pathlib import Path
|
32 |
+
from typing import (
|
33 |
+
Callable,
|
34 |
+
Dict,
|
35 |
+
Iterable,
|
36 |
+
Iterator,
|
37 |
+
List,
|
38 |
+
Optional,
|
39 |
+
Sequence,
|
40 |
+
TextIO,
|
41 |
+
Tuple,
|
42 |
+
Union,
|
43 |
+
)
|
44 |
+
|
45 |
+
import numpy as np
|
46 |
+
import psutil # type: ignore
|
47 |
+
import requests
|
48 |
+
from typing_extensions import Protocol
|
49 |
+
|
50 |
+
logging.basicConfig(
|
51 |
+
level=logging.INFO,
|
52 |
+
format="%(asctime)s %(levelname)s %(process)d:%(name)s - %(message)s",
|
53 |
+
datefmt="%Y-%m-%d %H:%M",
|
54 |
+
)
|
55 |
+
|
56 |
+
NEWLINE = " N3WL1N3 "
|
57 |
+
|
58 |
+
FilterFn = Callable[[dict], bool]
|
59 |
+
FileDescriptor = Union[Path, List[Path], str]
|
60 |
+
WritableFileLike = Union[FileDescriptor, TextIO, "SimpleIO", None]
|
61 |
+
ReadableFileLike = Union[Iterable[str], FileDescriptor, None]
|
62 |
+
|
63 |
+
|
64 |
+
def io_parser():
|
65 |
+
"""Parser shared by all commands to get input/output files."""
|
66 |
+
parser = argparse.ArgumentParser(add_help=False)
|
67 |
+
file_help = """File to read from. Can be specified several times for several files.
|
68 |
+
Be careful that bash will expand glob patterns **before** sending the args
|
69 |
+
to python. To use globs put it inside single quotes:
|
70 |
+
jsonql where --file 'data/perplexity/*.json' '{length} > 100' | head -1
|
71 |
+
jsonql --file 'data/perplexity/*.json' where '{length} > 100' | head -1
|
72 |
+
[Invalid] jsonql where '{length} > 100' --file data/perplexity/*.json | head -1
|
73 |
+
[Invalid] jsonql where --file data/perplexity/*.json '{length} > 100' | head -1
|
74 |
+
"""
|
75 |
+
parser.add_argument("-f", "--file", type=Path, action="append", help=file_help)
|
76 |
+
parser.add_argument("-o", "--output", type=Path, default="-")
|
77 |
+
parser.add_argument("--processes", type=int, default=1)
|
78 |
+
return parser
|
79 |
+
|
80 |
+
|
81 |
+
def get_parser():
|
82 |
+
parser = argparse.ArgumentParser(
|
83 |
+
description="Read a set of json files and allow to query them"
|
84 |
+
)
|
85 |
+
subparsers = parser.add_subparsers()
|
86 |
+
|
87 |
+
def add_subparser(function, arguments):
|
88 |
+
doc = function.__doc__.split("\n")[0]
|
89 |
+
p = subparsers.add_parser(function.__name__, help=doc, parents=[io_parser()])
|
90 |
+
p.set_defaults(command=function)
|
91 |
+
for k, v in arguments.items():
|
92 |
+
p.add_argument(k, **v)
|
93 |
+
|
94 |
+
add_subparser(
|
95 |
+
select,
|
96 |
+
{
|
97 |
+
"columns": dict(nargs="+", help="Extract the value of the given fields"),
|
98 |
+
"--skip_empty": dict(
|
99 |
+
action="store_true", help="Skip lines without the requested fields"
|
100 |
+
),
|
101 |
+
"--separator": dict(
|
102 |
+
default="\t", help="Separator to use between the different columns"
|
103 |
+
),
|
104 |
+
"--newline": dict(
|
105 |
+
default=NEWLINE,
|
106 |
+
help="Replace newlines found in the text by the given string",
|
107 |
+
),
|
108 |
+
},
|
109 |
+
)
|
110 |
+
|
111 |
+
add_subparser(
|
112 |
+
where,
|
113 |
+
{
|
114 |
+
"clauses": dict(nargs="+", help=""),
|
115 |
+
"--requires": dict(
|
116 |
+
action="append", help="Python module required by the clauses code."
|
117 |
+
),
|
118 |
+
},
|
119 |
+
)
|
120 |
+
|
121 |
+
add_subparser(
|
122 |
+
merge,
|
123 |
+
{
|
124 |
+
"columns": dict(nargs="+", help=""),
|
125 |
+
"--separator": dict(
|
126 |
+
default="\t", help="Separator to use between the different columns"
|
127 |
+
),
|
128 |
+
"--newline": dict(
|
129 |
+
default=NEWLINE, help="Replace the given string by actual newlines"
|
130 |
+
),
|
131 |
+
},
|
132 |
+
)
|
133 |
+
|
134 |
+
add_subparser(
|
135 |
+
describe,
|
136 |
+
{
|
137 |
+
"columns": dict(nargs="*", help=""),
|
138 |
+
"--bins": dict(
|
139 |
+
default="auto", help="Number of bins for computing the histograms"
|
140 |
+
),
|
141 |
+
"--cumulative": dict(
|
142 |
+
action="store_true", help="Compute cumulative histograms"
|
143 |
+
),
|
144 |
+
"--weights": dict(type=str, help="Column used to weight histograms"),
|
145 |
+
},
|
146 |
+
)
|
147 |
+
|
148 |
+
add_subparser(split, {"--pattern": dict(type=str)})
|
149 |
+
add_subparser(shard, {})
|
150 |
+
return parser
|
151 |
+
|
152 |
+
|
153 |
+
def _split_array(array, sep):
|
154 |
+
last = 0
|
155 |
+
for i, x in enumerate(array):
|
156 |
+
if x != sep:
|
157 |
+
continue
|
158 |
+
yield array[last:i]
|
159 |
+
last = i + 1
|
160 |
+
if last != len(array):
|
161 |
+
yield array[last:]
|
162 |
+
|
163 |
+
|
164 |
+
def main(raw_args):
|
165 |
+
parser = get_parser()
|
166 |
+
pipeline = []
|
167 |
+
file = "-"
|
168 |
+
output = "-"
|
169 |
+
processes = 1
|
170 |
+
|
171 |
+
for args_group in _split_array(raw_args, "--"):
|
172 |
+
args = vars(parser.parse_args(args_group))
|
173 |
+
command = args.pop("command")
|
174 |
+
file = args.pop("file") or file
|
175 |
+
output = args.pop("output") or output
|
176 |
+
processes = args.pop("processes") or processes
|
177 |
+
pipeline.append(as_pipe(command, args))
|
178 |
+
|
179 |
+
if not pipeline:
|
180 |
+
parser.print_help()
|
181 |
+
return
|
182 |
+
|
183 |
+
run_pipes(*pipeline, file=Path(file), output=Path(output), processes=processes)
|
184 |
+
|
185 |
+
|
186 |
+
class Transformer:
|
187 |
+
"""
|
188 |
+
Wrapper around functions transforming documents.
|
189 |
+
|
190 |
+
This allows `run_pipes` to automatically parallelize the pipeline.
|
191 |
+
Provides:
|
192 |
+
* Automatic logging. Logging can be changed with the `summary` method.
|
193 |
+
Loggin frequency with _log_freq (in second) or $JSONQL_LOG_FREQ env variable.
|
194 |
+
* Automatic parallelization without pickling. The transformers are shared
|
195 |
+
across processes, and the object is usually not pickled.
|
196 |
+
* Basic pickling / unpickling in case it's still needed.
|
197 |
+
By default will only pickle the arguments passed to the constructor.
|
198 |
+
* Delayed initialization. Internal state which is not pickable should be set
|
199 |
+
inside the `_prepare` function.
|
200 |
+
"""
|
201 |
+
|
202 |
+
parallelisable: bool = True
|
203 |
+
expect_json: bool = False
|
204 |
+
warn_when_pickling: bool = False
|
205 |
+
ready: bool = False
|
206 |
+
|
207 |
+
def __init_subclass__(cls, expect_json: bool = None):
|
208 |
+
"""Detects if the subclass expects json as input."""
|
209 |
+
spec = inspect.getfullargspec(cls.do)
|
210 |
+
if expect_json is None:
|
211 |
+
expect_json = spec.annotations.get(spec.args[1], None) == dict
|
212 |
+
|
213 |
+
cls.expect_json = expect_json
|
214 |
+
|
215 |
+
def __new__(cls, *args, **kwargs):
|
216 |
+
"""Creates the transformer and save the arguments passed to the constructor."""
|
217 |
+
t = super().__new__(cls)
|
218 |
+
Transformer.__init__(t, args, kwargs)
|
219 |
+
return t
|
220 |
+
|
221 |
+
def __init__(self, state_args: tuple = None, state_kwargs: dict = None):
|
222 |
+
"""
|
223 |
+
Init the transformer counters.
|
224 |
+
|
225 |
+
If state_args/state_kwargs are set they will override whatever was
|
226 |
+
originally passed to the subclass constructor.
|
227 |
+
"""
|
228 |
+
if state_args is not None:
|
229 |
+
self.__args = state_args
|
230 |
+
if state_kwargs is not None:
|
231 |
+
self.__kwargs = state_kwargs
|
232 |
+
|
233 |
+
self.start_time = time.time()
|
234 |
+
self.__last_log = self.start_time
|
235 |
+
self.processed = 0
|
236 |
+
# Log every 5 min unless specified other wise.
|
237 |
+
self._log_freq = int(os.environ.get("JSONQL_LOG_FREQ", 5 * 60))
|
238 |
+
self.__cls = type(self)
|
239 |
+
self._logger = logging.getLogger(self.__cls.__name__)
|
240 |
+
|
241 |
+
def __call__(self, x):
|
242 |
+
assert self.ready, f"{self} is not ready."
|
243 |
+
if x is None:
|
244 |
+
return
|
245 |
+
y = self.do(x)
|
246 |
+
self.processed += 1
|
247 |
+
if time.time() - self.__last_log > self._log_freq:
|
248 |
+
self.log_summary()
|
249 |
+
return y
|
250 |
+
|
251 |
+
def do(self, x):
|
252 |
+
raise NotImplementedError(f"'do' not implemented in {type(self)}")
|
253 |
+
|
254 |
+
def summary(self) -> List[str]:
|
255 |
+
return [self.speed_summary()]
|
256 |
+
|
257 |
+
def speed_summary(self) -> str:
|
258 |
+
delay = time.time() - self.start_time
|
259 |
+
h = delay / 3600
|
260 |
+
s = self.processed / delay
|
261 |
+
return f"Processed {self.processed:_} documents in {h:.2}h ({s:5.1f} doc/s)."
|
262 |
+
|
263 |
+
def log(self, message):
|
264 |
+
self._logger.info(message)
|
265 |
+
|
266 |
+
def log_summary(self) -> None:
|
267 |
+
if not self.ready:
|
268 |
+
self.log("Not ready.")
|
269 |
+
return
|
270 |
+
summ = self.summary() or []
|
271 |
+
for line in summ:
|
272 |
+
self.log(line)
|
273 |
+
self.__last_log = time.time()
|
274 |
+
|
275 |
+
def map(self, source: Iterable) -> Iterator:
|
276 |
+
if self.ready:
|
277 |
+
for x in source:
|
278 |
+
yield self(x)
|
279 |
+
# since we have been prepared by caller,
|
280 |
+
# caller is also responsible for calling `close`.
|
281 |
+
return
|
282 |
+
else:
|
283 |
+
with self:
|
284 |
+
for x in source:
|
285 |
+
yield self(x)
|
286 |
+
|
287 |
+
def __getstate__(self) -> Tuple[tuple, dict, bool]:
|
288 |
+
return (self.__args, self.__kwargs, self.expect_json)
|
289 |
+
|
290 |
+
def __setstate__(self, state: Tuple[tuple, dict, bool]):
|
291 |
+
if self.warn_when_pickling:
|
292 |
+
warnings.warn(f"Unpickling transformer: {type(self)}. This can be slow.")
|
293 |
+
(args, kwargs, expect_json) = state
|
294 |
+
# When unpickling `__new__` isn't called so we have to doit ourselves.
|
295 |
+
Transformer.__init__(self, state_args=args, state_kwargs=kwargs)
|
296 |
+
type(self).__init__(self, *args, **kwargs)
|
297 |
+
assert self.expect_json == expect_json
|
298 |
+
# __setstate__ is called by multiprocessing right before calling
|
299 |
+
# the object so we need to initialize everything.
|
300 |
+
self.__enter__()
|
301 |
+
|
302 |
+
def _prepare(self) -> None:
|
303 |
+
pass
|
304 |
+
|
305 |
+
def __enter__(self) -> "Transformer":
|
306 |
+
# In multiprocessing __enter__ is always called twice, so we are idempotent.
|
307 |
+
# Because we call __enter__ when deserializing this transformer and
|
308 |
+
# also when the parent transformer is deserialized.
|
309 |
+
self.start_time = time.time()
|
310 |
+
if self.ready:
|
311 |
+
return self
|
312 |
+
self._prepare()
|
313 |
+
self.ready = True
|
314 |
+
return self
|
315 |
+
|
316 |
+
def __exit__(self, *args) -> None:
|
317 |
+
self.close()
|
318 |
+
self.log_summary()
|
319 |
+
|
320 |
+
def close(self) -> None:
|
321 |
+
pass
|
322 |
+
|
323 |
+
|
324 |
+
def as_pipe(transformer, kwargs):
|
325 |
+
if isinstance(transformer, type):
|
326 |
+
return transformer(**kwargs)
|
327 |
+
return lambda source: transformer(source, **kwargs)
|
328 |
+
|
329 |
+
|
330 |
+
def compose(fns: List[Transformer]) -> Transformer:
|
331 |
+
if len(fns) == 1:
|
332 |
+
return fns[0]
|
333 |
+
return MultiTransformer(fns)
|
334 |
+
|
335 |
+
|
336 |
+
class MultiTransformer(Transformer):
|
337 |
+
def __init__(self, transformers: List[Transformer]):
|
338 |
+
super().__init__()
|
339 |
+
self.transformers = transformers
|
340 |
+
|
341 |
+
def __repr__(self) -> str:
|
342 |
+
pipeline = " | ".join(type(t).__name__ for t in self.transformers)
|
343 |
+
return f"<{pipeline}>"
|
344 |
+
|
345 |
+
def do(self, x):
|
346 |
+
for t in self.transformers:
|
347 |
+
x = t(x)
|
348 |
+
return x
|
349 |
+
|
350 |
+
def _prepare(self):
|
351 |
+
for t in self.transformers:
|
352 |
+
t.__enter__()
|
353 |
+
return self
|
354 |
+
|
355 |
+
def __exit__(self, *args):
|
356 |
+
for t in self.transformers:
|
357 |
+
t.__exit__(*args)
|
358 |
+
|
359 |
+
def summary(self):
|
360 |
+
return itertools.chain(*(t.summary() for t in self.transformers))
|
361 |
+
|
362 |
+
|
363 |
+
class Mapper(Transformer):
|
364 |
+
def __init__(self, fn):
|
365 |
+
super().__init__()
|
366 |
+
self.fn = fn
|
367 |
+
|
368 |
+
def do(self, x):
|
369 |
+
return self.fn(x)
|
370 |
+
|
371 |
+
|
372 |
+
def run_pipe(
|
373 |
+
command,
|
374 |
+
kwargs: dict = None,
|
375 |
+
file: ReadableFileLike = None,
|
376 |
+
output: WritableFileLike = None,
|
377 |
+
):
|
378 |
+
kwargs = kwargs or {}
|
379 |
+
if isinstance(kwargs, argparse.ArgumentParser):
|
380 |
+
kwargs = vars(kwargs.parse_args())
|
381 |
+
file = file or Path(kwargs.pop("file", "-"))
|
382 |
+
output = output or Path(kwargs.pop("output", "-"))
|
383 |
+
|
384 |
+
return run_pipes(as_pipe(command, kwargs), file=file, output=output)
|
385 |
+
|
386 |
+
|
387 |
+
def run_pipes(
|
388 |
+
*fns: Union[Transformer, Callable[[Iterable], Iterable]],
|
389 |
+
inputs: Iterable[dict] = None,
|
390 |
+
file: ReadableFileLike = None,
|
391 |
+
output: WritableFileLike = None,
|
392 |
+
processes: int = 1,
|
393 |
+
chunksize: int = 10_000,
|
394 |
+
):
|
395 |
+
"""
|
396 |
+
Run full document processing pipeline.
|
397 |
+
|
398 |
+
- fns: list of functions to run over the documents. Can be:
|
399 |
+
* `Iterable -> Iterable` function
|
400 |
+
* jsonql.Transformer instance
|
401 |
+
Using transformers allow the pipeline to process documents in parallel.
|
402 |
+
- inputs: iterable to read the documents from
|
403 |
+
- file: if inputs is not given, will read documents from this file.
|
404 |
+
- output: writable file like.
|
405 |
+
- processes: number of processes to use. -1 means all CPU available.
|
406 |
+
- chunksize: chunksize for multiprocessing.Pool.imap_unordered
|
407 |
+
"""
|
408 |
+
expect_json = len(fns) and isinstance(fns[0], Transformer) and fns[0].expect_json
|
409 |
+
if expect_json and inputs is None:
|
410 |
+
fns = (JsonReader(),) + fns
|
411 |
+
transformers = []
|
412 |
+
for t in fns:
|
413 |
+
if not isinstance(t, Transformer):
|
414 |
+
break
|
415 |
+
if not t.parallelisable:
|
416 |
+
break
|
417 |
+
transformers.append(t)
|
418 |
+
pipes = fns[len(transformers) :]
|
419 |
+
|
420 |
+
log = logging.getLogger(__name__).info
|
421 |
+
if inputs is None:
|
422 |
+
data: Iterable = open_read(file)
|
423 |
+
else:
|
424 |
+
data = inputs
|
425 |
+
|
426 |
+
if processes == -1:
|
427 |
+
processes = os.cpu_count() or 0
|
428 |
+
|
429 |
+
with contextlib.suppress(BrokenPipeError), contextlib.ExitStack() as stack:
|
430 |
+
if transformers:
|
431 |
+
log(f"preparing {transformers}")
|
432 |
+
transform = stack.enter_context(compose(transformers))
|
433 |
+
if processes <= 1:
|
434 |
+
data = transform.map(data)
|
435 |
+
else:
|
436 |
+
p = multiprocessing.current_process()
|
437 |
+
log(f"Will start {processes} processes from {p.name}, Pid: {p.pid}")
|
438 |
+
pool = stack.enter_context(
|
439 |
+
multiprocessing.Pool(
|
440 |
+
processes=processes,
|
441 |
+
initializer=_set_global_transformer,
|
442 |
+
initargs=(transform,),
|
443 |
+
)
|
444 |
+
)
|
445 |
+
data = pool.imap_unordered(
|
446 |
+
_global_transformer, data, chunksize=chunksize
|
447 |
+
)
|
448 |
+
|
449 |
+
for fn in pipes:
|
450 |
+
if isinstance(fn, Transformer):
|
451 |
+
data = fn.map(data)
|
452 |
+
else:
|
453 |
+
data = fn(data)
|
454 |
+
|
455 |
+
write_jsons(data, output)
|
456 |
+
|
457 |
+
|
458 |
+
# Allows to share transformer acroos subprocess.
|
459 |
+
# Used by `run_pipes`
|
460 |
+
_GLOBAL_TRANSFORMER: Optional[Transformer] = None
|
461 |
+
|
462 |
+
|
463 |
+
def _set_global_transformer(transformer: Transformer):
|
464 |
+
global _GLOBAL_TRANSFORMER
|
465 |
+
p = multiprocessing.current_process()
|
466 |
+
logging.info(
|
467 |
+
f"Started subprocess {p.name}:{p.pid} from {os.getppid()} for {transformer}"
|
468 |
+
)
|
469 |
+
assert transformer.ready, f"{transformer} isn't ready"
|
470 |
+
_GLOBAL_TRANSFORMER = transformer
|
471 |
+
|
472 |
+
|
473 |
+
def _global_transformer(document: str) -> Optional[dict]:
|
474 |
+
assert _GLOBAL_TRANSFORMER is not None
|
475 |
+
return _GLOBAL_TRANSFORMER(document)
|
476 |
+
|
477 |
+
|
478 |
+
def lines(file: ReadableFileLike) -> Iterator[str]:
|
479 |
+
return (line.strip("\n") for line in open_read(file))
|
480 |
+
|
481 |
+
|
482 |
+
def read_jsons(file: ReadableFileLike, strict=False) -> Iterator[dict]:
|
483 |
+
reader = JsonReader(strict=strict)
|
484 |
+
lines = open_read(file)
|
485 |
+
for line in lines:
|
486 |
+
if line is None:
|
487 |
+
continue
|
488 |
+
yield reader(line)
|
489 |
+
|
490 |
+
reader.log_summary()
|
491 |
+
|
492 |
+
|
493 |
+
def write_jsons(source: Iterable[dict], file: WritableFileLike) -> None:
|
494 |
+
eol = os.linesep
|
495 |
+
with open_write(file) as o:
|
496 |
+
for res in source:
|
497 |
+
if res is None:
|
498 |
+
continue
|
499 |
+
if isinstance(res, dict):
|
500 |
+
json.dump(res, o, ensure_ascii=False)
|
501 |
+
o.write(eol)
|
502 |
+
continue
|
503 |
+
if isinstance(res, str):
|
504 |
+
res = res.rstrip("\n")
|
505 |
+
print(res, file=o)
|
506 |
+
|
507 |
+
|
508 |
+
class JsonReader(Transformer):
|
509 |
+
def __init__(self, strict: bool = False):
|
510 |
+
super().__init__()
|
511 |
+
self.ready = True
|
512 |
+
self.strict = strict
|
513 |
+
self.num_errors = 0
|
514 |
+
|
515 |
+
def do(self, line: str) -> Optional[dict]:
|
516 |
+
if line is None:
|
517 |
+
return None
|
518 |
+
if isinstance(line, dict):
|
519 |
+
return line
|
520 |
+
line = line.rstrip("\n")
|
521 |
+
if not line:
|
522 |
+
return None
|
523 |
+
try:
|
524 |
+
return json.loads(line)
|
525 |
+
except json.decoder.JSONDecodeError as e:
|
526 |
+
self.log_error(e)
|
527 |
+
if self.strict:
|
528 |
+
raise
|
529 |
+
return None
|
530 |
+
|
531 |
+
def log_error(self, e: json.decoder.JSONDecodeError):
|
532 |
+
self.num_errors += 1
|
533 |
+
if self.num_errors > 10:
|
534 |
+
return
|
535 |
+
|
536 |
+
MAX_LEN = 80
|
537 |
+
snippet, snippet_len = e.doc, len(e.doc)
|
538 |
+
col = e.pos
|
539 |
+
if snippet_len > MAX_LEN:
|
540 |
+
if col < MAX_LEN:
|
541 |
+
start = 0
|
542 |
+
elif snippet_len - col < MAX_LEN:
|
543 |
+
start = snippet_len - MAX_LEN
|
544 |
+
else:
|
545 |
+
start = col - MAX_LEN // 2
|
546 |
+
snippet = e.doc[start : start + MAX_LEN]
|
547 |
+
col = col - start
|
548 |
+
logging.warning(
|
549 |
+
"\n".join(
|
550 |
+
[
|
551 |
+
f"Invalid json (length={len(e.doc)}) {e}",
|
552 |
+
snippet,
|
553 |
+
" " * (col - 1) + "^",
|
554 |
+
]
|
555 |
+
)
|
556 |
+
)
|
557 |
+
|
558 |
+
def summary(self):
|
559 |
+
summ = super().summary()
|
560 |
+
if self.num_errors > 0:
|
561 |
+
summ.append(f"Skipped {self.num_errors} invalid json.")
|
562 |
+
return summ
|
563 |
+
|
564 |
+
|
565 |
+
def compile_column(column, newline):
|
566 |
+
if callable(column):
|
567 |
+
return column
|
568 |
+
|
569 |
+
if column == "*":
|
570 |
+
return json.dumps
|
571 |
+
|
572 |
+
if re.match(r"[_a-z][_a-z0-9]*", column):
|
573 |
+
|
574 |
+
def extract_col(doc):
|
575 |
+
v = doc.get(column, "")
|
576 |
+
if isinstance(v, str) and newline != "\n":
|
577 |
+
v = v.rstrip("\n").replace("\n", newline)
|
578 |
+
return v
|
579 |
+
|
580 |
+
return extract_col
|
581 |
+
|
582 |
+
return compile_expr(column)
|
583 |
+
|
584 |
+
|
585 |
+
def select(lines, columns, skip_empty=False, separator="\t", newline="\n"):
|
586 |
+
"""Yields the content of the requested columns."""
|
587 |
+
column_parsers = [compile_column(c, newline) for c in columns]
|
588 |
+
for doc in read_jsons(lines):
|
589 |
+
values = []
|
590 |
+
empty = True
|
591 |
+
for parse_col in column_parsers:
|
592 |
+
v = parse_col(doc)
|
593 |
+
values.append(str(v) or "")
|
594 |
+
empty = empty and v is None
|
595 |
+
|
596 |
+
if skip_empty and empty:
|
597 |
+
continue
|
598 |
+
|
599 |
+
yield separator.join(values)
|
600 |
+
|
601 |
+
|
602 |
+
def compile_expr(clause: Union[str, FilterFn], requires: List[str] = None):
|
603 |
+
if not isinstance(clause, str):
|
604 |
+
return clause
|
605 |
+
|
606 |
+
args_re = r"(?i:\{([_a-z][_a-z0-9]*)\})"
|
607 |
+
args_list = list(re.findall(args_re, clause))
|
608 |
+
if not args_list:
|
609 |
+
# This is only a warning because you may want to have eg random sampling
|
610 |
+
# that doesn't depend on the document.
|
611 |
+
logging.warn(
|
612 |
+
f"Warning: No variable found in expression: <{clause}>\n"
|
613 |
+
"Variables should be written inside braces, eg: {language}=='en'"
|
614 |
+
)
|
615 |
+
python_like = re.sub(args_re, r"doc.get('\1', None)", clause)
|
616 |
+
requires = requires or []
|
617 |
+
modules = {r: importlib.import_module(r) for r in requires}
|
618 |
+
return eval(f"lambda doc: {python_like}", modules)
|
619 |
+
|
620 |
+
|
621 |
+
class where(Transformer):
|
622 |
+
"""Filters the data using python code.
|
623 |
+
|
624 |
+
Ex: `jsonql where 'len({text}) > 100'`
|
625 |
+
"""
|
626 |
+
|
627 |
+
def __init__(
|
628 |
+
self, clauses: Sequence[Union[str, FilterFn]], requires: List[str] = []
|
629 |
+
):
|
630 |
+
super().__init__()
|
631 |
+
self.raw_clauses = clauses
|
632 |
+
self.requires = requires
|
633 |
+
self.n_selected = 0
|
634 |
+
self.clauses: List[FilterFn] = []
|
635 |
+
|
636 |
+
def _prepare(self):
|
637 |
+
self.clauses = [compile_expr(c, self.requires) for c in self.raw_clauses]
|
638 |
+
|
639 |
+
def do(self, doc: dict) -> Optional[dict]:
|
640 |
+
assert self.clauses
|
641 |
+
if not doc or not all((c(doc) for c in self.clauses)):
|
642 |
+
return None
|
643 |
+
self.n_selected += 1
|
644 |
+
return doc
|
645 |
+
|
646 |
+
def summary(self):
|
647 |
+
n_selected, n_docs = self.n_selected, self.processed
|
648 |
+
selectivity = n_selected / n_docs if n_docs else 0
|
649 |
+
return [f"Selected {n_selected} documents out of {n_docs} ({selectivity:5.1%})"]
|
650 |
+
|
651 |
+
|
652 |
+
def merge(lines, columns, separator="\t", newline=NEWLINE):
|
653 |
+
"""Reads tab separated columns and output a json using the given headers.
|
654 |
+
|
655 |
+
Headers are of form {key}[%{type}]
|
656 |
+
{type} can be one of {"f": float, "i": int, "b": bool, "s": string}.
|
657 |
+
Default type is string.
|
658 |
+
A special header "_" means interpret this column as json, and append all other
|
659 |
+
columns to it. Must appear only once and on last position.
|
660 |
+
|
661 |
+
Ex:
|
662 |
+
`echo '1\thello' | jsonql merge n t` --> `{"n": "1", "t": "hello"}`
|
663 |
+
`echo '1\thello" | jsonql merge n%i t` --> `{"n": 1, "t": "hello"}`
|
664 |
+
`echo '1\thello\t{"f": "bar"}' | jsonql merge n%i t _` --> `{"n": 1, "t": "hello", "f": "bar"}`
|
665 |
+
"""
|
666 |
+
handle_newlines = lambda s: s.replace(newline, "\n")
|
667 |
+
type_mapping: Dict[str, Callable] = {
|
668 |
+
"f": float,
|
669 |
+
"i": int,
|
670 |
+
"b": bool,
|
671 |
+
"s": handle_newlines,
|
672 |
+
}
|
673 |
+
type_parsing = [
|
674 |
+
type_mapping.get(f.split("%")[-1], handle_newlines) for f in columns
|
675 |
+
]
|
676 |
+
columns = [f.split("%")[0] for f in columns]
|
677 |
+
doc_index = columns.index("_") if "_" in columns else -1
|
678 |
+
read_json = JsonReader()
|
679 |
+
|
680 |
+
def parse(line):
|
681 |
+
parts = line.split(separator, len(columns) - 1)
|
682 |
+
doc: Dict[str, tp.Any] = {}
|
683 |
+
for i, value in enumerate(parts):
|
684 |
+
if columns[i] == "_":
|
685 |
+
doc.update(read_json(parts[doc_index]))
|
686 |
+
else:
|
687 |
+
try:
|
688 |
+
doc[columns[i]] = type_parsing[i](value)
|
689 |
+
except ValueError:
|
690 |
+
logging.error(
|
691 |
+
f"Error when parsing column {i} of line: {line[:100]}..."
|
692 |
+
)
|
693 |
+
return doc
|
694 |
+
|
695 |
+
for line in lines:
|
696 |
+
yield json.dumps(parse(line))
|
697 |
+
|
698 |
+
|
699 |
+
class split(Transformer):
|
700 |
+
"""Split a files in several smaller files based on the value of a field."""
|
701 |
+
|
702 |
+
# Not parallelisable since we are writing to files.
|
703 |
+
parallelisable = False
|
704 |
+
|
705 |
+
def __init__(
|
706 |
+
self,
|
707 |
+
pattern: Union[Path, str] = None,
|
708 |
+
split_fn: Callable[[dict], str] = None,
|
709 |
+
mkdir: bool = False,
|
710 |
+
):
|
711 |
+
super().__init__()
|
712 |
+
assert not (
|
713 |
+
pattern and split_fn
|
714 |
+
), "split can't have both a pattern and a split_fn"
|
715 |
+
if split_fn is not None:
|
716 |
+
self.split_fn = split_fn
|
717 |
+
else:
|
718 |
+
assert pattern, "split need either a pattern or a split_fn"
|
719 |
+
self.split_fn = self.make_split_fn(str(pattern))
|
720 |
+
self.mkdir = mkdir
|
721 |
+
self.o: dict = {}
|
722 |
+
|
723 |
+
def make_split_fn(self, pattern: str) -> Callable[[dict], str]:
|
724 |
+
candidates = list(re.findall(r"(?i:\{([_a-z][_a-z0-9]*)\})", pattern))
|
725 |
+
return lambda doc: pattern.format(**{c: doc[c] for c in candidates})
|
726 |
+
|
727 |
+
def do(self, doc):
|
728 |
+
filename = self.split_fn(doc)
|
729 |
+
if not filename:
|
730 |
+
return
|
731 |
+
o = self.o.get(filename, None)
|
732 |
+
if o is None:
|
733 |
+
if self.mkdir:
|
734 |
+
Path(filename).parent.mkdir(parents=True, exist_ok=True)
|
735 |
+
self.o[filename] = open_write(filename)
|
736 |
+
print(json.dumps(doc, ensure_ascii=False), file=self.o[filename], flush=True)
|
737 |
+
|
738 |
+
def summary(self):
|
739 |
+
summ = super().summary()
|
740 |
+
summ.append(f"Found {len(self.o)} splits.")
|
741 |
+
return summ
|
742 |
+
|
743 |
+
def close(self):
|
744 |
+
for file in self.o.values():
|
745 |
+
file.close()
|
746 |
+
|
747 |
+
|
748 |
+
def histogram(values, bins, weights):
|
749 |
+
hist, bins = np.histogram(values, bins=bins)
|
750 |
+
# n_bins = len(hist)
|
751 |
+
|
752 |
+
if weights is not None:
|
753 |
+
# Bins can't be auto-determined if weights is supplied.
|
754 |
+
# So we first compute the bins without the weights then recompute
|
755 |
+
# the histogram with the weights.
|
756 |
+
hist, bins = np.histogram(values, bins=bins, weights=weights)
|
757 |
+
# cumsum = np.cumsum(hist)
|
758 |
+
# total = cumsum[-1]
|
759 |
+
|
760 |
+
# for i in range(n_bins - 1):
|
761 |
+
# if cumsum[i] / total > 0.9:
|
762 |
+
# useful_range = np.linspace(bins[0], bins[i + 1], n_bins)
|
763 |
+
# new_bins = np.append(useful_range, [bins[-1]])
|
764 |
+
# return np.histogram(values, bins=new_bins, weights=weights)
|
765 |
+
|
766 |
+
return hist, bins
|
767 |
+
|
768 |
+
|
769 |
+
def _parse_bins(bins):
|
770 |
+
try:
|
771 |
+
if isinstance(bins, str):
|
772 |
+
if "," in bins:
|
773 |
+
bins = [int(b) for b in bins.split(",")]
|
774 |
+
else:
|
775 |
+
bins = int(bins)
|
776 |
+
except ValueError:
|
777 |
+
pass
|
778 |
+
return bins
|
779 |
+
|
780 |
+
|
781 |
+
ALL_DOCUMENTS = "<ALL_DOCUMENTS>"
|
782 |
+
MAX_LABEL_LEN = 100
|
783 |
+
|
784 |
+
|
785 |
+
def bar_chart(hist, bins):
|
786 |
+
n = sum(hist)
|
787 |
+
max_h = max(hist)
|
788 |
+
out = []
|
789 |
+
for i, h in enumerate(hist):
|
790 |
+
h_size = 80 * h // max_h
|
791 |
+
dh_size = 80 * (h - hist[i - 1]) // max_h
|
792 |
+
if h_size == 0 or dh_size == 0:
|
793 |
+
continue
|
794 |
+
bar = "█" * h_size
|
795 |
+
out.append(f"{bins[i]:8.3f} {bar:80} ({h:5d}, {h / n:5.1%}) {bins[i+1]:8.3f}")
|
796 |
+
out.append(f"{bins[-1]:8.3f}")
|
797 |
+
return out
|
798 |
+
|
799 |
+
|
800 |
+
def display_stats(stats, key, weights=None, bins="auto", cumulative=False):
|
801 |
+
out = []
|
802 |
+
documents = stats[ALL_DOCUMENTS]
|
803 |
+
count = stats.get(key, 0)
|
804 |
+
r = count / documents if documents else 0
|
805 |
+
out.append(f"Field {key} saw {count} times ({r:5.1%})")
|
806 |
+
|
807 |
+
length = stats.get(key + ".length", None)
|
808 |
+
avg_length = length // count if length else 0
|
809 |
+
if length is not None:
|
810 |
+
out[-1] += f", average length is {length // count}"
|
811 |
+
|
812 |
+
values = stats.get(key + ".val", None)
|
813 |
+
if values:
|
814 |
+
out[-1] += f", histogram is: (bins={bins})"
|
815 |
+
if weights:
|
816 |
+
if weights not in stats:
|
817 |
+
logging.warn(f"Warning: weights column {weights} not found.")
|
818 |
+
if weights + ".val" not in stats:
|
819 |
+
logging.warn(
|
820 |
+
f"Warning: weights column {weights} is not a numeric column."
|
821 |
+
)
|
822 |
+
weights = stats.get(weights + ".val")
|
823 |
+
hist, bins = histogram(values, _parse_bins(bins), weights)
|
824 |
+
if cumulative:
|
825 |
+
hist = np.cumsum(hist)
|
826 |
+
out += bar_chart(hist, bins)
|
827 |
+
|
828 |
+
cnt = stats.get(key + ".cnt", None)
|
829 |
+
if avg_length < MAX_LABEL_LEN and cnt and max(cnt.values()) > 1:
|
830 |
+
cnt = sorted(cnt.items(), key=lambda kv: kv[1], reverse=True)
|
831 |
+
out[-1] += ", top 100 labels:"
|
832 |
+
for label, n in cnt[:100]:
|
833 |
+
if n < 5:
|
834 |
+
continue
|
835 |
+
out.append(f"{label:25}: {n:6} ({n / count:5.1%})")
|
836 |
+
|
837 |
+
return out
|
838 |
+
|
839 |
+
|
840 |
+
def describe(source, columns=None, weights=None, **kwargs):
|
841 |
+
"""Compute some statistics about a dataset.
|
842 |
+
|
843 |
+
Stats can be restricted to a subset of columns."""
|
844 |
+
MAX_HIST_SIZE = 100_000_000
|
845 |
+
MAX_CNT_SIZE = 1000
|
846 |
+
stats = {ALL_DOCUMENTS: 0}
|
847 |
+
needed = columns + [weights] if columns else None
|
848 |
+
|
849 |
+
for doc in read_jsons(source):
|
850 |
+
stats[ALL_DOCUMENTS] += 1
|
851 |
+
for k, v in doc.items():
|
852 |
+
if needed and k not in needed:
|
853 |
+
continue
|
854 |
+
stats[k] = get_or_set(stats, k, 0) + 1
|
855 |
+
if isinstance(v, str):
|
856 |
+
stats[k + ".length"] = get_or_set(stats, k + ".length", 0) + len(v)
|
857 |
+
if len(v) > MAX_LABEL_LEN: # Don't treat too long string as labels
|
858 |
+
continue
|
859 |
+
cnt = get_or_set(stats, k + ".cnt", collections.defaultdict(int))
|
860 |
+
if v in cnt or len(cnt) < MAX_CNT_SIZE:
|
861 |
+
cnt[v] += 1
|
862 |
+
elif type(v) in (int, float):
|
863 |
+
values = get_or_set(stats, k + ".val", [])
|
864 |
+
if len(values) < MAX_HIST_SIZE:
|
865 |
+
values.append(v)
|
866 |
+
elif type(v) is list and len(v) and type(v[0]) in (int, float):
|
867 |
+
values = get_or_set(stats, k + ".val", [])
|
868 |
+
if len(values) < MAX_HIST_SIZE:
|
869 |
+
values += v
|
870 |
+
elif type(v) is dict:
|
871 |
+
cnt = get_or_set(stats, k + ".cnt", collections.defaultdict(int))
|
872 |
+
for label in v:
|
873 |
+
if label in cnt or len(cnt) < MAX_CNT_SIZE:
|
874 |
+
cnt[label] += 1
|
875 |
+
|
876 |
+
documents = stats[ALL_DOCUMENTS]
|
877 |
+
yield f"Stats computed on {documents} documents:"
|
878 |
+
for k in stats:
|
879 |
+
if columns and k not in columns:
|
880 |
+
continue
|
881 |
+
if "." in k or k == ALL_DOCUMENTS:
|
882 |
+
continue
|
883 |
+
for line in display_stats(stats, k, weights=weights, **kwargs):
|
884 |
+
yield line
|
885 |
+
|
886 |
+
|
887 |
+
def shard(lines):
|
888 |
+
"""Shard a file in several smaller ones."""
|
889 |
+
# The creation of the shard is handle in a generic way. Do we need this ?
|
890 |
+
return lines
|
891 |
+
|
892 |
+
|
893 |
+
# *** Utils ***
|
894 |
+
|
895 |
+
|
896 |
+
def get_or_set(dictionary, key, default):
|
897 |
+
if key not in dictionary:
|
898 |
+
dictionary[key] = default
|
899 |
+
return dictionary[key]
|
900 |
+
|
901 |
+
|
902 |
+
class SimpleIO(Protocol):
|
903 |
+
"""A subset of methods from TextIO."""
|
904 |
+
|
905 |
+
def close(self) -> None:
|
906 |
+
...
|
907 |
+
|
908 |
+
def write(self, line: str) -> int:
|
909 |
+
...
|
910 |
+
|
911 |
+
def __enter__(self) -> "SimpleIO":
|
912 |
+
...
|
913 |
+
|
914 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
915 |
+
...
|
916 |
+
|
917 |
+
|
918 |
+
def open_read(filename: ReadableFileLike) -> Iterable[str]:
|
919 |
+
"""Open the given file, list of files or files matching the given glob and read lines.
|
920 |
+
|
921 |
+
`filename` is None or "-" -> reads from stdin
|
922 |
+
`filename` is a Path / str -> interprets filename as a glob and open files matching it
|
923 |
+
`filename` is a list -> opens sequentially all files from the list using `open_read`
|
924 |
+
`filename` is something else -> returns the object wrapped in a `nullcontext`
|
925 |
+
This allows to pass already openened files or iterables.
|
926 |
+
|
927 |
+
`open_read` will decompress gzip files, given they have ".gz" suffix.
|
928 |
+
"""
|
929 |
+
if filename is None:
|
930 |
+
return sys.stdin
|
931 |
+
|
932 |
+
if isinstance(filename, list):
|
933 |
+
assert isinstance(filename[0], Path)
|
934 |
+
if len(filename) == 0:
|
935 |
+
return []
|
936 |
+
if len(filename) > 1:
|
937 |
+
return _yield_from(filename)
|
938 |
+
filename = tp.cast(Path, filename[0])
|
939 |
+
if isinstance(filename, str):
|
940 |
+
if filename.startswith("http://") or filename.startswith("https://"):
|
941 |
+
return open_remote_file(filename)
|
942 |
+
|
943 |
+
filename = Path(filename)
|
944 |
+
if not isinstance(filename, Path):
|
945 |
+
# we might have received an iterable, return it unmodified.
|
946 |
+
return filename # type: ignore
|
947 |
+
|
948 |
+
# Expand glob patterns only when reading
|
949 |
+
files = [Path(f) for f in sorted(glob.glob(str(filename)))]
|
950 |
+
if len(files) > 1:
|
951 |
+
return _yield_from(files)
|
952 |
+
if len(files) == 1:
|
953 |
+
filename = files[0]
|
954 |
+
|
955 |
+
assert isinstance(filename, Path)
|
956 |
+
|
957 |
+
if filename.name.endswith("]"):
|
958 |
+
return block_reader(filename)
|
959 |
+
|
960 |
+
logging.getLogger(__name__).info(f"Opening {filename} with mode 'rt'")
|
961 |
+
if filename.suffix == ".gz":
|
962 |
+
file: TextIO = gzip.open(filename, "rt") # type: ignore
|
963 |
+
else:
|
964 |
+
file = open(filename, "rt")
|
965 |
+
|
966 |
+
return _close_when_exhausted(file)
|
967 |
+
|
968 |
+
|
969 |
+
def _close_when_exhausted(file: TextIO) -> Iterable[str]:
|
970 |
+
with file:
|
971 |
+
yield from file
|
972 |
+
|
973 |
+
|
974 |
+
def _yield_from(files: list) -> Iterable[str]:
|
975 |
+
for file in files:
|
976 |
+
yield from open_read(file)
|
977 |
+
|
978 |
+
|
979 |
+
def open_write(
|
980 |
+
filename: WritableFileLike, max_size: str = "4G"
|
981 |
+
) -> tp.ContextManager[TextIO]:
|
982 |
+
"""Open the given file, list of files or files matching the given glob.
|
983 |
+
|
984 |
+
The return value is a ContextManager meant to be used inside a `with` block:
|
985 |
+
```
|
986 |
+
with open_write("foo.txt") as o:
|
987 |
+
...
|
988 |
+
|
989 |
+
Write mode:
|
990 |
+
replaces "?" from filename by numbers ranging from 0 to 9, generatings files of size `max_size`.
|
991 |
+
If filename ends with ".gz", creates a blocked gzip file with random access.
|
992 |
+
"""
|
993 |
+
if filename is None:
|
994 |
+
return contextlib.nullcontext(sys.stdout)
|
995 |
+
|
996 |
+
if isinstance(filename, list):
|
997 |
+
if len(filename) > 1:
|
998 |
+
return MultiFile(filename, "w", max_size)
|
999 |
+
else:
|
1000 |
+
filename = tp.cast(Path, filename[0])
|
1001 |
+
if isinstance(filename, str):
|
1002 |
+
filename = Path(filename)
|
1003 |
+
if not isinstance(filename, Path):
|
1004 |
+
assert hasattr(filename, "write"), f"{filename} doesn't have a .write method."
|
1005 |
+
# We return a 'TextIO' even though we only check for `.write` method,
|
1006 |
+
# this works better with eg `print`.
|
1007 |
+
return contextlib.nullcontext(tp.cast(TextIO, filename))
|
1008 |
+
|
1009 |
+
mode = "wt"
|
1010 |
+
if "?" in filename.name:
|
1011 |
+
return sharded_file(filename, mode, max_size)
|
1012 |
+
|
1013 |
+
logging.getLogger(__name__).info(f"Opening {filename} with mode {mode}")
|
1014 |
+
# TODO: should we use another format ?
|
1015 |
+
if filename.suffix == ".gz":
|
1016 |
+
return BlockedGzipWriter(Path(filename), mode, block_size="64M")
|
1017 |
+
|
1018 |
+
return open(filename, "wt")
|
1019 |
+
|
1020 |
+
|
1021 |
+
def parse_size(size):
|
1022 |
+
unit_map = {"B": 1, "K": 1024, "M": 1024 ** 2, "G": 1024 ** 3}
|
1023 |
+
unit = size[-1].upper()
|
1024 |
+
assert (
|
1025 |
+
unit in unit_map
|
1026 |
+
), f"Unsupported size unit for {size}. Use one of: {unit_map.keys()}."
|
1027 |
+
return int(size[:-1]) * unit_map[unit]
|
1028 |
+
|
1029 |
+
|
1030 |
+
class MultiFile(SimpleIO):
|
1031 |
+
def __init__(self, files: Iterable[Path], mode="w", max_size="4G"):
|
1032 |
+
self.name = str(files)
|
1033 |
+
self.mode = mode
|
1034 |
+
self.files = iter(files)
|
1035 |
+
self.max_size = parse_size(max_size)
|
1036 |
+
self.current_handle: Optional[TextIO] = None
|
1037 |
+
self.current_block_size = 0
|
1038 |
+
self._open_next_handle() # Opening 1st handle allows to write directly.
|
1039 |
+
|
1040 |
+
def write(self, content) -> int:
|
1041 |
+
# Avoid splitting newlines to a new file.
|
1042 |
+
# use current_block_size since it's faster than `tell()`
|
1043 |
+
if content != "\n" and self.current_block_size >= self.max_size:
|
1044 |
+
self._open_next_handle()
|
1045 |
+
if self.current_handle is None:
|
1046 |
+
raise Exception("No more files to write to...")
|
1047 |
+
|
1048 |
+
written = self.current_handle.write(content)
|
1049 |
+
self.current_block_size += written
|
1050 |
+
return written
|
1051 |
+
|
1052 |
+
def _open_next_handle(self) -> bool:
|
1053 |
+
self.close()
|
1054 |
+
file = next(self.files, None)
|
1055 |
+
if file is None:
|
1056 |
+
return False
|
1057 |
+
|
1058 |
+
self.current_handle = open_write(file).__enter__()
|
1059 |
+
self.current_block_size = 0
|
1060 |
+
return True
|
1061 |
+
|
1062 |
+
def __enter__(self):
|
1063 |
+
return self
|
1064 |
+
|
1065 |
+
def __exit__(self, *exc_info):
|
1066 |
+
self.close()
|
1067 |
+
|
1068 |
+
@property
|
1069 |
+
def closed(self):
|
1070 |
+
return self.current_handle is None
|
1071 |
+
|
1072 |
+
def close(self):
|
1073 |
+
if self.current_handle is None:
|
1074 |
+
return
|
1075 |
+
|
1076 |
+
# log("Closing", self.current_handle.name, "with mode", self.current_handle.mode)
|
1077 |
+
self.current_handle.__exit__(None, None, None)
|
1078 |
+
self.current_handle = None
|
1079 |
+
|
1080 |
+
|
1081 |
+
# not sure it helps since connections are reseted anyway.
|
1082 |
+
_session = functools.lru_cache()(requests.Session)
|
1083 |
+
|
1084 |
+
|
1085 |
+
def request_get_content(url: str, n_retry: int = 3) -> bytes:
|
1086 |
+
"""Retrieve the binary content at url.
|
1087 |
+
|
1088 |
+
Retry on connection errors.
|
1089 |
+
"""
|
1090 |
+
t0 = time.time()
|
1091 |
+
logging.info(f"Starting download of {url}")
|
1092 |
+
for i in range(1, n_retry + 1):
|
1093 |
+
try:
|
1094 |
+
r = _session().get(url)
|
1095 |
+
r.raise_for_status()
|
1096 |
+
break
|
1097 |
+
except requests.exceptions.RequestException as e:
|
1098 |
+
# Sleep and try again on error, unless it's a 404.
|
1099 |
+
message = e.args[0] if isinstance(e.args[0], str) else ""
|
1100 |
+
if i == n_retry or "Client Error" in message:
|
1101 |
+
raise e
|
1102 |
+
warnings.warn(
|
1103 |
+
f"Swallowed error {e} while downloading {url} ({i} out of {n_retry})"
|
1104 |
+
)
|
1105 |
+
time.sleep(10 * 2 ** i)
|
1106 |
+
dl_time = time.time() - t0
|
1107 |
+
dl_speed = len(r.content) / dl_time / 1024
|
1108 |
+
logging.info(
|
1109 |
+
f"Downloaded {url} [{r.status_code}] took {dl_time:.0f}s ({dl_speed:.1f}kB/s)"
|
1110 |
+
)
|
1111 |
+
return r.content
|
1112 |
+
|
1113 |
+
|
1114 |
+
def open_remote_file(url: str, cache: Path = None) -> Iterable[str]:
|
1115 |
+
"""Download the files at the given url to memory and opens it as a file.
|
1116 |
+
Assumes that the file is small, and fetch it when this function is called.
|
1117 |
+
"""
|
1118 |
+
if cache and cache.exists():
|
1119 |
+
return open_read(cache)
|
1120 |
+
|
1121 |
+
# TODO: open the remote file in streaming mode.
|
1122 |
+
# The hard part is that we need to write the content on disk at the same time,
|
1123 |
+
# to implement disk caching.
|
1124 |
+
raw_bytes = request_get_content(url)
|
1125 |
+
content = io.BytesIO(raw_bytes)
|
1126 |
+
if url.endswith(".gz"):
|
1127 |
+
f: TextIO = gzip.open(content, mode="rt") # type: ignore
|
1128 |
+
else:
|
1129 |
+
f = io.TextIOWrapper(content)
|
1130 |
+
|
1131 |
+
if cache and not cache.exists():
|
1132 |
+
# The file might have been created while downloading/writing.
|
1133 |
+
tmp_cache = _tmp(cache)
|
1134 |
+
tmp_cache.write_bytes(raw_bytes)
|
1135 |
+
if not cache.exists():
|
1136 |
+
tmp_cache.replace(cache)
|
1137 |
+
else:
|
1138 |
+
tmp_cache.unlink()
|
1139 |
+
|
1140 |
+
return _close_when_exhausted(f)
|
1141 |
+
|
1142 |
+
|
1143 |
+
def sharded_file(file_pattern: Path, mode: str, max_size: str = "4G") -> MultiFile:
|
1144 |
+
folder, name = file_pattern.parent, file_pattern.name
|
1145 |
+
assert "?" in name, f"Can't expand give file_pattern: {file_pattern}"
|
1146 |
+
|
1147 |
+
n = name.count("?")
|
1148 |
+
assert 0 < n < 8
|
1149 |
+
assert "?" * n in name, f"The '?' need to be adjacents in {file_pattern}"
|
1150 |
+
assert "r" not in mode
|
1151 |
+
files = (folder / name.replace("?" * n, f"%0{n}d" % i) for i in range(10 ** n))
|
1152 |
+
|
1153 |
+
return MultiFile(files, mode, max_size)
|
1154 |
+
|
1155 |
+
|
1156 |
+
class SplitFile:
|
1157 |
+
def __init__(self, filename: Path, chunk: int, n_chunks: int, mode: str = "r"):
|
1158 |
+
assert mode == "r"
|
1159 |
+
size = os.path.getsize(filename)
|
1160 |
+
self.handle = open(filename, mode)
|
1161 |
+
start = chunk * size // n_chunks
|
1162 |
+
self.end: int = (chunk + 1) * size // n_chunks
|
1163 |
+
|
1164 |
+
if start > 0:
|
1165 |
+
self.handle.seek(start - 1)
|
1166 |
+
# Skip incomplete line. This avoid crashing when reading eg the middle
|
1167 |
+
# of a unicode char. `self.handle.buffer` is a binary file reader.
|
1168 |
+
self.handle.buffer.readline() # type: ignore
|
1169 |
+
|
1170 |
+
def __enter__(self):
|
1171 |
+
return self
|
1172 |
+
|
1173 |
+
def __iter__(self):
|
1174 |
+
while True:
|
1175 |
+
line = self.handle.readline()
|
1176 |
+
if not line:
|
1177 |
+
return
|
1178 |
+
|
1179 |
+
yield line
|
1180 |
+
if self.handle.tell() >= self.end:
|
1181 |
+
return
|
1182 |
+
|
1183 |
+
def readlines(self):
|
1184 |
+
return list(self.__iter__())
|
1185 |
+
|
1186 |
+
def close(self):
|
1187 |
+
self.handle.close()
|
1188 |
+
|
1189 |
+
def __exit__(self, *args):
|
1190 |
+
self.close()
|
1191 |
+
|
1192 |
+
|
1193 |
+
def get_block_readers(filename: Path, n_readers, mode="t"):
|
1194 |
+
index_filename = filename.parent / (filename.name + ".index")
|
1195 |
+
if not index_filename.exists():
|
1196 |
+
return [gzip.open(filename, "r" + mode)]
|
1197 |
+
index: List[int] = np.load(index_filename)
|
1198 |
+
n_chunks = len(index)
|
1199 |
+
chunk_per_reader = int(np.ceil(n_chunks / n_readers))
|
1200 |
+
n_readers = int(np.ceil(n_chunks / chunk_per_reader))
|
1201 |
+
|
1202 |
+
start = 0
|
1203 |
+
readers = []
|
1204 |
+
for i in range(n_readers):
|
1205 |
+
end = index[min((i + 1) * chunk_per_reader - 1, n_chunks - 1)]
|
1206 |
+
r = _blocked_gzip_reader(filename, start, end, mode)
|
1207 |
+
readers.append(r)
|
1208 |
+
start = end
|
1209 |
+
return readers
|
1210 |
+
|
1211 |
+
|
1212 |
+
def block_reader(filename: Path) -> Iterable[str]:
|
1213 |
+
root, pattern = str(filename)[:-1].split("[", 1)
|
1214 |
+
assert root.endswith(".gz"), "Can only read block of a .gz file for now."
|
1215 |
+
|
1216 |
+
ii, nn = pattern.strip().split("/")
|
1217 |
+
i, n_readers = int(ii), int(nn)
|
1218 |
+
|
1219 |
+
index_filename = root + ".index"
|
1220 |
+
assert os.path.exists(
|
1221 |
+
index_filename
|
1222 |
+
), f"Index {index_filename} not found for {filename}"
|
1223 |
+
index: List[int] = np.load(index_filename)
|
1224 |
+
n_chunks = len(index)
|
1225 |
+
chunk_per_reader = int(np.ceil(n_chunks / n_readers))
|
1226 |
+
n_readers = int(np.ceil(n_chunks / chunk_per_reader))
|
1227 |
+
# I'm not sure how to handle the case where there is less reader than expected.
|
1228 |
+
# Currently we return empty readers.
|
1229 |
+
|
1230 |
+
start = 0
|
1231 |
+
if i > 0:
|
1232 |
+
start = index[min((i - 1) * chunk_per_reader, n_chunks - 1)]
|
1233 |
+
end = index[min(i * chunk_per_reader, n_chunks - 1)]
|
1234 |
+
return _blocked_gzip_reader(root, start, end, mode="t")
|
1235 |
+
|
1236 |
+
|
1237 |
+
def _blocked_gzip_reader(filename, start, end, mode="t") -> Iterable[str]:
|
1238 |
+
handle = gzip.open(filename, "r" + mode)
|
1239 |
+
handle.seek(start)
|
1240 |
+
try:
|
1241 |
+
while handle.tell() < end:
|
1242 |
+
line = handle.readline()
|
1243 |
+
if not line:
|
1244 |
+
break
|
1245 |
+
yield line
|
1246 |
+
finally:
|
1247 |
+
handle.close()
|
1248 |
+
|
1249 |
+
|
1250 |
+
class BlockedGzipWriter(MultiFile):
|
1251 |
+
"""Writes a Gzip files which can be read by block.
|
1252 |
+
|
1253 |
+
Decreasing the block size may hurt compression, but provides more split points.
|
1254 |
+
"""
|
1255 |
+
|
1256 |
+
def __init__(self, filename: Path, mode: str, block_size: str = "256M"):
|
1257 |
+
assert "w" in mode
|
1258 |
+
self.filename = Path(filename)
|
1259 |
+
self.index: List[int] = []
|
1260 |
+
self.zipfile: Optional[gzip.GzipFile] = None
|
1261 |
+
super().__init__([], mode, block_size)
|
1262 |
+
|
1263 |
+
def _open_next_handle(self) -> bool:
|
1264 |
+
"""Here we never actually close/open handles,
|
1265 |
+
we just write the end of block sequence."""
|
1266 |
+
if not self.current_handle:
|
1267 |
+
mode = self.mode + "t"
|
1268 |
+
self.current_handle = tp.cast(TextIO, gzip.open(self.filename, mode))
|
1269 |
+
assert isinstance(self.current_handle.buffer, gzip.GzipFile)
|
1270 |
+
self.zipfile = self.current_handle.buffer
|
1271 |
+
return True
|
1272 |
+
|
1273 |
+
# Use Z_FULL_FLUSH to allow random access:
|
1274 |
+
# https://github.com/madler/zlib/blob/cacf7f1d4e3d44d871b605da3b647f07d718623f/zlib.h#L313
|
1275 |
+
self.current_handle.buffer.flush(zlib_mode=zlib.Z_FULL_FLUSH) # type: ignore
|
1276 |
+
self.index.append(self.current_handle.tell())
|
1277 |
+
self.current_block_size = 0
|
1278 |
+
return True
|
1279 |
+
|
1280 |
+
def flush(self):
|
1281 |
+
assert self.current_handle is not None
|
1282 |
+
self.current_handle.flush()
|
1283 |
+
|
1284 |
+
def close(self):
|
1285 |
+
if self.current_handle is None:
|
1286 |
+
return
|
1287 |
+
self.current_handle.flush()
|
1288 |
+
self.index.append(self.current_handle.tell())
|
1289 |
+
self.current_handle.close()
|
1290 |
+
self.current_handle = None
|
1291 |
+
index = np.array(self.index, dtype=np.uint64)
|
1292 |
+
with open(str(self.filename) + ".index", "wb") as o:
|
1293 |
+
np.save(o, index)
|
1294 |
+
|
1295 |
+
|
1296 |
+
def grouper(iterable, n):
|
1297 |
+
group = []
|
1298 |
+
for x in iterable:
|
1299 |
+
group.append(x)
|
1300 |
+
if len(group) == n:
|
1301 |
+
yield group
|
1302 |
+
group = []
|
1303 |
+
if group:
|
1304 |
+
yield group
|
1305 |
+
|
1306 |
+
|
1307 |
+
PROCESS = psutil.Process()
|
1308 |
+
|
1309 |
+
|
1310 |
+
def mem_footprint_gb(pid=None):
|
1311 |
+
rss = PROCESS.memory_info().rss
|
1312 |
+
return rss / 1_000_000_000
|
1313 |
+
|
1314 |
+
|
1315 |
+
def _tmp(output: Path) -> Path:
|
1316 |
+
suffix = "".join(output.suffixes)
|
1317 |
+
suffix = ".tmp" + suffix
|
1318 |
+
prefix = output.name[: -len(suffix)]
|
1319 |
+
_, tmp_path = tempfile.mkstemp(dir=output.parent, prefix=prefix, suffix=suffix)
|
1320 |
+
return Path(tmp_path)
|
1321 |
+
|
1322 |
+
|
1323 |
+
@functools.lru_cache()
|
1324 |
+
def _tmp_dir() -> Path:
|
1325 |
+
job_id = os.environ.get("SLURM_JOB_ID")
|
1326 |
+
if job_id:
|
1327 |
+
return Path("/scratch/slurm_tmpdir") / job_id
|
1328 |
+
|
1329 |
+
checkpoint = Path("/checkpoint") / os.environ.get("USER", "")
|
1330 |
+
if checkpoint.exists():
|
1331 |
+
tmp = checkpoint / "tmp"
|
1332 |
+
tmp.mkdir(exist_ok=True)
|
1333 |
+
return tmp
|
1334 |
+
|
1335 |
+
return Path("/tmp")
|
1336 |
+
|
1337 |
+
|
1338 |
+
if __name__ == "__main__":
|
1339 |
+
multiprocessing.set_start_method("fork")
|
1340 |
+
main(sys.argv[1:])
|
cc-multilingual-main/cc_net/build/lib/cc_net/minify.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
import base64
|
8 |
+
import hashlib
|
9 |
+
import itertools
|
10 |
+
import urllib.parse
|
11 |
+
from pathlib import Path
|
12 |
+
from typing import Dict, Iterable, List, Optional, Sequence, Set, Union
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from cc_net import jsonql
|
17 |
+
from cc_net.execution import get_executor
|
18 |
+
from cc_net.jsonql import mem_footprint_gb
|
19 |
+
|
20 |
+
HASH_SIZE = 4
|
21 |
+
HASH_TYPE = np.uint32
|
22 |
+
|
23 |
+
PUBLIC_FIELDS = ["url", "digest"]
|
24 |
+
COMPUTED_FIELDS = ["cc_segment", "language", "language_score", "bucket", "perplexity"]
|
25 |
+
DATA = Path(__file__).parent.parent / "data"
|
26 |
+
|
27 |
+
|
28 |
+
# This is similar to dedup methods but with use 32 bits hashes.
|
29 |
+
def _b2i(b: bytes) -> int:
|
30 |
+
return np.frombuffer(b[:HASH_SIZE], dtype=HASH_TYPE, count=1, offset=0).item(0)
|
31 |
+
|
32 |
+
|
33 |
+
def _str_hash(s: str) -> int:
|
34 |
+
h = hashlib.sha1(bytes(s, encoding="utf-8"))
|
35 |
+
return _b2i(h.digest())
|
36 |
+
|
37 |
+
|
38 |
+
def get_hashes(lines: Iterable[str]) -> List[bytes]:
|
39 |
+
h = HASH_SIZE
|
40 |
+
return [hashlib.sha1(bytes(l, encoding="utf-8")).digest()[:h] for l in lines]
|
41 |
+
|
42 |
+
|
43 |
+
def encode_hashes(hashes: Iterable[bytes]) -> str:
|
44 |
+
return base64.b64encode(b"".join(hashes)).decode("ascii")
|
45 |
+
|
46 |
+
|
47 |
+
def encode_as_hashes(lines: Iterable[str]) -> str:
|
48 |
+
return encode_hashes(get_hashes(lines))
|
49 |
+
|
50 |
+
|
51 |
+
def decode_hashes(compact: str) -> List[bytes]:
|
52 |
+
all_hashes = base64.b64decode(compact)
|
53 |
+
res = []
|
54 |
+
assert len(all_hashes) % HASH_SIZE == 0
|
55 |
+
for i in range(len(all_hashes) // HASH_SIZE):
|
56 |
+
chunk = all_hashes[i * HASH_SIZE : (i + 1) * HASH_SIZE]
|
57 |
+
res.append(chunk)
|
58 |
+
|
59 |
+
return res
|
60 |
+
|
61 |
+
|
62 |
+
def encode_line_ids(line_ids: Sequence[int]) -> str:
|
63 |
+
arr = np.array(line_ids, dtype="<u2")
|
64 |
+
return base64.b64encode(arr.tobytes()).decode("ascii")
|
65 |
+
|
66 |
+
|
67 |
+
def decode_line_ids(compact: str) -> List[int]:
|
68 |
+
ids_bytes = bytearray(base64.b64decode(compact))
|
69 |
+
return np.ndarray(len(ids_bytes) // 2, dtype="<i2", buffer=ids_bytes)
|
70 |
+
|
71 |
+
|
72 |
+
def get_doc_key(digest: str) -> int:
|
73 |
+
assert digest.startswith("sha1:")
|
74 |
+
h = base64.b32decode(digest[5:])
|
75 |
+
return _b2i(h[:HASH_SIZE])
|
76 |
+
|
77 |
+
|
78 |
+
class Minifier(jsonql.Transformer):
|
79 |
+
ready = True
|
80 |
+
|
81 |
+
def __init__(self):
|
82 |
+
self.fields = frozenset(COMPUTED_FIELDS + PUBLIC_FIELDS)
|
83 |
+
|
84 |
+
def do(self, doc: dict) -> Optional[dict]:
|
85 |
+
line_ids: List[int] = doc.pop("line_ids")
|
86 |
+
fields = self.fields
|
87 |
+
keys = list(doc.keys())
|
88 |
+
for k in keys:
|
89 |
+
if k not in fields:
|
90 |
+
doc.pop(k, None)
|
91 |
+
p = doc.get("perplexity", 0)
|
92 |
+
doc["line_ids"] = encode_line_ids(line_ids)
|
93 |
+
if p:
|
94 |
+
doc["perplexity"] = round(p, 1)
|
95 |
+
s = doc.get("language_score", 0)
|
96 |
+
if s:
|
97 |
+
doc["language_score"] = round(s, 2)
|
98 |
+
return doc
|
99 |
+
|
100 |
+
|
101 |
+
class MetadataFetcher(jsonql.Transformer):
|
102 |
+
"""Reads documents from CC snapshot and join precomputed metadata.
|
103 |
+
|
104 |
+
CC snapshots are split in segments. Each segment is 64Mb long.
|
105 |
+
The metadata must also be stored in segments of the same size and names.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def __init__(self, folder: Union[Path, str]):
|
109 |
+
self.ready = True
|
110 |
+
self.metadata: Dict[int, dict] = {}
|
111 |
+
|
112 |
+
self._segments: Set[str] = set()
|
113 |
+
self.read_doc = 0
|
114 |
+
self.missed_doc = 0
|
115 |
+
self.missed_par = 0
|
116 |
+
self.processed_par = 0
|
117 |
+
|
118 |
+
if isinstance(folder, str):
|
119 |
+
# detect path passed as string
|
120 |
+
if urllib.parse.urlparse(folder).scheme == "":
|
121 |
+
folder = Path(folder)
|
122 |
+
assert folder.exists(), f"Metadata folder not found: {folder}"
|
123 |
+
|
124 |
+
self.folder = folder
|
125 |
+
self.segment: str = ""
|
126 |
+
self.segments_read_twice = 0
|
127 |
+
|
128 |
+
def meta_file(self, segment: str) -> str:
|
129 |
+
file_name = segment.split("/")[-1]
|
130 |
+
assert file_name.endswith(".warc.wet.gz") or file_name.endswith(".warc.wet")
|
131 |
+
if isinstance(self.folder, str):
|
132 |
+
return urllib.parse.urljoin(
|
133 |
+
self.folder, file_name.replace(".warc.wet", ".json")
|
134 |
+
)
|
135 |
+
meta_file = self.folder / file_name.replace(".warc.wet", ".json")
|
136 |
+
assert (
|
137 |
+
meta_file.exists()
|
138 |
+
), f"Couldn't find metadata file for segment {segment} at {meta_file}"
|
139 |
+
return str(meta_file)
|
140 |
+
|
141 |
+
def fetch_metadata(self, segment: str) -> None:
|
142 |
+
meta_file = self.meta_file(segment)
|
143 |
+
k = get_doc_key
|
144 |
+
self.metadata = {}
|
145 |
+
collision = 0
|
146 |
+
for m in jsonql.read_jsons(meta_file):
|
147 |
+
key = k(m["digest"])
|
148 |
+
if key in self.metadata:
|
149 |
+
collision += 1
|
150 |
+
self.metadata[key] = m
|
151 |
+
|
152 |
+
self.log(f"Loaded {len(self.metadata)} metadatas from {meta_file}")
|
153 |
+
if collision > 0:
|
154 |
+
self._logger.warning(f"Found {collision} collisions !")
|
155 |
+
|
156 |
+
self.segment = segment
|
157 |
+
if segment in self._segments:
|
158 |
+
self.log("Cache miss")
|
159 |
+
self.segments_read_twice += 1
|
160 |
+
self._segments.add(segment)
|
161 |
+
|
162 |
+
def do(self, doc: dict) -> Optional[dict]:
|
163 |
+
if self.segment != doc["cc_segment"]:
|
164 |
+
self.fetch_metadata(doc["cc_segment"])
|
165 |
+
digest = doc["digest"]
|
166 |
+
key = get_doc_key(digest)
|
167 |
+
if key not in self.metadata:
|
168 |
+
return None
|
169 |
+
|
170 |
+
metadata = self.metadata.pop(key)
|
171 |
+
return self.clean(metadata, doc)
|
172 |
+
|
173 |
+
def clean(self, metadata: dict, full_doc: dict) -> Optional[dict]:
|
174 |
+
line_ids = decode_line_ids(metadata.pop("line_ids"))
|
175 |
+
lines = full_doc["raw_content"].split("\n")
|
176 |
+
cleaned = []
|
177 |
+
for l in line_ids:
|
178 |
+
if l >= len(lines) or l < 0:
|
179 |
+
self.missed_par += 1
|
180 |
+
continue
|
181 |
+
cleaned.append(lines[l])
|
182 |
+
|
183 |
+
self.processed_par += len(line_ids)
|
184 |
+
if not cleaned:
|
185 |
+
self.missed_doc += 1
|
186 |
+
return None
|
187 |
+
|
188 |
+
full_doc["raw_content"] = "\n".join(cleaned)
|
189 |
+
full_doc["original_nlines"] = full_doc["nlines"]
|
190 |
+
full_doc["original_length"] = full_doc["length"]
|
191 |
+
full_doc["nlines"] = len(cleaned)
|
192 |
+
full_doc["length"] = len(full_doc["raw_content"])
|
193 |
+
for key, value in metadata.items():
|
194 |
+
full_doc[key] = value
|
195 |
+
return full_doc
|
196 |
+
|
197 |
+
def summary(self) -> List[str]:
|
198 |
+
summ = super().summary()
|
199 |
+
mem = mem_footprint_gb()
|
200 |
+
len_cache = len(self.metadata)
|
201 |
+
summ.append(
|
202 |
+
f"Read {self.read_doc:_}, stocking {len_cache:_} doc in {mem:.1f}g."
|
203 |
+
)
|
204 |
+
if self.missed_doc:
|
205 |
+
r = self.missed_doc / self.processed
|
206 |
+
summ.append(f"! Missed {self.missed_doc} documents ({r:.1%}) !")
|
207 |
+
|
208 |
+
if self.missed_par:
|
209 |
+
r = self.missed_par / self.processed
|
210 |
+
summ.append(f"! Missed {self.missed_par} paragraphs ({r:.1%}) !")
|
211 |
+
return summ
|
212 |
+
|
213 |
+
|
214 |
+
def _expand_files(files: List[Path]) -> List[Path]:
|
215 |
+
if len(files) == 1 and files[0].is_dir():
|
216 |
+
folder = files[0]
|
217 |
+
files = sorted(folder.glob("*.json.gz"))
|
218 |
+
print(f"Found {len(files)} files under {folder}/*.json.gz")
|
219 |
+
assert files, "No files found"
|
220 |
+
return files
|
221 |
+
|
222 |
+
|
223 |
+
def minify_file(file: Path, output: Path) -> str:
|
224 |
+
"""Minify the given file."""
|
225 |
+
jsonql.run_pipes(Minifier(), file=file, output=output)
|
226 |
+
return f"Minified {output}"
|
227 |
+
|
228 |
+
|
229 |
+
def minify(
|
230 |
+
files: List[Path], output_dir: Path, execution: str = "mp", parallelism: int = -1
|
231 |
+
):
|
232 |
+
"""Minify all the files in the given folder."""
|
233 |
+
files = _expand_files(files)
|
234 |
+
output_dir.mkdir(exist_ok=True)
|
235 |
+
with open(output_dir / "files.txt", "w") as o:
|
236 |
+
for f in files:
|
237 |
+
print(f.name, file=o)
|
238 |
+
outputs = [output_dir / f.name for f in files]
|
239 |
+
ex = get_executor(
|
240 |
+
"minify",
|
241 |
+
output_dir / "logs",
|
242 |
+
execution,
|
243 |
+
timeout_hour=2,
|
244 |
+
cpus=1,
|
245 |
+
task_parallelism=parallelism,
|
246 |
+
)
|
247 |
+
ex(minify_file, files, outputs)
|
248 |
+
|
249 |
+
|
250 |
+
def fetch_metadata_file(
|
251 |
+
file: Union[Path, str],
|
252 |
+
metadata_dir: Union[Path, str],
|
253 |
+
output: Path,
|
254 |
+
cache_dir: Path = None,
|
255 |
+
):
|
256 |
+
unminifier = MetadataFetcher(metadata_dir)
|
257 |
+
tmp = output.with_name("tmp." + output.name)
|
258 |
+
jsonql.run_pipes(unminifier, file=file, output=tmp)
|
259 |
+
tmp.rename(output)
|
260 |
+
return f"Fetched metadata for {file}. Results at {output}."
|
261 |
+
|
262 |
+
|
263 |
+
def fetch_metadata(
|
264 |
+
files: List[str],
|
265 |
+
metadata_dir: Union[Path, str],
|
266 |
+
output_dir: Path,
|
267 |
+
execution: str = "mp",
|
268 |
+
parallelism: int = -1,
|
269 |
+
cache_dir: Path = None,
|
270 |
+
):
|
271 |
+
if len(files) == 1 and Path(files[0]).is_dir():
|
272 |
+
folder = Path(files[0])
|
273 |
+
files = [str(f) for f in sorted(folder.glob("*.json.gz"))]
|
274 |
+
print(f"Found {len(files)} files under {folder}/*.json.gz")
|
275 |
+
|
276 |
+
assert len(files) > 0, "No files given."
|
277 |
+
output_dir.mkdir(exist_ok=True)
|
278 |
+
|
279 |
+
outputs = [output_dir / str(f).split("/")[-1] for f in files]
|
280 |
+
if cache_dir is None:
|
281 |
+
cache_dir = output_dir / "wet_cache"
|
282 |
+
cache_dir.mkdir(exist_ok=True)
|
283 |
+
if str(cache_dir) == "none":
|
284 |
+
cache_dir = None
|
285 |
+
files = [f for f, o in zip(files, outputs) if not o.exists()]
|
286 |
+
outputs = [o for o in outputs if not o.exists()]
|
287 |
+
if not files:
|
288 |
+
return
|
289 |
+
ex = get_executor(
|
290 |
+
"unminify",
|
291 |
+
output_dir / "logs",
|
292 |
+
execution,
|
293 |
+
timeout_hour=8,
|
294 |
+
cpus=1,
|
295 |
+
task_parallelism=parallelism,
|
296 |
+
mem_gb=32,
|
297 |
+
)
|
298 |
+
ex(fetch_metadata_file, files, outputs, itertools.repeat(cache_dir))
|
299 |
+
|
300 |
+
|
301 |
+
if __name__ == "__main__":
|
302 |
+
import func_argparse
|
303 |
+
|
304 |
+
func_argparse.main(minify_file, minify, fetch_metadata, fetch_metadata_file)
|
cc-multilingual-main/cc_net/build/lib/cc_net/split_by_lang.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import collections
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import Dict, Optional
|
11 |
+
|
12 |
+
import fasttext # type: ignore
|
13 |
+
|
14 |
+
from cc_net import jsonql
|
15 |
+
|
16 |
+
|
17 |
+
def get_args():
|
18 |
+
parser = argparse.ArgumentParser(
|
19 |
+
description="Read a list of json files and split them ",
|
20 |
+
parents=[jsonql.io_parser()],
|
21 |
+
)
|
22 |
+
parser.add_argument("--pattern", type=str)
|
23 |
+
parser.add_argument("--field", type=str, default="raw_content")
|
24 |
+
parser.add_argument("--threshold", type=float, default=0)
|
25 |
+
parser.add_argument("--model", type=str, required=True)
|
26 |
+
parser.add_argument("--out_field", type=str, default="language")
|
27 |
+
parser.add_argument("--top", type=int, default=1)
|
28 |
+
return vars(parser.parse_args())
|
29 |
+
|
30 |
+
|
31 |
+
def predict(model, text: str, k: int = 1):
|
32 |
+
labels, scores = model.predict(text, k=k)
|
33 |
+
labels = [l.replace("__label__", "") for l in labels]
|
34 |
+
return labels, scores
|
35 |
+
|
36 |
+
|
37 |
+
def avg_predict(model, text):
|
38 |
+
# Overall gives the same results than predict(model, text.replace("\n", ""))
|
39 |
+
text = text.split("\n")
|
40 |
+
text_len = sum(len(line) for line in text)
|
41 |
+
if text_len == 0:
|
42 |
+
return None, 0
|
43 |
+
scores = [predict(model, line) for line in text]
|
44 |
+
scores_by_label: Dict[str, float] = collections.defaultdict(float)
|
45 |
+
for (label, score), line in zip(scores, text):
|
46 |
+
scores_by_label[label] += score * len(line)
|
47 |
+
|
48 |
+
label, score = max(scores_by_label.items(), key=lambda kv: kv[1])
|
49 |
+
return label, score / text_len
|
50 |
+
|
51 |
+
|
52 |
+
class Classifier(jsonql.Transformer):
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
model: Path,
|
56 |
+
field: str,
|
57 |
+
out_field: str,
|
58 |
+
threshold: float = 0,
|
59 |
+
top: int = 1,
|
60 |
+
language: str = None,
|
61 |
+
rounding: int = 2,
|
62 |
+
):
|
63 |
+
super().__init__()
|
64 |
+
self.model = model
|
65 |
+
assert model.exists(), f"Model {model} doesn't exist."
|
66 |
+
self.field = field
|
67 |
+
self.out_field = out_field
|
68 |
+
self.threshold = threshold
|
69 |
+
self.top = top
|
70 |
+
self.language = language
|
71 |
+
self.rounding = rounding
|
72 |
+
# Fasttext model is a C object and can't be pickled
|
73 |
+
self.fasttext_model: fasttext._FastText = None
|
74 |
+
self.n_doc, self.n_accepted, self.n_ignored, self.n_disagreement = 0, 0, 0, 0
|
75 |
+
self.cnt: Dict[str, int] = {}
|
76 |
+
|
77 |
+
def _prepare(self):
|
78 |
+
self.log(f"Loading {self.model}")
|
79 |
+
self.fasttext_model = fasttext.load_model(str(self.model))
|
80 |
+
|
81 |
+
def predict(self, text):
|
82 |
+
return predict(self.fasttext_model, text.replace("\n", ""), k=self.top)
|
83 |
+
|
84 |
+
def do(self, doc: dict) -> Optional[dict]:
|
85 |
+
text = doc.get(self.field, None)
|
86 |
+
if not text:
|
87 |
+
return None
|
88 |
+
|
89 |
+
if self.language and doc.get("language") != self.language:
|
90 |
+
self.n_ignored += 1
|
91 |
+
return doc
|
92 |
+
|
93 |
+
self.n_doc += 1
|
94 |
+
labels, scores = self.predict(text)
|
95 |
+
scores.round(self.rounding, out=scores)
|
96 |
+
for l in labels:
|
97 |
+
self.cnt[l] = self.cnt.get(l, 0) + 1
|
98 |
+
|
99 |
+
if self.top == 1:
|
100 |
+
existing_label = doc.get(self.out_field, None)
|
101 |
+
if existing_label and labels[0] != existing_label:
|
102 |
+
self.n_disagreement += 1
|
103 |
+
|
104 |
+
if all(s < self.threshold for s in scores):
|
105 |
+
return None
|
106 |
+
|
107 |
+
self.n_accepted += 1
|
108 |
+
if self.top == 1:
|
109 |
+
doc[self.out_field] = labels[0]
|
110 |
+
doc[self.out_field + "_score"] = scores[0]
|
111 |
+
else:
|
112 |
+
doc[self.out_field] = {l: s for l, s in zip(labels, scores)}
|
113 |
+
return doc
|
114 |
+
|
115 |
+
def summary(self):
|
116 |
+
n_doc, n_accepted, n_disagreement, cnt, out_field = (
|
117 |
+
self.n_doc,
|
118 |
+
self.n_accepted,
|
119 |
+
self.n_disagreement,
|
120 |
+
self.cnt,
|
121 |
+
self.out_field,
|
122 |
+
)
|
123 |
+
summ = super().summary()
|
124 |
+
if self.threshold > 0:
|
125 |
+
ratio = n_accepted / n_doc if n_doc else 0
|
126 |
+
summ.append(f"Kept {n_accepted} docs over {n_doc} ({ratio :.1%})")
|
127 |
+
summ.append(f"Found {len(cnt)} {out_field} labels: {cnt}")
|
128 |
+
|
129 |
+
disagreement = n_disagreement / n_doc if n_doc else 0
|
130 |
+
if disagreement:
|
131 |
+
summ.append(f"{out_field} disagreement is at {disagreement:.1%}.")
|
132 |
+
return summ
|
133 |
+
|
134 |
+
def __repr__(self):
|
135 |
+
return f"Classifier({self.model})"
|
136 |
+
|
137 |
+
|
138 |
+
def classify_and_split(file, output, pattern, **kwargs):
|
139 |
+
classifier = Classifier(**kwargs)
|
140 |
+
splitter = jsonql.split(pattern)
|
141 |
+
jsonql.run_pipes(classifier, splitter, file=file, output=output)
|
142 |
+
|
143 |
+
|
144 |
+
if __name__ == "__main__":
|
145 |
+
args = get_args()
|
146 |
+
pattern = args.get("pattern")
|
147 |
+
if pattern:
|
148 |
+
classify_and_split(**args)
|
149 |
+
else:
|
150 |
+
args.pop("pattern")
|
151 |
+
jsonql.run_pipe(Classifier, args)
|
cc-multilingual-main/cc_net/build/lib/cc_net/tokenizer.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
import time
|
8 |
+
from typing import Dict, Optional
|
9 |
+
|
10 |
+
import sacremoses # type: ignore
|
11 |
+
|
12 |
+
from cc_net import jsonql, text_normalizer
|
13 |
+
|
14 |
+
|
15 |
+
class RobustTokenizer(jsonql.Transformer):
|
16 |
+
"""Moses tokenizer with the expected preprocessing."""
|
17 |
+
|
18 |
+
LANG_WITHOUT_ACCENT = {"en", "my"}
|
19 |
+
|
20 |
+
def __init__(self, lang: str):
|
21 |
+
super().__init__()
|
22 |
+
self.lang = lang
|
23 |
+
self.moses = sacremoses.MosesTokenizer(lang)
|
24 |
+
self.rm_accent = lang in self.LANG_WITHOUT_ACCENT
|
25 |
+
self.ready = True
|
26 |
+
|
27 |
+
def do(self, text: str):
|
28 |
+
text = text_normalizer.normalize(
|
29 |
+
text, accent=self.rm_accent, case=False, numbers=False, punct=True
|
30 |
+
)
|
31 |
+
text = text_normalizer.normalize_spacing_for_tok(text, language=self.lang)
|
32 |
+
return self.moses.tokenize(text, return_str=True, escape=False)
|
33 |
+
|
34 |
+
|
35 |
+
class DocTokenizer(jsonql.Transformer):
|
36 |
+
"""Tokenize the text found in `output_field and store the result in `output_field`."""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
field: str,
|
41 |
+
output_field: str = "tokenized",
|
42 |
+
language_field: str = "language",
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.field = field
|
46 |
+
self.output_field = output_field
|
47 |
+
self.language_field = language_field
|
48 |
+
self.n_docs = 0
|
49 |
+
self.tokenizers: Dict[str, RobustTokenizer] = {}
|
50 |
+
|
51 |
+
def get_tokenizer(self, lang: str) -> Optional[RobustTokenizer]:
|
52 |
+
cache = self.tokenizers
|
53 |
+
if lang in cache:
|
54 |
+
return cache[lang]
|
55 |
+
if lang in ("th", "zh", "ja"):
|
56 |
+
# TODO find a tokenizer for those languages
|
57 |
+
return None
|
58 |
+
|
59 |
+
cache[lang] = RobustTokenizer(lang)
|
60 |
+
return cache[lang]
|
61 |
+
|
62 |
+
def do(self, document):
|
63 |
+
lang = document[self.language_field]
|
64 |
+
tok = self.get_tokenizer(lang)
|
65 |
+
if not tok:
|
66 |
+
return document
|
67 |
+
|
68 |
+
self.n_docs += 1
|
69 |
+
lines = document[self.field].split("\n")
|
70 |
+
tokenized = "\n".join(tok(l) for l in lines)
|
71 |
+
document[self.output_field] = tokenized
|
72 |
+
return document
|
73 |
+
|
74 |
+
def summary(self):
|
75 |
+
delay = (time.time() - self.start_time) / 3600
|
76 |
+
speed = self.n_docs / delay
|
77 |
+
return [
|
78 |
+
f"Tokenized {self.n_docs:_} documents in {delay:.2}h ({speed:.1} doc/s)."
|
79 |
+
]
|
cc-multilingual-main/cc_net/cc_net/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
cc-multilingual-main/cc_net/cc_net/__init__.pyc
ADDED
Binary file (105 Bytes). View file
|
|
cc-multilingual-main/cc_net/cc_net/__main__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
|
8 |
+
import func_argparse
|
9 |
+
|
10 |
+
import cc_net.mine
|
11 |
+
|
12 |
+
|
13 |
+
def main():
|
14 |
+
func_argparse.parse_and_call(cc_net.mine.get_main_parser())
|
15 |
+
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
main()
|
cc-multilingual-main/cc_net/cc_net/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (183 Bytes). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (142 Bytes). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (136 Bytes). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/__main__.cpython-310.pyc
ADDED
Binary file (444 Bytes). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/__main__.cpython-312.pyc
ADDED
Binary file (538 Bytes). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/__main__.cpython-38.pyc
ADDED
Binary file (391 Bytes). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/dedup.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/dedup.cpython-38.pyc
ADDED
Binary file (14 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/execution.cpython-310.pyc
ADDED
Binary file (6.43 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/execution.cpython-38.pyc
ADDED
Binary file (6.25 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/flat_hash_set.cpython-310.pyc
ADDED
Binary file (9.37 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/flat_hash_set.cpython-38.pyc
ADDED
Binary file (9.41 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/jsonql.cpython-310.pyc
ADDED
Binary file (40.8 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/jsonql.cpython-38.pyc
ADDED
Binary file (40.7 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/mine.cpython-310.pyc
ADDED
Binary file (19.4 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/mine.cpython-38.pyc
ADDED
Binary file (19.7 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/minify.cpython-310.pyc
ADDED
Binary file (9.95 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/minify.cpython-38.pyc
ADDED
Binary file (9.98 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/perplexity.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/perplexity.cpython-38.pyc
ADDED
Binary file (10.7 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/process_wet_file.cpython-310.pyc
ADDED
Binary file (8.96 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/process_wet_file.cpython-38.pyc
ADDED
Binary file (8.82 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/regroup.cpython-310.pyc
ADDED
Binary file (3.56 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/regroup.cpython-38.pyc
ADDED
Binary file (3.49 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/split_by_lang.cpython-310.pyc
ADDED
Binary file (5.32 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/split_by_lang.cpython-38.pyc
ADDED
Binary file (5.23 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/text_normalizer.cpython-310.pyc
ADDED
Binary file (4.36 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/__pycache__/text_normalizer.cpython-38.pyc
ADDED
Binary file (4.29 kB). View file
|
|
cc-multilingual-main/cc_net/cc_net/break.ipynb
ADDED
File without changes
|
cc-multilingual-main/cc_net/cc_net/data/cutoff.csv
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,de,it,fr,nl,pl,pt,es,no,da,id,lt,fi,en,hu,ro,ko,ar,bn,fa,ru,uk,ml,my,lv,is,ca,ne,et,hy,ja,hr,hi,az,el,cs,bg,he,zh,ka,km,gu,mk,kn,mr,af,mn,kk,be
|
2 |
+
0,0,0,0,10,0,0,0,0,0,0,0,10,0,0,0,20,0,0,0,0,0,0,10,10,10,0,10,0,0,0,0,0,0,0,0,0,0,10,0,10,10,10,10,10,10,0,0,10
|
3 |
+
1,150,100,70,170,50,70,70,170,160,210,70,400,160,30,70,20,100,70,110,70,40,480,550,430,410,80,330,470,210,400,290,190,130,210,270,120,400,600,230,410,510,190,730,460,130,240,50,170
|
4 |
+
2,170,110,90,200,70,80,90,210,190,260,90,490,180,30,80,30,180,80,150,90,50,740,840,570,490,90,420,630,300,540,360,220,200,250,350,180,520,750,360,460,580,250,1020,630,190,300,110,250
|
5 |
+
3,190,120,90,230,70,90,90,230,210,300,100,570,200,40,90,30,220,90,180,110,60,930,980,650,530,100,470,720,360,620,400,240,240,270,410,220,620,840,420,490,630,280,1170,720,220,330,150,300
|
6 |
+
4,200,130,100,240,80,90,100,250,220,320,110,620,210,40,100,30,250,100,190,110,60,1080,1140,710,560,110,510,780,400,670,440,260,270,280,450,230,690,900,480,530,670,300,1280,790,260,360,190,340
|
7 |
+
5,210,130,100,260,90,100,110,260,230,340,110,670,220,40,110,30,260,100,210,120,70,1210,1260,760,580,120,540,830,430,710,470,270,300,290,480,250,760,950,520,550,690,320,1370,840,290,380,210,370
|
8 |
+
6,220,140,110,270,90,100,110,270,240,350,120,700,230,40,110,30,280,110,220,130,70,1310,1390,790,600,120,570,870,450,750,490,280,320,300,510,270,810,990,560,560,720,340,1440,880,310,400,240,390
|
9 |
+
7,230,140,110,280,100,110,120,280,250,370,120,740,230,50,120,30,290,110,230,140,70,1400,1500,820,620,130,590,900,480,770,510,300,340,310,540,290,850,1030,580,570,740,350,1500,920,330,410,270,410
|
10 |
+
8,230,150,110,290,100,110,120,290,260,380,130,770,240,50,120,40,310,120,240,140,80,1470,1590,840,640,130,610,930,500,800,530,310,360,320,560,300,880,1060,610,600,760,370,1550,950,350,430,280,430
|
11 |
+
9,240,150,120,300,100,110,120,300,270,400,130,790,250,50,120,40,320,120,240,150,80,1540,1660,860,650,140,630,960,520,820,540,310,380,330,580,310,910,1090,630,610,780,380,1600,990,370,450,310,450
|
12 |
+
10,250,160,120,310,110,120,130,310,270,410,140,810,250,50,130,40,330,130,250,150,90,1600,1740,880,660,140,650,980,530,840,550,320,390,340,600,320,940,1110,650,620,800,390,1640,1010,380,460,330,470
|
13 |
+
11,250,160,120,310,110,120,130,310,280,420,140,830,260,50,130,60,340,130,260,150,90,1650,1810,900,680,150,660,1000,550,860,570,330,410,350,610,330,970,1140,670,640,820,400,1680,1040,390,480,350,480
|
14 |
+
12,260,160,130,320,110,120,130,320,290,430,140,850,260,50,130,70,350,130,270,160,90,1700,1870,920,690,150,680,1020,570,880,580,340,420,350,630,340,990,1160,690,660,840,410,1720,1060,400,490,370,500
|
15 |
+
13,270,170,130,330,120,130,140,330,290,440,150,870,270,60,140,80,360,140,270,160,90,1750,1930,930,700,150,690,1030,580,890,590,350,440,360,640,340,1010,1180,710,680,860,420,1760,1090,410,500,380,510
|
16 |
+
14,270,170,130,340,120,130,140,340,300,450,150,890,270,60,140,110,370,140,280,170,100,1800,1990,950,710,160,700,1050,590,910,600,360,450,370,650,350,1030,1200,730,700,880,430,1790,1110,420,510,400,520
|
17 |
+
15,280,170,140,340,120,130,140,340,300,460,150,900,280,60,140,110,380,140,290,170,100,1850,2040,960,720,160,720,1070,600,920,610,360,460,370,670,360,1050,1220,740,710,890,430,1820,1130,430,520,420,540
|
18 |
+
16,280,180,140,350,120,130,140,350,310,470,160,920,280,60,150,120,380,150,290,170,100,1890,2080,980,730,160,730,1080,620,940,620,370,470,380,680,360,1070,1240,750,740,910,440,1850,1150,440,530,440,550
|
19 |
+
17,290,180,140,360,130,140,150,350,320,480,160,940,280,60,150,120,390,150,300,180,110,1940,2120,990,740,170,740,1100,630,950,630,380,480,380,690,370,1090,1260,770,760,920,450,1880,1170,450,550,450,560
|
20 |
+
18,300,180,150,360,130,140,150,360,320,490,160,950,290,60,150,160,400,150,300,180,110,1980,2170,1000,750,170,750,1110,640,970,640,390,490,390,700,380,1100,1270,780,770,940,460,1910,1190,450,560,470,570
|
21 |
+
19,300,190,150,370,130,140,150,370,330,500,160,970,290,70,150,230,410,160,310,180,110,2030,2200,1010,760,170,760,1130,650,980,640,390,500,390,710,380,1120,1290,790,790,950,460,1940,1210,460,570,480,580
|
22 |
+
20,310,190,150,370,130,140,150,370,330,510,170,980,300,70,160,330,420,160,310,180,110,2070,2240,1030,770,180,770,1140,660,990,650,400,510,400,720,390,1140,1310,800,810,970,470,1970,1220,470,580,490,590
|
23 |
+
21,310,190,150,380,140,150,160,380,340,520,170,990,300,70,160,370,420,160,320,190,120,2110,2270,1040,770,180,780,1160,670,1010,660,410,520,400,740,400,1150,1320,820,830,980,480,1990,1240,480,590,510,600
|
24 |
+
22,320,200,160,390,140,150,160,380,340,530,170,1010,300,70,160,450,430,170,330,190,120,2160,2300,1050,780,180,790,1170,670,1020,670,410,530,410,750,400,1170,1340,830,850,1000,480,2020,1260,490,600,520,610
|
25 |
+
23,320,200,160,390,140,150,160,390,350,540,170,1020,310,70,160,600,440,170,330,190,120,2190,2340,1060,790,190,800,1180,680,1030,680,420,540,420,760,410,1180,1350,840,870,1010,490,2040,1270,490,610,530,620
|
26 |
+
24,330,200,160,400,140,150,160,400,350,540,170,1030,310,70,170,670,450,170,340,200,130,2230,2360,1070,800,190,810,1190,690,1040,680,430,550,420,770,410,1200,1370,850,890,1020,500,2060,1290,500,620,550,630
|
27 |
+
25,340,210,170,400,150,160,170,400,360,550,180,1050,320,80,170,740,460,170,340,200,130,2270,2390,1080,810,190,820,1210,700,1050,690,440,560,430,780,420,1210,1380,860,910,1040,500,2090,1300,510,630,560,640
|
28 |
+
26,340,210,170,410,150,160,170,410,360,560,180,1060,320,80,170,790,460,180,350,200,130,2300,2420,1090,820,190,830,1220,710,1060,700,440,570,430,780,420,1220,1400,870,930,1050,510,2110,1320,510,640,570,640
|
29 |
+
27,350,210,170,420,150,160,170,410,370,570,180,1070,320,80,170,840,470,180,350,200,130,2340,2450,1100,830,200,840,1230,720,1080,700,450,580,440,790,430,1240,1410,880,960,1070,510,2140,1330,520,650,580,650
|
30 |
+
28,350,220,180,420,150,160,170,420,370,580,180,1090,330,80,180,840,480,180,360,210,140,2370,2470,1110,840,200,850,1240,730,1090,710,460,580,440,800,440,1250,1430,890,990,1080,520,2160,1350,530,660,590,660
|
31 |
+
29,360,220,180,430,160,160,180,430,380,590,190,1100,330,80,180,890,490,190,370,210,140,2400,2500,1120,850,200,860,1250,740,1100,720,470,590,450,810,440,1270,1440,900,1010,1100,520,2180,1370,530,670,600,670
|
32 |
+
30,370,220,180,430,160,170,180,430,380,600,190,1110,340,80,180,920,490,190,370,210,140,2430,2530,1130,850,210,860,1270,750,1110,720,480,600,450,820,450,1280,1460,910,1040,1110,530,2210,1380,540,680,610,670
|
33 |
+
31,370,230,190,440,160,170,180,440,390,610,190,1120,340,80,180,920,500,190,380,220,140,2470,2550,1140,860,210,870,1280,750,1120,730,480,610,460,830,460,1290,1470,920,1070,1120,540,2230,1400,550,690,620,680
|
34 |
+
32,380,230,190,450,160,170,180,440,390,620,190,1140,350,90,180,920,510,200,390,220,150,2510,2570,1150,870,210,880,1290,760,1130,740,490,620,460,840,460,1310,1490,930,1100,1140,540,2250,1410,550,700,630,690
|
35 |
+
33,380,230,190,450,170,170,190,450,400,630,190,1150,350,90,190,940,520,200,390,220,150,2540,2590,1160,880,220,890,1300,770,1140,740,500,630,470,850,470,1320,1500,940,1120,1150,550,2270,1430,560,710,650,700
|
36 |
+
34,390,240,200,460,170,180,190,460,410,640,200,1160,350,90,190,940,530,200,400,220,150,2570,2610,1170,890,220,900,1310,780,1150,750,510,640,470,860,470,1330,1520,960,1150,1160,550,2290,1440,570,720,660,700
|
37 |
+
35,400,240,200,460,170,180,190,460,410,640,200,1170,360,90,190,940,530,210,410,230,150,2590,2630,1180,900,220,910,1320,790,1160,760,520,650,480,870,480,1350,1530,970,1180,1180,560,2310,1460,580,730,670,710
|
38 |
+
36,400,240,200,470,170,180,190,470,420,660,200,1180,360,90,190,1010,540,210,410,230,160,2620,2650,1190,910,230,920,1330,800,1170,760,520,660,480,880,490,1360,1540,980,1210,1190,560,2330,1470,580,740,680,720
|
39 |
+
37,410,250,210,480,180,190,200,480,420,670,200,1200,370,90,200,1010,550,210,420,230,160,2650,2660,1200,920,230,930,1340,810,1180,770,530,670,490,890,490,1370,1560,990,1240,1200,570,2350,1490,590,750,690,730
|
40 |
+
38,410,250,210,480,180,190,200,480,430,680,210,1210,370,100,200,1020,560,210,430,230,160,2680,2680,1210,930,230,930,1350,820,1190,770,540,680,500,900,500,1390,1570,1000,1270,1220,580,2370,1500,600,760,700,730
|
41 |
+
39,420,260,210,490,180,190,200,490,440,690,210,1220,380,100,200,1020,570,220,440,240,160,2710,2700,1220,930,240,940,1360,830,1200,780,550,690,500,910,510,1400,1590,1010,1300,1230,580,2390,1520,600,770,710,740
|
42 |
+
40,430,260,220,490,190,190,210,500,440,700,210,1230,380,100,200,1020,570,220,440,240,170,2740,2720,1240,940,240,950,1370,840,1210,790,560,700,510,920,510,1410,1610,1020,1330,1250,590,2410,1540,610,780,720,750
|
43 |
+
41,430,260,220,500,190,200,210,500,450,710,210,1240,390,100,210,1050,580,220,450,240,170,2770,2740,1250,950,240,960,1380,850,1230,790,570,710,510,930,520,1430,1620,1030,1360,1260,600,2430,1550,620,790,730,760
|
44 |
+
42,440,270,220,510,190,200,210,510,450,720,210,1260,390,100,210,1050,590,230,460,250,170,2800,2760,1260,960,250,970,1390,860,1240,800,580,720,520,940,530,1440,1640,1040,1400,1270,600,2450,1570,630,800,740,770
|
45 |
+
43,450,270,230,510,190,200,220,520,460,730,220,1270,400,110,210,1050,600,230,470,250,170,2820,2770,1270,970,250,980,1410,860,1250,800,590,730,530,940,530,1450,1650,1050,1430,1290,610,2470,1580,630,810,750,770
|
46 |
+
44,450,280,230,520,200,210,220,530,470,740,220,1280,400,110,220,1050,610,230,480,250,180,2840,2790,1280,980,250,980,1420,870,1260,810,600,740,530,950,540,1470,1670,1070,1470,1300,610,2490,1600,640,820,750,780
|
47 |
+
45,460,280,240,530,200,210,220,530,480,750,220,1290,410,110,220,1180,620,240,490,260,180,2870,2800,1290,990,260,990,1430,890,1270,820,610,760,540,970,550,1480,1690,1080,1510,1320,620,2510,1610,650,830,770,790
|
48 |
+
46,470,280,240,530,200,210,230,540,480,760,220,1310,420,110,220,1180,630,240,500,260,180,2900,2820,1300,1000,260,1000,1440,900,1280,820,620,770,550,980,550,1500,1700,1090,1550,1330,630,2530,1630,650,840,780,790
|
49 |
+
47,470,290,250,540,210,220,230,550,490,780,230,1320,420,110,220,1260,640,250,510,260,180,2930,2840,1310,1010,270,1010,1450,910,1290,830,630,780,550,990,560,1510,1720,1100,1580,1350,630,2540,1640,660,850,790,800
|
50 |
+
48,480,290,250,550,210,220,230,560,500,790,230,1330,430,120,230,1410,650,250,520,270,190,2950,2850,1320,1020,270,1020,1460,920,1300,840,640,790,560,1000,570,1530,1740,1120,1620,1360,640,2570,1660,670,860,800,810
|
51 |
+
49,490,300,260,560,210,220,240,570,500,800,230,1340,440,120,230,1430,660,250,530,270,190,2970,2870,1330,1030,270,1030,1470,930,1310,840,650,800,570,1010,580,1540,1750,1130,1650,1370,650,2580,1670,680,880,810,820
|
52 |
+
50,500,300,260,560,220,230,240,570,510,810,230,1360,440,120,230,1540,670,260,550,270,190,3000,2880,1350,1050,280,1040,1480,940,1330,850,660,820,580,1020,590,1560,1770,1140,1690,1390,660,2600,1690,680,890,820,830
|
53 |
+
51,500,310,270,570,220,230,250,580,520,830,240,1370,450,120,240,1560,680,260,560,280,200,3020,2900,1360,1060,280,1050,1500,950,1340,850,670,830,580,1030,600,1570,1790,1160,1730,1410,660,2620,1710,690,900,830,830
|
54 |
+
52,510,310,270,580,220,230,250,590,530,840,240,1380,460,120,240,1610,690,270,570,280,200,3040,2910,1370,1070,290,1050,1510,970,1350,860,680,840,590,1040,600,1590,1810,1180,1780,1420,670,2640,1720,700,910,840,840
|
55 |
+
53,520,320,280,590,230,240,250,600,540,850,240,1400,460,130,240,1700,700,270,580,280,200,3070,2930,1390,1090,290,1060,1520,980,1360,870,700,850,600,1050,610,1600,1830,1190,1820,1440,680,2660,1740,710,920,850,850
|
56 |
+
54,530,320,280,590,230,240,260,610,550,870,250,1410,470,130,250,1730,710,280,600,290,200,3090,2940,1400,1100,300,1070,1540,990,1370,870,710,870,610,1060,620,1610,1840,1210,1870,1460,690,2680,1760,710,930,860,860
|
57 |
+
55,540,330,290,600,240,250,260,620,560,880,250,1430,480,130,250,1800,720,280,620,290,210,3110,2960,1410,1120,300,1080,1550,1000,1380,880,720,880,620,1080,630,1630,1860,1220,1910,1480,700,2700,1780,720,950,870,860
|
58 |
+
56,550,340,300,610,240,250,270,630,560,900,250,1440,490,130,250,1850,730,280,630,300,210,3130,2980,1430,1130,300,1090,1560,1020,1400,890,740,890,630,1090,640,1650,1880,1240,1960,1490,700,2720,1790,730,960,880,870
|
59 |
+
57,560,340,300,620,240,260,270,640,570,910,250,1450,500,140,260,1950,750,290,650,300,210,3150,2990,1440,1150,310,1100,1580,1030,1410,890,750,900,640,1100,650,1660,1900,1260,2020,1510,710,2740,1810,740,970,900,880
|
60 |
+
58,570,350,310,630,250,260,280,660,580,930,260,1470,510,140,260,1950,760,290,670,300,220,3170,3010,1450,1160,310,1110,1590,1050,1420,900,760,920,650,1110,660,1680,1920,1270,2070,1530,720,2760,1830,750,990,910,890
|
61 |
+
59,580,350,320,640,250,260,280,670,590,950,260,1480,510,140,260,2040,770,300,680,310,220,3200,3020,1470,1170,320,1120,1600,1060,1440,910,780,930,660,1130,670,1700,1940,1290,2130,1550,730,2780,1850,760,1000,920,900
|
62 |
+
60,590,360,330,650,260,270,290,680,600,970,270,1500,520,140,270,2130,790,300,700,310,220,3220,3040,1480,1190,330,1130,1620,1080,1450,910,790,950,670,1140,680,1710,1950,1310,2180,1570,740,2800,1870,770,1010,930,910
|
63 |
+
61,600,370,340,660,260,270,290,690,620,980,270,1510,530,150,270,2210,800,310,720,320,230,3240,3050,1500,1210,330,1140,1630,1090,1460,920,810,960,680,1160,690,1730,1970,1330,2230,1580,750,2820,1890,780,1030,940,920
|
64 |
+
62,610,370,340,670,270,280,300,710,630,1000,270,1530,550,150,280,2280,810,320,740,320,230,3260,3060,1510,1220,340,1160,1650,1110,1470,930,830,980,690,1170,700,1750,2000,1350,2290,1600,760,2840,1920,790,1040,950,920
|
65 |
+
63,620,380,350,680,270,290,300,720,640,1020,280,1550,560,150,280,2290,830,320,770,330,230,3280,3080,1530,1240,340,1170,1660,1130,1490,930,840,990,700,1190,720,1770,2020,1370,2350,1620,770,2860,1940,800,1060,970,930
|
66 |
+
64,630,390,360,690,280,290,310,730,650,1040,280,1560,570,160,290,2310,850,330,790,330,240,3300,3090,1540,1260,350,1180,1680,1150,1500,940,860,1010,720,1200,730,1790,2040,1400,2400,1650,780,2880,1960,810,1080,980,950
|
67 |
+
65,640,400,370,700,280,300,320,750,670,1060,280,1580,580,160,290,2380,860,330,810,340,240,3320,3110,1560,1280,360,1190,1690,1170,1520,950,880,1020,730,1220,740,1810,2060,1420,2460,1670,790,2900,1990,820,1100,990,950
|
68 |
+
66,660,410,380,710,290,300,320,770,680,1090,290,1600,600,160,300,2400,880,340,840,340,240,3340,3120,1580,1310,360,1200,1710,1190,1530,960,900,1030,740,1230,750,1830,2090,1450,2510,1690,810,2920,2010,830,1120,1010,960
|
69 |
+
67,670,410,400,730,300,310,330,780,690,1110,290,1620,610,170,300,2420,900,350,870,350,250,3360,3140,1600,1330,370,1210,1730,1210,1550,960,920,1050,760,1250,770,1850,2120,1480,2570,1710,820,2950,2030,840,1130,1020,970
|
70 |
+
68,680,420,410,740,300,320,340,800,710,1130,300,1640,630,170,310,2450,920,360,890,350,250,3380,3150,1620,1350,380,1230,1740,1230,1570,970,940,1070,770,1270,780,1870,2140,1510,2620,1740,830,2970,2050,850,1150,1030,980
|
71 |
+
69,700,430,420,750,310,320,340,820,720,1150,300,1650,640,170,310,2490,940,360,920,360,260,3400,3170,1640,1380,390,1240,1760,1250,1580,980,960,1080,790,1290,790,1890,2170,1540,2670,1760,850,2990,2080,870,1180,1050,990
|
72 |
+
70,710,440,430,770,320,330,350,840,740,1180,310,1670,660,180,320,2500,960,370,950,370,260,3420,3190,1660,1400,400,1250,1780,1270,1600,990,980,1100,800,1300,810,1910,2200,1570,2710,1790,860,3010,2100,880,1200,1060,1000
|
73 |
+
71,730,460,450,780,320,340,360,860,760,1200,310,1690,680,180,320,2570,980,380,980,370,270,3440,3210,1680,1430,400,1270,1800,1290,1620,990,1010,1120,820,1320,830,1940,2230,1600,2760,1810,880,3030,2130,890,1220,1080,1010
|
74 |
+
72,740,470,460,800,330,350,370,890,770,1230,320,1710,700,190,330,2660,1000,390,1010,380,270,3460,3220,1700,1460,410,1280,1820,1320,1640,1000,1030,1140,840,1340,840,1960,2260,1640,2810,1840,890,3060,2160,900,1250,1100,1030
|
75 |
+
73,760,480,480,810,340,350,380,910,790,1260,330,1740,720,190,340,2730,1030,400,1050,390,280,3480,3240,1730,1490,420,1300,1840,1340,1660,1010,1060,1170,860,1360,860,1990,2290,1670,2860,1870,910,3080,2190,920,1270,1110,1040
|
76 |
+
74,780,500,500,830,350,360,390,940,810,1290,330,1760,740,200,340,2850,1050,410,1080,400,280,3500,3260,1750,1520,430,1320,1860,1360,1680,1020,1080,1190,880,1390,880,2010,2320,1710,2900,1900,930,3110,2220,930,1300,1130,1050
|
77 |
+
75,800,510,520,850,360,370,400,970,830,1320,340,1780,770,200,350,2930,1070,420,1110,400,290,3520,3280,1780,1560,440,1330,1880,1390,1710,1030,1110,1220,900,1410,900,2030,2350,1760,2940,1930,950,3130,2250,950,1330,1150,1060
|
78 |
+
76,820,530,530,870,370,380,410,1000,860,1350,350,1810,800,210,360,2980,1100,440,1150,410,290,3540,3290,1800,1600,460,1350,1900,1420,1730,1040,1150,1240,920,1430,920,2060,2390,1800,2980,1940,970,3160,2280,970,1360,1170,1070
|
79 |
+
77,840,550,550,890,380,390,430,1030,880,1380,350,1830,830,210,360,2990,1130,450,1190,420,300,3560,3310,1830,1630,470,1370,1930,1450,1750,1060,1180,1260,950,1460,940,2090,2420,1850,3020,1980,990,3190,2320,980,1400,1190,1090
|
80 |
+
78,860,570,570,910,390,400,440,1070,910,1420,360,1860,860,220,370,3080,1160,470,1230,430,310,3580,3330,1860,1670,480,1390,1950,1480,1780,1070,1220,1290,970,1490,960,2120,2460,1900,3060,2010,1010,3210,2350,1000,1430,1210,1100
|
81 |
+
79,890,590,600,930,400,410,450,1110,940,1460,370,1880,890,220,380,3170,1200,480,1270,440,310,3600,3350,1890,1720,500,1400,1980,1510,1810,1080,1260,1320,1000,1520,990,2150,2500,1950,3100,2050,1030,3240,2390,1030,1470,1230,1120
|
82 |
+
80,920,620,630,960,410,420,470,1150,970,1500,380,1910,930,230,390,3210,1230,500,1320,450,320,3620,3370,1920,1760,510,1430,2010,1540,1830,1090,1300,1350,1030,1550,1010,2180,2540,2020,3140,2100,1060,3260,2420,1050,1510,1250,1130
|
83 |
+
81,950,640,660,990,430,440,480,1200,1000,1540,390,1940,970,240,410,3290,1260,520,1370,460,330,3640,3390,1960,1810,520,1450,2040,1580,1860,1110,1340,1390,1060,1580,1040,2220,2590,2080,3180,2140,1090,3290,2460,1070,1540,1280,1150
|
84 |
+
82,980,670,700,1010,440,450,500,1260,1030,1580,400,1980,1010,250,420,3370,1300,540,1430,480,340,3660,3410,1990,1860,540,1470,2070,1610,1890,1120,1390,1430,1100,1620,1070,2250,2630,2160,3230,2190,1120,3320,2500,1100,1590,1310,1170
|
85 |
+
83,1010,710,740,1050,450,460,520,1320,1070,1630,410,2010,1060,260,430,3420,1340,570,1490,490,350,3680,3430,2030,1920,560,1500,2110,1640,1930,1140,1440,1470,1130,1650,1100,2290,2680,2230,3260,2240,1150,3350,2540,1130,1640,1340,1190
|
86 |
+
84,1050,750,780,1080,470,480,540,1390,1110,1690,420,2050,1110,260,450,3460,1390,590,1550,510,360,3690,3460,2080,1990,580,1530,2150,1680,1960,1150,1490,1520,1170,1690,1140,2330,2730,2320,3310,2290,1190,3380,2590,1170,1690,1370,1210
|
87 |
+
85,1100,800,830,1120,490,500,560,1470,1160,1740,440,2090,1170,270,470,3540,1440,630,1620,520,370,3710,3480,2120,2060,600,1560,2190,1730,2000,1170,1550,1570,1220,1740,1180,2370,2780,2420,3350,2350,1230,3410,2600,1200,1740,1400,1220
|
88 |
+
86,1150,860,890,1170,500,520,590,1560,1210,1810,450,2130,1230,280,490,3620,1490,660,1680,540,390,3730,3510,2170,2140,630,1600,2230,1770,2040,1190,1620,1630,1260,1780,1220,2410,2830,2550,3390,2410,1280,3440,2660,1240,1790,1450,1250
|
89 |
+
87,1200,930,960,1210,520,540,630,1660,1270,1870,460,2180,1300,300,510,3670,1550,700,1710,560,400,3750,3540,2220,2210,650,1630,2280,1820,2080,1210,1690,1680,1320,1830,1260,2460,2890,2700,3430,2490,1330,3470,2700,1280,1850,1490,1280
|
90 |
+
88,1260,1010,1040,1260,550,570,660,1770,1340,1930,480,2240,1380,310,540,3670,1610,740,1740,590,420,3770,3560,2270,2280,690,1670,2320,1880,2130,1240,1760,1750,1380,1890,1320,2520,2950,2880,3470,2570,1380,3510,2750,1330,1920,1540,1310
|
91 |
+
89,1340,1100,1140,1320,570,600,710,1870,1420,2010,500,2300,1460,330,570,3670,1680,780,1760,610,430,3790,3590,2340,2360,720,1720,2380,1930,2190,1260,1840,1820,1450,1950,1370,2580,3020,3080,3520,2640,1440,3540,2810,1380,2000,1590,1350
|
92 |
+
90,1420,1220,1260,1390,610,630,760,1980,1510,2110,520,2370,1570,350,620,3670,1760,840,1800,640,460,3810,3610,2400,2430,760,1770,2440,2000,2250,1290,1920,1910,1530,2010,1440,2630,3090,3350,3560,2710,1510,3580,2870,1420,2090,1650,1390
|
93 |
+
91,1530,1360,1390,1460,650,670,820,2100,1620,2220,550,2440,1700,380,680,3670,1850,900,1880,670,480,3830,3650,2470,2510,800,1830,2510,2070,2310,1320,2000,2000,1620,2090,1510,2700,3160,3750,3600,2800,1590,3610,2930,1470,2200,1710,1430
|
94 |
+
92,1660,1440,1560,1550,690,720,900,2240,1730,2340,580,2530,1860,410,750,3670,1940,970,2000,710,510,3850,3680,2550,2590,850,1900,2590,2150,2380,1360,2100,2100,1730,2180,1600,2770,3240,3850,3650,2900,1670,3650,3010,1530,2310,1790,1490
|
95 |
+
93,1830,1610,1760,1650,750,780,980,2380,1870,2480,610,2630,2060,450,830,3680,2050,1060,2110,760,550,3870,3710,2640,2650,920,1960,2680,2250,2450,1410,2200,2220,1850,2280,1700,2860,3320,3860,3690,2990,1760,3690,3050,1610,2420,1880,1540
|
96 |
+
94,2060,1910,1870,1780,820,860,1090,2500,2010,2640,650,2750,2270,500,890,3680,2170,1170,2220,820,590,3890,3750,2740,2740,1000,2060,2780,2360,2530,1460,2320,2360,1990,2400,1820,2950,3400,3870,3730,3100,1870,3730,3140,1720,2560,1990,1620
|
97 |
+
95,2350,2300,2030,1930,920,960,1260,2640,2200,2810,700,2880,2520,550,960,3750,2320,1300,2350,900,640,3910,3780,2850,2840,1100,2180,2900,2480,2640,1530,2480,2510,2130,2540,1980,3060,3490,3870,3770,3220,2020,3760,3230,1840,2730,2120,1720
|
98 |
+
96,2690,2570,2390,2110,1050,1090,1520,2830,2450,3060,770,3050,2750,580,1010,3800,2480,1470,2540,990,710,3930,3820,2980,2950,1250,2330,3040,2620,2770,1620,2680,2690,2350,2710,2170,3180,3590,3880,3810,3340,2180,3810,3340,2010,2930,2280,1860
|
99 |
+
97,3140,2790,2910,2360,1220,1290,1870,3090,2770,3420,850,3250,3260,680,1060,3860,2680,1710,2770,1130,790,3950,3860,3150,3090,1450,2530,3210,2790,2950,1740,2920,2890,2610,2860,2440,3320,3680,3880,3850,3480,2410,3850,3470,2230,3170,2500,2010
|
100 |
+
98,3560,3270,3230,2670,1500,1610,2260,3370,3160,3840,990,3470,3460,830,1140,3920,2950,2070,2990,1370,950,3970,3910,3350,3280,1680,2800,3440,3030,3160,1930,3210,3150,2930,3100,2820,3500,3780,3880,3910,3610,2730,3900,3620,2590,3400,2820,2310
|
101 |
+
99,3560,3660,3520,3150,1880,2290,2540,3630,3590,3860,1270,3720,3590,1230,1630,3950,3330,2640,3370,1850,1320,3990,3950,3630,3570,2210,3240,3710,3370,3460,2290,3570,3500,3370,3470,3410,3730,3890,3890,3950,3800,3200,3950,3810,3200,3690,3270,2850
|
cc-multilingual-main/cc_net/cc_net/data/test_stats.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"2019-09/de_head_0000.json.gz": {
|
3 |
+
"size": 5264993,
|
4 |
+
"checksum": "fc12ba3dc982ef06e7e44a916f298e1c16f9a806"
|
5 |
+
},
|
6 |
+
"2019-09/de_middle_0000.json.gz": {
|
7 |
+
"size": 9195535,
|
8 |
+
"checksum": "2369ff0296ab1d924c81083f17ce41f22a10ad69"
|
9 |
+
},
|
10 |
+
"2019-09/de_tail_0000.json.gz": {
|
11 |
+
"size": 33029074,
|
12 |
+
"checksum": "18865040a7263242d298958f358f7cb5511114d4"
|
13 |
+
},
|
14 |
+
"2019-09/fr_head_0000.json.gz": {
|
15 |
+
"size": 4076580,
|
16 |
+
"checksum": "4eef4017bbbe042fc01c45b5fbcf94de49f5138e"
|
17 |
+
},
|
18 |
+
"2019-09/fr_middle_0000.json.gz": {
|
19 |
+
"size": 8075095,
|
20 |
+
"checksum": "fd251a5b924c4aa66a63c375ca3a8fae23b3273b"
|
21 |
+
},
|
22 |
+
"2019-09/fr_tail_0000.json.gz": {
|
23 |
+
"size": 27248949,
|
24 |
+
"checksum": "4a8aed38abc6b9d04459e8d424bd47426f063638"
|
25 |
+
},
|
26 |
+
"2019-09/it_head_0000.json.gz": {
|
27 |
+
"size": 1760696,
|
28 |
+
"checksum": "e5e50e49b4a5147ea82b385babd5c83f74d2a4ed"
|
29 |
+
},
|
30 |
+
"2019-09/it_middle_0000.json.gz": {
|
31 |
+
"size": 4461832,
|
32 |
+
"checksum": "7daab7b7acb93d81e50534196ada4e94947b8224"
|
33 |
+
},
|
34 |
+
"2019-09/it_tail_0000.json.gz": {
|
35 |
+
"size": 14754298,
|
36 |
+
"checksum": "1adc018519a598ff162261d7e480ea41d3458768"
|
37 |
+
}
|
38 |
+
}
|
cc-multilingual-main/cc_net/cc_net/dedup.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
"""
|
8 |
+
Tools to remove duplicate paragraphs across one or several shards.
|
9 |
+
"""
|
10 |
+
|
11 |
+
import argparse
|
12 |
+
import gc
|
13 |
+
import hashlib
|
14 |
+
import logging
|
15 |
+
import multiprocessing
|
16 |
+
import os
|
17 |
+
import tempfile
|
18 |
+
import time
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import Iterable, List, Optional, Set, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from cc_net import jsonql
|
25 |
+
from cc_net.flat_hash_set import HASH_TYPE, AbstractDedupHashSet, FlatHashSet
|
26 |
+
from cc_net.jsonql import mem_footprint_gb
|
27 |
+
from cc_net.text_normalizer import normalize_for_dedup
|
28 |
+
|
29 |
+
BYTE_ORDER = "little"
|
30 |
+
HASH_SIZE = HASH_TYPE(0).nbytes
|
31 |
+
DISABLE_MULTI_PROCESSING = False
|
32 |
+
|
33 |
+
FilesOrDir = Union[List[Path], Path]
|
34 |
+
|
35 |
+
|
36 |
+
def get_args():
|
37 |
+
parser = argparse.ArgumentParser(
|
38 |
+
description="Read a set of json files and allow to query them",
|
39 |
+
parents=[jsonql.io_parser()],
|
40 |
+
)
|
41 |
+
|
42 |
+
parser.add_argument("--field", type=str, default="raw_content")
|
43 |
+
parser.add_argument("--output_hashes", type=str)
|
44 |
+
parser.add_argument("--no_finalize", action="store_false", dest="finalize")
|
45 |
+
# parser.add_argument("--mem_gb", type=int)
|
46 |
+
parser.add_argument("--hashes", type=str)
|
47 |
+
|
48 |
+
return vars(parser.parse_args())
|
49 |
+
|
50 |
+
|
51 |
+
def _b2i(b: bytes) -> int:
|
52 |
+
return np.frombuffer(b[:HASH_SIZE], dtype=HASH_TYPE, count=1, offset=0).item(0)
|
53 |
+
|
54 |
+
|
55 |
+
def str_hash(s: str) -> int:
|
56 |
+
h = hashlib.sha1(bytes(s, encoding="utf-8"))
|
57 |
+
return _b2i(h.digest())
|
58 |
+
|
59 |
+
|
60 |
+
log = logging.getLogger(__name__).info
|
61 |
+
|
62 |
+
|
63 |
+
def run_par(processes):
|
64 |
+
# This is different from multiprocessing.map since it allows for kwargs.
|
65 |
+
processes = list(processes)
|
66 |
+
if len(processes) == 1 or DISABLE_MULTI_PROCESSING:
|
67 |
+
for f, args, kwargs in processes:
|
68 |
+
f(*args, **kwargs)
|
69 |
+
return
|
70 |
+
|
71 |
+
log(f"Starting {len(processes)} subprocess")
|
72 |
+
processes = [
|
73 |
+
multiprocessing.Process(target=f, args=a, kwargs=kw) for (f, a, kw) in processes
|
74 |
+
]
|
75 |
+
for p in processes:
|
76 |
+
p.start()
|
77 |
+
for p in processes:
|
78 |
+
p.join()
|
79 |
+
failed = 0
|
80 |
+
for p in processes:
|
81 |
+
if p.exitcode != 0:
|
82 |
+
log(f"Process failed with code {p.exitcode}: {p}")
|
83 |
+
failed += 1
|
84 |
+
assert failed == 0, f"{failed} processes failed..."
|
85 |
+
|
86 |
+
|
87 |
+
def split_file(file, n_splits):
|
88 |
+
for i in range(n_splits):
|
89 |
+
yield jsonql.SplitFile(file, i, n_splits)
|
90 |
+
|
91 |
+
|
92 |
+
def merge(hashes_1, hashes_2, output):
|
93 |
+
if isinstance(hashes_1, str):
|
94 |
+
h1 = FlatHashSet()
|
95 |
+
h1.load(hashes_1)
|
96 |
+
else:
|
97 |
+
h1 = hashes_1
|
98 |
+
|
99 |
+
if isinstance(hashes_2, str):
|
100 |
+
h2 = FlatHashSet()
|
101 |
+
h2.load(hashes_2)
|
102 |
+
else:
|
103 |
+
h2 = hashes_2
|
104 |
+
|
105 |
+
h2_np = np.fromiter(h2.keys(), dtype=FlatHashSet.dtype, count=len(h2))
|
106 |
+
dup = h1.__contains__(h2_np)
|
107 |
+
|
108 |
+
# Dups between h1 and h2 will be set to 1, keys unique to h2 are copied to
|
109 |
+
# h1 with their value.
|
110 |
+
h1[h2_np] = dup
|
111 |
+
if output:
|
112 |
+
h1.dump(output)
|
113 |
+
return h1
|
114 |
+
|
115 |
+
|
116 |
+
def merge_shard(hash_files, output):
|
117 |
+
h = FlatHashSet()
|
118 |
+
h.load(hash_files[0])
|
119 |
+
for hash_file in hash_files[1:]:
|
120 |
+
h = merge(h, hash_file, output=None)
|
121 |
+
print(f"Merged {hash_file}. We now have {len(h)} hashes.")
|
122 |
+
|
123 |
+
h.dump(output)
|
124 |
+
print(f"Saved {len(h)} hashes to {output}.")
|
125 |
+
|
126 |
+
|
127 |
+
def _dump_sentence_hashes(source: Path, output: Path, field: str):
|
128 |
+
treated = 0
|
129 |
+
started = time.time()
|
130 |
+
with open(output, "wb") as o:
|
131 |
+
for doc in jsonql.read_jsons(source):
|
132 |
+
content = doc.get(field)
|
133 |
+
if not content:
|
134 |
+
continue
|
135 |
+
h = compute_hashes(content)
|
136 |
+
if h is None:
|
137 |
+
continue
|
138 |
+
h.tofile(o)
|
139 |
+
treated += 1
|
140 |
+
if treated % 100_000 == 0:
|
141 |
+
delay = time.time() - started
|
142 |
+
log(
|
143 |
+
f"Computed {treated} documents hashes in {delay / 3600:.2f}h ({treated / delay} doc / s)"
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def _remove_duplicate_hashes(duplicates, source, output):
|
148 |
+
batch_size = 100_000
|
149 |
+
n_lines, n_lines_kept = 0, 0
|
150 |
+
with open(source, "rb") as f, open(output, "wb") as o:
|
151 |
+
log(f"Opening {source} with mode rb")
|
152 |
+
log(f"Opening {output} with mode wb")
|
153 |
+
while True:
|
154 |
+
hashes = np.fromfile(f, dtype=HASH_TYPE, count=batch_size)
|
155 |
+
if hashes.size == 0:
|
156 |
+
break
|
157 |
+
|
158 |
+
keep = duplicates[hashes] < 1
|
159 |
+
kept = keep.sum()
|
160 |
+
hashes *= keep
|
161 |
+
hashes.tofile(o)
|
162 |
+
|
163 |
+
n_lines += hashes.size
|
164 |
+
n_lines_kept += kept
|
165 |
+
|
166 |
+
removed = n_lines - n_lines_kept
|
167 |
+
selectivity = n_lines_kept / n_lines if n_lines else 0
|
168 |
+
log(f"Removed {removed} duplicate hashes with selectivity: {selectivity:3.1%}")
|
169 |
+
|
170 |
+
|
171 |
+
def remove_duplicates_sharded(
|
172 |
+
files: List[Path],
|
173 |
+
outputs: List[Path],
|
174 |
+
hashes_dir: FilesOrDir,
|
175 |
+
field: str,
|
176 |
+
group_hashes: int = 1,
|
177 |
+
tmp_dir: Path = None,
|
178 |
+
min_len: int = 0,
|
179 |
+
):
|
180 |
+
"""Remove duplicates in several passes, when all hashes don't fit in RAM.
|
181 |
+
|
182 |
+
Note: The current implementation is not doing a 'perfect' deduplication.
|
183 |
+
If a hash appear exactly once in each shard of hashes it won't be detected
|
184 |
+
as a duplicate. This can be fixed if hashes are fully dedup beforehand.
|
185 |
+
"""
|
186 |
+
assert len(files) == len(outputs)
|
187 |
+
|
188 |
+
if isinstance(hashes_dir, list):
|
189 |
+
hashes_files = hashes_dir
|
190 |
+
else:
|
191 |
+
hashes_files = sorted(
|
192 |
+
h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin"
|
193 |
+
)
|
194 |
+
|
195 |
+
assert len(hashes_files) > 0, f"no hashes files found in: {hashes_dir}"
|
196 |
+
|
197 |
+
if len(hashes_files) <= group_hashes:
|
198 |
+
log(f"All hashes can be done in one pass, using DuplicatesRemover on {files}")
|
199 |
+
rm_dups = DuplicatesRemover(field, hashes_files)
|
200 |
+
rm_dups._prepare()
|
201 |
+
run_par(
|
202 |
+
(jsonql.run_pipes, (rm_dups,), dict(file=f, output=o))
|
203 |
+
for f, o in zip(files, outputs)
|
204 |
+
)
|
205 |
+
return
|
206 |
+
|
207 |
+
log(f"Starting deduplicate_sharded on {files}.")
|
208 |
+
tmp_directory = tempfile.TemporaryDirectory(dir=str(tmp_dir) if tmp_dir else None)
|
209 |
+
|
210 |
+
def tmp_files(i):
|
211 |
+
return [
|
212 |
+
Path(tmp_directory.name) / (f.name.split(".")[0] + f".{i}.bin")
|
213 |
+
for f in files
|
214 |
+
]
|
215 |
+
|
216 |
+
last = tmp_files(0)
|
217 |
+
run_par((_dump_sentence_hashes, (f, tmp, field), {}) for f, tmp in zip(files, last))
|
218 |
+
|
219 |
+
if isinstance(hashes_dir, list):
|
220 |
+
hashes_files = hashes_dir
|
221 |
+
else:
|
222 |
+
hashes_files = sorted(
|
223 |
+
h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin"
|
224 |
+
)
|
225 |
+
for i, group in enumerate(jsonql.grouper(hashes_files, group_hashes)):
|
226 |
+
hashes = FlatHashSet()
|
227 |
+
for h in group:
|
228 |
+
hashes.load(h)
|
229 |
+
log(f"Loaded {h}, up to {len(hashes)} hashes ({mem_footprint_gb()}GB)")
|
230 |
+
|
231 |
+
intermediates = tmp_files(i + 1)
|
232 |
+
# Remove hashes in parallel. Since modern OS have "copy-on-write" and
|
233 |
+
# `hashes` is read-only, we will only have one version of it in RAM.
|
234 |
+
run_par(
|
235 |
+
(_remove_duplicate_hashes, (hashes, f, tmp), {})
|
236 |
+
for f, tmp in zip(last, intermediates)
|
237 |
+
)
|
238 |
+
# Force hashes to be freed, before we start allocating a new one.
|
239 |
+
del hashes
|
240 |
+
gc.collect()
|
241 |
+
|
242 |
+
for tmp in last:
|
243 |
+
os.remove(tmp)
|
244 |
+
last = intermediates
|
245 |
+
|
246 |
+
def finalize(source, dedup_hashes, min_len):
|
247 |
+
n_chars, n_chars_kept = 0, 0
|
248 |
+
with open(dedup_hashes, "rb") as hashes:
|
249 |
+
for doc in jsonql.read_jsons(source):
|
250 |
+
content = doc.get(field)
|
251 |
+
if not content or len(content) < min_len:
|
252 |
+
continue
|
253 |
+
sentences = content.split("\n")
|
254 |
+
doc_hashes = np.fromfile(hashes, dtype=HASH_TYPE, count=len(sentences))
|
255 |
+
chars, kept_chars = finalize_doc(doc, field, doc_hashes)
|
256 |
+
n_chars += chars
|
257 |
+
n_chars_kept += kept_chars
|
258 |
+
yield doc
|
259 |
+
selectivity = n_chars_kept / n_chars if n_chars else 0
|
260 |
+
log(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).")
|
261 |
+
|
262 |
+
dedup_hashes = last
|
263 |
+
run_par(
|
264 |
+
[
|
265 |
+
(
|
266 |
+
jsonql.run_pipe,
|
267 |
+
(finalize,),
|
268 |
+
dict(kwargs=dict(dedup_hashes=h, min_len=min_len), file=f, output=o),
|
269 |
+
)
|
270 |
+
for h, f, o in zip(dedup_hashes, files, outputs)
|
271 |
+
]
|
272 |
+
)
|
273 |
+
|
274 |
+
tmp_directory.cleanup()
|
275 |
+
|
276 |
+
|
277 |
+
def compute_hashes(content) -> Optional[np.ndarray]:
|
278 |
+
if not content:
|
279 |
+
return None
|
280 |
+
lines = content.split("\n")
|
281 |
+
# save hashes as bytes but reinterpret them as uint64.
|
282 |
+
hashes = np.fromiter(
|
283 |
+
(
|
284 |
+
hashlib.sha1(bytes(normalize_for_dedup(l), encoding="utf-8")).digest()[
|
285 |
+
:HASH_SIZE
|
286 |
+
]
|
287 |
+
for l in lines
|
288 |
+
),
|
289 |
+
dtype=np.dtype((bytes, HASH_SIZE)),
|
290 |
+
count=len(lines),
|
291 |
+
)
|
292 |
+
return np.ndarray(dtype=HASH_TYPE, buffer=hashes.data, shape=hashes.shape)
|
293 |
+
|
294 |
+
|
295 |
+
def finalize_doc(doc, field, hashes=None):
|
296 |
+
content = doc.get(field)
|
297 |
+
lines = content.split("\n")
|
298 |
+
n_chars = len(content)
|
299 |
+
if "original_nlines" not in doc:
|
300 |
+
doc["original_nlines"] = doc.get("nlines", len(lines))
|
301 |
+
if "original_length" not in doc:
|
302 |
+
doc["original_length"] = doc.get("length", n_chars)
|
303 |
+
if hashes is None:
|
304 |
+
hashes = doc.pop(field + "_hash")
|
305 |
+
|
306 |
+
# Remove duplicates inside doc
|
307 |
+
seen: Set[int] = set()
|
308 |
+
original_line_ids = doc.get("line_ids", range(len(hashes)))
|
309 |
+
line_ids = []
|
310 |
+
new_lines = []
|
311 |
+
for l, line, h in zip(original_line_ids, lines, hashes):
|
312 |
+
if h not in seen and h != 0:
|
313 |
+
line_ids.append(l)
|
314 |
+
new_lines.append(line)
|
315 |
+
seen.add(h)
|
316 |
+
|
317 |
+
doc[field] = "\n".join(new_lines)
|
318 |
+
doc["nlines"] = len(line_ids)
|
319 |
+
n_chars_kept = len(doc[field])
|
320 |
+
doc["length"] = n_chars_kept
|
321 |
+
doc["line_ids"] = line_ids
|
322 |
+
return n_chars, n_chars_kept
|
323 |
+
|
324 |
+
|
325 |
+
class HashesCollector(jsonql.Transformer):
|
326 |
+
"""
|
327 |
+
Collect all hashes found of lines found in the `field` of the source documents.
|
328 |
+
"""
|
329 |
+
|
330 |
+
parallelisable = False
|
331 |
+
|
332 |
+
def __init__(
|
333 |
+
self, field: str, output: Path = None, hashes: AbstractDedupHashSet = None
|
334 |
+
):
|
335 |
+
super().__init__()
|
336 |
+
self.n_lines = 0
|
337 |
+
self.field = field
|
338 |
+
self.output = output
|
339 |
+
self.hashes = FlatHashSet() if hashes is None else hashes
|
340 |
+
self.num_hashes_end = 0
|
341 |
+
self.num_hashes_start = len(self.hashes)
|
342 |
+
|
343 |
+
def summary(self) -> List[str]:
|
344 |
+
summ = super().summary()
|
345 |
+
h = self.num_hashes_end if self.hashes is None else len(self.hashes)
|
346 |
+
h = (h - self.num_hashes_start) // 1000
|
347 |
+
max_mem = mem_footprint_gb()
|
348 |
+
n = self.n_lines // 1000
|
349 |
+
summ.append(
|
350 |
+
f"Found {h:_}k unique hashes over {n:_}k lines. Using {max_mem:.1f}GB of RAM."
|
351 |
+
)
|
352 |
+
return summ
|
353 |
+
|
354 |
+
def do(self, doc: dict) -> None:
|
355 |
+
doc_hashes = compute_hashes(doc.get(self.field))
|
356 |
+
if doc_hashes is None:
|
357 |
+
return
|
358 |
+
self.hashes.add(doc_hashes)
|
359 |
+
self.n_lines += doc_hashes.size
|
360 |
+
|
361 |
+
def close(self):
|
362 |
+
if self.output and self.hashes:
|
363 |
+
self.hashes.dump(self.output)
|
364 |
+
self.log(f"Saved {len(self.hashes)} hashes to {self.output}")
|
365 |
+
# Save the number of hashes.
|
366 |
+
self.num_hashes_end = len(self.hashes)
|
367 |
+
# Free up mem even if the transformer is kept somewhere else.
|
368 |
+
self.hashes = None # type: ignore
|
369 |
+
|
370 |
+
|
371 |
+
class DuplicatesRemover(jsonql.Transformer):
|
372 |
+
"""DuplicatesRemover"""
|
373 |
+
|
374 |
+
# The hashes can't be pickled so they will have to be read back from disk.
|
375 |
+
warn_when_pickling = True
|
376 |
+
|
377 |
+
def __init__(self, field: str, hashes_files: List[Path], collect: bool = False):
|
378 |
+
"""
|
379 |
+
Remove duplicates
|
380 |
+
"""
|
381 |
+
super().__init__()
|
382 |
+
self.field = field
|
383 |
+
self.collect = collect
|
384 |
+
|
385 |
+
self.hashes_files = hashes_files
|
386 |
+
self.duplicates: Optional[AbstractDedupHashSet] = None
|
387 |
+
|
388 |
+
self.n_lines, self.n_lines_kept = 0, 0
|
389 |
+
self.n_chars, self.n_chars_kept = 0, 0
|
390 |
+
|
391 |
+
def _prepare(self):
|
392 |
+
if self.duplicates is not None:
|
393 |
+
return
|
394 |
+
self.duplicates = FlatHashSet()
|
395 |
+
|
396 |
+
start = time.time()
|
397 |
+
for h in self.hashes_files:
|
398 |
+
shard_start = time.time()
|
399 |
+
self.duplicates.load(str(h))
|
400 |
+
delay = time.time() - shard_start
|
401 |
+
self.log(
|
402 |
+
f"Loaded hashes from {h} ({mem_footprint_gb():.3f}GB total, took {delay / 60:.1}m)"
|
403 |
+
)
|
404 |
+
|
405 |
+
delay = time.time() - start
|
406 |
+
self.log(
|
407 |
+
f"Loaded {len(self.duplicates):_d} hashes from {len(self.hashes_files)} files. ({mem_footprint_gb():.1f}GB total, took {delay / 60:.1}m)"
|
408 |
+
)
|
409 |
+
|
410 |
+
def do(self, doc: dict) -> Optional[dict]:
|
411 |
+
content = doc.get(self.field)
|
412 |
+
if not content:
|
413 |
+
return None
|
414 |
+
doc_hashes = compute_hashes(content)
|
415 |
+
|
416 |
+
assert self.duplicates is not None
|
417 |
+
seen = (
|
418 |
+
self.duplicates.add(doc_hashes)
|
419 |
+
if self.collect
|
420 |
+
else self.duplicates[doc_hashes]
|
421 |
+
)
|
422 |
+
keep = seen < True
|
423 |
+
kept = keep.sum()
|
424 |
+
if kept == 0:
|
425 |
+
return None
|
426 |
+
doc_hashes = doc_hashes * keep
|
427 |
+
self.n_lines += keep.size
|
428 |
+
self.n_lines_kept += kept
|
429 |
+
chars, kept_chars = finalize_doc(doc, self.field, hashes=doc_hashes)
|
430 |
+
self.n_chars += chars
|
431 |
+
self.n_chars_kept += kept_chars
|
432 |
+
return doc
|
433 |
+
|
434 |
+
def summary(self) -> List[str]:
|
435 |
+
summ = super().summary()
|
436 |
+
end_time = time.time()
|
437 |
+
n_lines_kept, n_lines, n_docs = self.n_lines_kept, self.n_lines, self.processed
|
438 |
+
speed = n_docs / (end_time - self.start_time)
|
439 |
+
summ.append(
|
440 |
+
f"Processed {self.n_lines} lines in {n_docs} docs. [{speed:.1f} doc/s]"
|
441 |
+
)
|
442 |
+
selectivity = self.n_lines_kept / self.n_lines if n_lines else 0
|
443 |
+
summ.append(f"Kept {n_lines_kept} lines out of {n_lines} ({selectivity:.1%}).")
|
444 |
+
|
445 |
+
n_chars_kept, n_chars = self.n_chars_kept, self.n_chars
|
446 |
+
selectivity = n_chars_kept / n_chars if n_chars else 0
|
447 |
+
summ.append(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).")
|
448 |
+
return summ
|
449 |
+
|
450 |
+
|
451 |
+
def deduplicate(
|
452 |
+
file: jsonql.ReadableFileLike, field: str = "raw_content"
|
453 |
+
) -> Iterable[dict]:
|
454 |
+
"""Remove duplicates of the given file (but keep the first occurence)."""
|
455 |
+
dup_remover = DuplicatesRemover(field, [], collect=True)
|
456 |
+
return dup_remover.map(jsonql.read_jsons(file))
|
457 |
+
|
458 |
+
|
459 |
+
def deduplicate_two_pass(
|
460 |
+
file: jsonql.FileDescriptor, field: str = "raw_content"
|
461 |
+
) -> Iterable[dict]:
|
462 |
+
"""Remove duplicates of the given file (even removing the first occurence).
|
463 |
+
|
464 |
+
This is what is done in the paper, and in mine.py
|
465 |
+
"""
|
466 |
+
try:
|
467 |
+
if isinstance(file, Path):
|
468 |
+
hash_file: Path = file.with_suffix(".bin")
|
469 |
+
else:
|
470 |
+
hash_file = jsonql._tmp(Path("hashes.bin"))
|
471 |
+
jsonql.run_pipes(
|
472 |
+
jsonql.JsonReader(), HashesCollector(field, output=hash_file), file=file
|
473 |
+
)
|
474 |
+
dup_remover = DuplicatesRemover(field, [hash_file])
|
475 |
+
return dup_remover.map(jsonql.read_jsons(file))
|
476 |
+
finally:
|
477 |
+
if hash_file.exists():
|
478 |
+
hash_file.unlink()
|
cc-multilingual-main/cc_net/cc_net/execution.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
import functools
|
8 |
+
import itertools
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
import time
|
13 |
+
import warnings
|
14 |
+
from pathlib import Path
|
15 |
+
from typing import Callable, Dict, Iterable, List, Optional, Sequence, Sized
|
16 |
+
|
17 |
+
import submitit
|
18 |
+
from typing_extensions import Protocol
|
19 |
+
# import pdb
|
20 |
+
from concurrent.futures import ThreadPoolExecutor
|
21 |
+
|
22 |
+
|
23 |
+
class Executor(Protocol):
|
24 |
+
def __call__(self, function: Callable[..., str], *args: Iterable) -> None:
|
25 |
+
...
|
26 |
+
|
27 |
+
|
28 |
+
class SubmititRetryOnTimeout(submitit.helpers.Checkpointable):
|
29 |
+
def __init__(self, fn: Callable):
|
30 |
+
self.fn = fn
|
31 |
+
self.__name__ = fn.__name__
|
32 |
+
|
33 |
+
def __call__(self, *args, **kwargs):
|
34 |
+
return self.fn(*args, **kwargs)
|
35 |
+
|
36 |
+
|
37 |
+
def get_executor(
|
38 |
+
name: str,
|
39 |
+
log_dir: Path,
|
40 |
+
execution: str,
|
41 |
+
timeout_hour: float = 1.0,
|
42 |
+
mem_gb: int = 1,
|
43 |
+
cpus: int = 1,
|
44 |
+
task_parallelism: int = -1,
|
45 |
+
options: dict = {},
|
46 |
+
) -> Executor:
|
47 |
+
|
48 |
+
execution_mode = execution.split(",")[0]
|
49 |
+
options.update(
|
50 |
+
{kv.split("=", 1)[0]: kv.split("=", 1)[1] for kv in execution.split(",")[1:]}
|
51 |
+
)
|
52 |
+
|
53 |
+
if execution_mode == "mp":
|
54 |
+
warnings.warn("Execution mode 'mp' is deprecated, use 'local'.")
|
55 |
+
execution_mode = "local"
|
56 |
+
|
57 |
+
cluster = None if execution_mode == "auto" else execution_mode
|
58 |
+
# use submitit to detect which executor is available
|
59 |
+
ex = submitit.AutoExecutor(log_dir, cluster=cluster)
|
60 |
+
ex.parameters['timeout_min'] = int(timeout_hour * 60)
|
61 |
+
|
62 |
+
if ex.cluster == "local":
|
63 |
+
# LocalExecutor doesn't respect task_parallelism
|
64 |
+
return functools.partial(custom_map_array, ex, task_parallelism)
|
65 |
+
if ex.cluster == "debug":
|
66 |
+
return debug_executor
|
67 |
+
# pdb.set_trace()
|
68 |
+
# We are on slurm
|
69 |
+
if task_parallelism == -1:
|
70 |
+
task_parallelism = 500
|
71 |
+
|
72 |
+
ex.update_parameters(
|
73 |
+
name=name,
|
74 |
+
timeout_min=int(timeout_hour * 60),
|
75 |
+
mem_gb=mem_gb,
|
76 |
+
cpus_per_task=cpus,
|
77 |
+
slurm_array_parallelism=task_parallelism,
|
78 |
+
**options,
|
79 |
+
)
|
80 |
+
return functools.partial(map_array_and_wait, ex)
|
81 |
+
|
82 |
+
|
83 |
+
def map_array_and_wait(
|
84 |
+
ex: submitit.AutoExecutor, function: Callable[..., str], *args: Iterable
|
85 |
+
):
|
86 |
+
f_name = function.__name__
|
87 |
+
|
88 |
+
assert len(args) > 0, f"No arguments passed to {f_name}"
|
89 |
+
approx_length = _approx_length(*args)
|
90 |
+
|
91 |
+
print(f"Submitting {f_name} in a job array ({approx_length} jobs)")
|
92 |
+
jobs = ex.map_array(function, *args)
|
93 |
+
if not jobs:
|
94 |
+
return
|
95 |
+
failed_jobs = []
|
96 |
+
done = 0
|
97 |
+
total = len(jobs)
|
98 |
+
job_array_id = jobs[0].job_id.split("_")[0]
|
99 |
+
# pdb.set_trace()
|
100 |
+
print(f"Started {f_name} in job array {job_array_id} ({len(jobs)} jobs).")
|
101 |
+
for job in submitit.helpers.as_completed(jobs):
|
102 |
+
done += 1
|
103 |
+
e = job.exception()
|
104 |
+
if not e:
|
105 |
+
print(f"Finished job {job.job_id} ({done} / {total}).", job.result())
|
106 |
+
continue
|
107 |
+
|
108 |
+
print(f"Failed job {job.job_id} ({done} / {total}):", e)
|
109 |
+
failed_jobs.append(job)
|
110 |
+
|
111 |
+
if failed_jobs:
|
112 |
+
n_failures = 10
|
113 |
+
message = f"{len(failed_jobs)} / {done} jobs failed while running {f_name}"
|
114 |
+
print(message)
|
115 |
+
for job in failed_jobs[:n_failures]:
|
116 |
+
print(f"Failed {job.job_id} -> {job.paths.stderr}")
|
117 |
+
if len(failed_jobs) > n_failures:
|
118 |
+
print(f"... ({len(failed_jobs) - n_failures} failed job skipped)")
|
119 |
+
raise Exception(message)
|
120 |
+
|
121 |
+
|
122 |
+
def debug_executor(function: Callable[..., Optional[str]], *args: Iterable) -> None:
|
123 |
+
logging.getLogger().setLevel(logging.DEBUG)
|
124 |
+
approx_length = _approx_length(*args)
|
125 |
+
for i, x in enumerate(zip(*args)):
|
126 |
+
try:
|
127 |
+
message = function(*x)
|
128 |
+
except Exception:
|
129 |
+
exit(1)
|
130 |
+
try:
|
131 |
+
import ipdb as pdb # type: ignore
|
132 |
+
except ImportError:
|
133 |
+
import pdb # type: ignore
|
134 |
+
import traceback
|
135 |
+
|
136 |
+
traceback.print_exc()
|
137 |
+
print("")
|
138 |
+
pdb.post_mortem()
|
139 |
+
sys.exit(1)
|
140 |
+
if message is not None:
|
141 |
+
print(message, f"({i + 1} / {approx_length})")
|
142 |
+
|
143 |
+
# def debug_executor(function: Callable[..., Optional[str]], *args: Iterable) -> None:
|
144 |
+
# logging.getLogger().setLevel(logging.DEBUG)
|
145 |
+
# approx_length = _approx_length(*args)
|
146 |
+
# with ThreadPoolExecutor(max_workers=4) as executor:
|
147 |
+
# futures = []
|
148 |
+
# for i, x in enumerate(zip(*args)):
|
149 |
+
# future = executor.submit(_execute_function, function, x, i + 1, approx_length)
|
150 |
+
# futures.append(future)
|
151 |
+
# for future in futures:
|
152 |
+
# future.result()
|
153 |
+
|
154 |
+
# def _execute_function(function: Callable[..., Optional[str]], args: tuple, index: int, total: int):
|
155 |
+
# try:
|
156 |
+
# message = function(*args)
|
157 |
+
# if message is not None:
|
158 |
+
# print(message, f"({index} / {total})")
|
159 |
+
# except Exception:
|
160 |
+
# # traceback.print_exc()
|
161 |
+
# sys.exit(1)
|
162 |
+
|
163 |
+
def _approx_length(*args: Iterable):
|
164 |
+
for a in args:
|
165 |
+
if isinstance(a, Sized):
|
166 |
+
return len(a)
|
167 |
+
return -1
|
168 |
+
|
169 |
+
|
170 |
+
def custom_map_array(
|
171 |
+
ex: submitit.AutoExecutor,
|
172 |
+
parallelism: int,
|
173 |
+
function: Callable[..., Optional[str]],
|
174 |
+
*args: Iterable,
|
175 |
+
) -> None:
|
176 |
+
f_name = function.__name__
|
177 |
+
assert len(args) > 0, f"No arguments passed to {f_name}"
|
178 |
+
|
179 |
+
jobs_args = list(zip(*args))
|
180 |
+
total = len(jobs_args)
|
181 |
+
if parallelism < 0:
|
182 |
+
parallelism = os.cpu_count() or 0
|
183 |
+
assert parallelism >= 0, f"Can't run any jobs with task_parallelism={parallelism}"
|
184 |
+
print(f"Submitting {total} jobs for {f_name}, with task_parallelism={parallelism}")
|
185 |
+
enqueued = 0
|
186 |
+
done = 0
|
187 |
+
running_jobs: List[submitit.Job] = []
|
188 |
+
failed_jobs: List[submitit.Job] = []
|
189 |
+
|
190 |
+
while done < len(jobs_args):
|
191 |
+
# Try to queue more job if we have some bandwidth.
|
192 |
+
if enqueued < total and len(running_jobs) < parallelism:
|
193 |
+
running_jobs.append(ex.submit(function, *jobs_args[enqueued]))
|
194 |
+
enqueued += 1
|
195 |
+
continue
|
196 |
+
|
197 |
+
# Else wait for some job to finish
|
198 |
+
if not running_jobs:
|
199 |
+
warnings.warn(
|
200 |
+
f"No more running jobs, yet we submitted only {enqueued} / {total} and finished {done} / {total}"
|
201 |
+
)
|
202 |
+
break
|
203 |
+
|
204 |
+
job = get_next_job(running_jobs)
|
205 |
+
running_jobs.remove(job)
|
206 |
+
done += 1
|
207 |
+
e = job.exception()
|
208 |
+
if not e:
|
209 |
+
print(f"Finished job {job.job_id} ({done} / {total}).", job.result())
|
210 |
+
continue
|
211 |
+
|
212 |
+
print(f"Failed job {job.job_id} ({done} / {total}):", e)
|
213 |
+
failed_jobs.append(job)
|
214 |
+
|
215 |
+
if failed_jobs:
|
216 |
+
n_failures = 10
|
217 |
+
message = f"{len(failed_jobs)} / {done} jobs failed while running {f_name}"
|
218 |
+
print(message)
|
219 |
+
for job in failed_jobs[:n_failures]:
|
220 |
+
print(f"Failed {job.job_id} -> {job.paths.stderr}")
|
221 |
+
if len(failed_jobs) > n_failures:
|
222 |
+
print(f"... ({len(failed_jobs) - n_failures} failed job skipped)")
|
223 |
+
raise Exception(message)
|
224 |
+
|
225 |
+
|
226 |
+
def get_next_job(
|
227 |
+
jobs: Sequence[submitit.Job], poll_frequency: float = 10
|
228 |
+
) -> submitit.Job:
|
229 |
+
"""
|
230 |
+
Waits for any of the job to finish and returns it.
|
231 |
+
|
232 |
+
jobs: list of jobs
|
233 |
+
poll_frequency: frequency in second at which we check job status
|
234 |
+
"""
|
235 |
+
start = time.time()
|
236 |
+
waiting = False
|
237 |
+
while True:
|
238 |
+
for job in jobs:
|
239 |
+
if job.done():
|
240 |
+
return job
|
241 |
+
if not waiting:
|
242 |
+
job_ids = [j.job_id for j in jobs[:4]]
|
243 |
+
suffix = "..." if len(jobs) > 4 else ""
|
244 |
+
print(
|
245 |
+
f"Waiting on {len(jobs)} running jobs. Job ids: {','.join(job_ids)}{suffix}"
|
246 |
+
)
|
247 |
+
waiting = True
|
248 |
+
time.sleep(poll_frequency)
|
cc-multilingual-main/cc_net/cc_net/flat_hash_set.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
import warnings
|
10 |
+
from typing import Iterable, Iterator, Sequence, Sized, Tuple, Type
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
HASH_TYPE: Type[np.uint64] = np.uint64
|
15 |
+
|
16 |
+
GETPY_WARNING = False
|
17 |
+
|
18 |
+
|
19 |
+
class AbstractDedupHashSet(Sized, Iterable[np.uint64]):
|
20 |
+
"""A dict-like that returns `True` for keys that have been added more than once.
|
21 |
+
|
22 |
+
The API is batched and expect np.array as input. This batching grants better
|
23 |
+
perf when using the C++ implementation.
|
24 |
+
"""
|
25 |
+
|
26 |
+
dtype: Type[np.uint64] = HASH_TYPE
|
27 |
+
|
28 |
+
def __repr__(self):
|
29 |
+
implementation = type(self).__name__
|
30 |
+
return f"[{implementation}, len: {len(self)}"
|
31 |
+
|
32 |
+
def __len__(self) -> int:
|
33 |
+
...
|
34 |
+
|
35 |
+
def __contains__(self, values: Sequence[np.uint64]) -> np.ndarray:
|
36 |
+
...
|
37 |
+
|
38 |
+
def __getitem__(self, values) -> np.ndarray:
|
39 |
+
...
|
40 |
+
|
41 |
+
def __setitem__(self, keys, values) -> None:
|
42 |
+
...
|
43 |
+
|
44 |
+
def items(self) -> Iterable[Tuple[np.uint64, np.uint8]]:
|
45 |
+
...
|
46 |
+
|
47 |
+
def keys(self) -> Iterable[np.uint64]:
|
48 |
+
...
|
49 |
+
|
50 |
+
def __iter__(self) -> Iterator[np.uint64]:
|
51 |
+
return iter(self.keys())
|
52 |
+
|
53 |
+
def add(self, h, contains=None):
|
54 |
+
"""Add the given keys. First time a key is added the value is set to 0,
|
55 |
+
then it's set to one."""
|
56 |
+
if not isinstance(h, np.ndarray):
|
57 |
+
h = np.array(h, dtype=HASH_TYPE)
|
58 |
+
if contains is None:
|
59 |
+
contains = self.__contains__(h)
|
60 |
+
|
61 |
+
self.__setitem__(h, contains)
|
62 |
+
return contains
|
63 |
+
|
64 |
+
def merge(self, keys, values):
|
65 |
+
contains = self.__contains__(keys)
|
66 |
+
self.__setitem__(keys, contains | values)
|
67 |
+
|
68 |
+
def dump(self, filename):
|
69 |
+
return self.dump_np(filename)
|
70 |
+
|
71 |
+
def load(self, filename):
|
72 |
+
return self.load_np(filename)
|
73 |
+
|
74 |
+
def dump_np(self, filename):
|
75 |
+
kv_type = np.dtype([("k", HASH_TYPE), ("v", np.uint8)])
|
76 |
+
items = np.fromiter(self.items(), dtype=kv_type, count=len(self))
|
77 |
+
with open(filename, "wb") as f:
|
78 |
+
np.save(f, items)
|
79 |
+
|
80 |
+
def load_np(self, filename):
|
81 |
+
items = np.load(str(filename))
|
82 |
+
keys = items["k"].copy()
|
83 |
+
values = items["v"].copy()
|
84 |
+
self.merge(keys, values)
|
85 |
+
|
86 |
+
def dump_np2(self, filename):
|
87 |
+
keys = np.fromiter(
|
88 |
+
(k for (k, v) in self.items()), dtype=HASH_TYPE, count=len(self)
|
89 |
+
)
|
90 |
+
with open(filename, "wb") as f:
|
91 |
+
np.save(f, keys)
|
92 |
+
|
93 |
+
values = np.fromiter(
|
94 |
+
(v for (k, v) in self.items()), dtype=np.uint8, count=len(self)
|
95 |
+
)
|
96 |
+
with open(str(filename) + ".val", "wb") as f:
|
97 |
+
np.save(f, values)
|
98 |
+
|
99 |
+
def load_np2(self, filename):
|
100 |
+
keys = np.load(filename)
|
101 |
+
values = np.load(str(filename) + ".val")
|
102 |
+
self.merge(keys, values)
|
103 |
+
|
104 |
+
|
105 |
+
class NaiveHashSet(dict, AbstractDedupHashSet):
|
106 |
+
"""Pure python implementation of AbstractDedupHashSet.
|
107 |
+
|
108 |
+
This implementation is quite fast, since Python dict are heavily optimized.
|
109 |
+
"""
|
110 |
+
|
111 |
+
def __init__(self, iterable=None):
|
112 |
+
super().__init__()
|
113 |
+
global GETPY_WARNING
|
114 |
+
if GETPY_WARNING:
|
115 |
+
warnings.warn(
|
116 |
+
"Module 'getpy' not found. Deduplication will take more RAM."
|
117 |
+
" Try `pip install cc_net[getpy]"
|
118 |
+
)
|
119 |
+
GETPY_WARNING = False
|
120 |
+
|
121 |
+
def __contains__(self, values):
|
122 |
+
"""Returns `True` if the object has been added at list once."""
|
123 |
+
contains_point = super().__contains__
|
124 |
+
return np.fromiter(
|
125 |
+
map(contains_point, values), count=len(values), dtype=np.uint8
|
126 |
+
)
|
127 |
+
|
128 |
+
def __getitem__(self, values):
|
129 |
+
"""Returns `True` if the object has been added at list twice."""
|
130 |
+
get_point = super().get
|
131 |
+
return np.fromiter(
|
132 |
+
map(lambda x: get_point(x, False), values),
|
133 |
+
count=len(values),
|
134 |
+
dtype=np.uint8,
|
135 |
+
)
|
136 |
+
|
137 |
+
def __setitem__(self, keys, values):
|
138 |
+
assert len(keys) == len(values)
|
139 |
+
for k, v in zip(keys, values):
|
140 |
+
dict.__setitem__(self, k, v)
|
141 |
+
|
142 |
+
|
143 |
+
try:
|
144 |
+
import getpy as gp # type: ignore
|
145 |
+
|
146 |
+
class _FlatHashSet(gp.Dict, AbstractDedupHashSet):
|
147 |
+
"""C++ backed implementation of AbstractDedupHashSet.
|
148 |
+
|
149 |
+
This implementation is slightly slower than the Python one but uses
|
150 |
+
3x less RAM.
|
151 |
+
See https://github.com/atom-moyer/getpy.
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(self):
|
155 |
+
super().__init__(HASH_TYPE, np.uint8, default_value=False)
|
156 |
+
|
157 |
+
def __contains__(self, h):
|
158 |
+
"""Returns `True` if the object has been added at list once."""
|
159 |
+
if not isinstance(h, np.ndarray):
|
160 |
+
h = np.array(h, dtype=HASH_TYPE)
|
161 |
+
c = gp.Dict.__contains__(self, h)
|
162 |
+
c.dtype = np.uint8
|
163 |
+
return c
|
164 |
+
|
165 |
+
def dump(self, filename):
|
166 |
+
return self.dump_gp(filename)
|
167 |
+
|
168 |
+
def load(self, filename):
|
169 |
+
return self.load_gp(filename)
|
170 |
+
|
171 |
+
def dump_gp(self, filename):
|
172 |
+
return gp.Dict.dump(self, str(filename))
|
173 |
+
|
174 |
+
def load_gp(self, filename):
|
175 |
+
"""Override gp.Dict.load, to correctly merge values instead of overwriting."""
|
176 |
+
other = gp.Dict(HASH_TYPE, np.uint8, default_value=False)
|
177 |
+
other.load(str(filename))
|
178 |
+
n = len(other)
|
179 |
+
keys = np.fromiter(
|
180 |
+
(k for (k, v) in other.items()), dtype=HASH_TYPE, count=n
|
181 |
+
)
|
182 |
+
values = np.fromiter(
|
183 |
+
(v for (k, v) in other.items()), dtype=np.uint8, count=n
|
184 |
+
)
|
185 |
+
self.merge(keys, values)
|
186 |
+
|
187 |
+
FlatHashSet: Type[AbstractDedupHashSet] = _FlatHashSet
|
188 |
+
except ImportError:
|
189 |
+
GETPY_WARNING = True
|
190 |
+
FlatHashSet = NaiveHashSet
|
191 |
+
|
192 |
+
|
193 |
+
def timeit(message, function, *args):
|
194 |
+
start = time.time()
|
195 |
+
function(*args)
|
196 |
+
end = time.time()
|
197 |
+
print(message, f"took {end - start:.0f}s")
|
198 |
+
|
199 |
+
|
200 |
+
def compare_load(*filenames):
|
201 |
+
assert filenames, "No file given"
|
202 |
+
|
203 |
+
def load_list():
|
204 |
+
hashes = []
|
205 |
+
for f in filenames:
|
206 |
+
h = FlatHashSet()
|
207 |
+
h.load(f)
|
208 |
+
print(f"Loaded {h} from {f}.")
|
209 |
+
hashes.append(h)
|
210 |
+
return hashes
|
211 |
+
|
212 |
+
def load_all(load, ext):
|
213 |
+
hashes = FlatHashSet()
|
214 |
+
for f in filenames:
|
215 |
+
load(hashes, f + ext)
|
216 |
+
|
217 |
+
def dump_all(hashes, dump, ext):
|
218 |
+
for h, f in zip(hashes, filenames):
|
219 |
+
dump(h, f + ext)
|
220 |
+
|
221 |
+
hashes = load_list()
|
222 |
+
dump_gp = getattr(FlatHashSet, "dump_gp")
|
223 |
+
if dump_gp is not None:
|
224 |
+
timeit("Dumping using gp.dump", dump_all, hashes, dump_gp, ".gp.test")
|
225 |
+
timeit("Dumping using dump_np", dump_all, hashes, FlatHashSet.dump_np, ".npy.test")
|
226 |
+
timeit(
|
227 |
+
"Dumping using dump_np2", dump_all, hashes, FlatHashSet.dump_np2, ".npy2.test"
|
228 |
+
)
|
229 |
+
|
230 |
+
load_gp = getattr(FlatHashSet, "load_gp")
|
231 |
+
if load_gp is not None:
|
232 |
+
timeit("Loading using gp.load", load_all, load_gp, ".gp.test")
|
233 |
+
timeit("Loading using load_np", load_all, FlatHashSet.load_np, ".npy.test")
|
234 |
+
timeit("Loading using load_np2", load_all, FlatHashSet.load_np2, ".npy2.test")
|
235 |
+
|
236 |
+
# Loading 10 shards:
|
237 |
+
# [dedup] Dumping using gp.dump took 52s
|
238 |
+
# [dedup] Dumping using dump_np took 270s
|
239 |
+
# [dedup] Dumping using dump_np2 took 483s
|
240 |
+
#
|
241 |
+
# [dedup] Loading using gp.load took 654s
|
242 |
+
# [dedup] Loading using load_np took 82s
|
243 |
+
# [dedup] Loading using load_np2 took 76s
|
244 |
+
|
245 |
+
|
246 |
+
if __name__ == "__main__":
|
247 |
+
compare_load(*sys.argv[1:])
|
cc-multilingual-main/cc_net/cc_net/get_wiki_cirrus.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
"""
|
8 |
+
Creates mono-lingual corpus from Wikipedia.
|
9 |
+
"""
|
10 |
+
|
11 |
+
import functools
|
12 |
+
import re
|
13 |
+
import subprocess
|
14 |
+
import urllib.request
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Dict
|
17 |
+
|
18 |
+
import func_argparse
|
19 |
+
from bs4 import BeautifulSoup # type: ignore
|
20 |
+
|
21 |
+
from cc_net import jsonql, text_normalizer
|
22 |
+
|
23 |
+
CIRRUS_URL = "https://dumps.wikimedia.org/other/cirrussearch"
|
24 |
+
CIRRUS_DUMP_RE = re.compile(r"^(.*)wiki-\d+-cirrussearch-content\.json\.gz")
|
25 |
+
|
26 |
+
|
27 |
+
def tmp(file: Path) -> Path:
|
28 |
+
return file.parent / ("tmp." + file.name)
|
29 |
+
|
30 |
+
|
31 |
+
def opening(file: Path, output: Path = None, n_docs: int = 1_000_000):
|
32 |
+
"""Will dump the tokenized opening text of the given Wikipedia.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
- file: File containing the Wikipedia dump.
|
36 |
+
- output: Output file.
|
37 |
+
- n_docs: How many docs to parse
|
38 |
+
- tokenize: whether to tokenize the text
|
39 |
+
- lang: Language code used to chose the tokenizer
|
40 |
+
"""
|
41 |
+
assert file.exists()
|
42 |
+
return jsonql.run_pipes(
|
43 |
+
functools.partial(extract_opening_text, n_docs=n_docs),
|
44 |
+
file=file,
|
45 |
+
output=tmp(output) if output else None,
|
46 |
+
)
|
47 |
+
if output:
|
48 |
+
tmp(output).replace(output)
|
49 |
+
|
50 |
+
|
51 |
+
def extract_opening_text(source, n_docs: int = 10_000):
|
52 |
+
i = 0
|
53 |
+
for doc in jsonql.read_jsons(source):
|
54 |
+
if not doc:
|
55 |
+
continue
|
56 |
+
|
57 |
+
text = doc.get("opening_text")
|
58 |
+
if not text:
|
59 |
+
continue
|
60 |
+
|
61 |
+
yield text_normalizer.normalize(text)
|
62 |
+
i += 1
|
63 |
+
if i >= n_docs:
|
64 |
+
break
|
65 |
+
|
66 |
+
|
67 |
+
def dl(lang: str, output_dir: Path, date: str = None):
|
68 |
+
"""Download the cirrus extract for the given lang.
|
69 |
+
|
70 |
+
See https://dumps.wikimedia.org/other/cirrussearch for the full list of files.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
- lang: The Wikipedia code for the language.
|
74 |
+
- output_dir: Output directory. File will be `{lang}.json.gz`
|
75 |
+
- date: Date of a specific Cirrus dump.
|
76 |
+
"""
|
77 |
+
|
78 |
+
urls = get_cirrus_urls(date)
|
79 |
+
assert (
|
80 |
+
lang in urls
|
81 |
+
), f"--lang {lang} not found. Available languages are: {urls.keys()}"
|
82 |
+
|
83 |
+
assert output_dir, "--output_dir folder needed."
|
84 |
+
output_dir.mkdir(exist_ok=True)
|
85 |
+
output = output_dir / (lang + ".json.gz")
|
86 |
+
print(f"Downloading {lang} wiki from {urls[lang]} to {output}")
|
87 |
+
wget(urls[lang], output)
|
88 |
+
|
89 |
+
|
90 |
+
def get_cirrus_urls(date: str = None) -> Dict[str, str]:
|
91 |
+
if date is None:
|
92 |
+
cirrus_page = BeautifulSoup(
|
93 |
+
urllib.request.urlopen(CIRRUS_URL), features="html.parser"
|
94 |
+
)
|
95 |
+
dumps = [a.get("href").strip("/") for a in cirrus_page.findAll("a")]
|
96 |
+
dumps.remove("..")
|
97 |
+
dumps.remove("current")
|
98 |
+
# We take the oldest dump since the most recent might be incomplete.
|
99 |
+
# The page only link to the N latest dumps so the dump won't be too old.
|
100 |
+
date = min(dumps)
|
101 |
+
|
102 |
+
cirrus_url = "/".join((CIRRUS_URL, date))
|
103 |
+
print("Will use the Wikipedia dump from:", date, cirrus_url)
|
104 |
+
cirrus_page = BeautifulSoup(
|
105 |
+
urllib.request.urlopen(cirrus_url), features="html.parser"
|
106 |
+
)
|
107 |
+
urls = {}
|
108 |
+
for link in cirrus_page.findAll("a"):
|
109 |
+
match = CIRRUS_DUMP_RE.match(link.get("href"))
|
110 |
+
if not match:
|
111 |
+
continue
|
112 |
+
|
113 |
+
urls[match.group(1)] = "/".join([cirrus_url, link.get("href")])
|
114 |
+
assert urls, f"No valid download urls found at {cirrus_url}"
|
115 |
+
return urls
|
116 |
+
|
117 |
+
|
118 |
+
def wget(url: str, output: Path):
|
119 |
+
subprocess.run(["wget", url, "-O", tmp(output), "-q"], check=True)
|
120 |
+
tmp(output).replace(output)
|
121 |
+
assert (
|
122 |
+
output.stat().st_size > 10_000
|
123 |
+
), f"File {output} downloaded from {url} looks too small"
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
func_argparse.main(dl, opening)
|
cc-multilingual-main/cc_net/cc_net/jsonql.py
ADDED
@@ -0,0 +1,1340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
"""
|
8 |
+
Manipulate files containing one json per line.
|
9 |
+
"""
|
10 |
+
import argparse
|
11 |
+
import collections
|
12 |
+
import contextlib
|
13 |
+
import functools
|
14 |
+
import glob
|
15 |
+
import gzip
|
16 |
+
import importlib
|
17 |
+
import inspect
|
18 |
+
import io
|
19 |
+
import itertools
|
20 |
+
import json
|
21 |
+
import logging
|
22 |
+
import multiprocessing
|
23 |
+
import os
|
24 |
+
import re
|
25 |
+
import sys
|
26 |
+
import tempfile
|
27 |
+
import time
|
28 |
+
import typing as tp
|
29 |
+
import warnings
|
30 |
+
import zlib
|
31 |
+
from pathlib import Path
|
32 |
+
from typing import (
|
33 |
+
Callable,
|
34 |
+
Dict,
|
35 |
+
Iterable,
|
36 |
+
Iterator,
|
37 |
+
List,
|
38 |
+
Optional,
|
39 |
+
Sequence,
|
40 |
+
TextIO,
|
41 |
+
Tuple,
|
42 |
+
Union,
|
43 |
+
)
|
44 |
+
|
45 |
+
import numpy as np
|
46 |
+
import psutil # type: ignore
|
47 |
+
import requests
|
48 |
+
from typing_extensions import Protocol
|
49 |
+
|
50 |
+
logging.basicConfig(
|
51 |
+
level=logging.INFO,
|
52 |
+
format="%(asctime)s %(levelname)s %(process)d:%(name)s - %(message)s",
|
53 |
+
datefmt="%Y-%m-%d %H:%M",
|
54 |
+
)
|
55 |
+
|
56 |
+
NEWLINE = " N3WL1N3 "
|
57 |
+
|
58 |
+
FilterFn = Callable[[dict], bool]
|
59 |
+
FileDescriptor = Union[Path, List[Path], str]
|
60 |
+
WritableFileLike = Union[FileDescriptor, TextIO, "SimpleIO", None]
|
61 |
+
ReadableFileLike = Union[Iterable[str], FileDescriptor, None]
|
62 |
+
|
63 |
+
|
64 |
+
def io_parser():
|
65 |
+
"""Parser shared by all commands to get input/output files."""
|
66 |
+
parser = argparse.ArgumentParser(add_help=False)
|
67 |
+
file_help = """File to read from. Can be specified several times for several files.
|
68 |
+
Be careful that bash will expand glob patterns **before** sending the args
|
69 |
+
to python. To use globs put it inside single quotes:
|
70 |
+
jsonql where --file 'data/perplexity/*.json' '{length} > 100' | head -1
|
71 |
+
jsonql --file 'data/perplexity/*.json' where '{length} > 100' | head -1
|
72 |
+
[Invalid] jsonql where '{length} > 100' --file data/perplexity/*.json | head -1
|
73 |
+
[Invalid] jsonql where --file data/perplexity/*.json '{length} > 100' | head -1
|
74 |
+
"""
|
75 |
+
parser.add_argument("-f", "--file", type=Path, action="append", help=file_help)
|
76 |
+
parser.add_argument("-o", "--output", type=Path, default="-")
|
77 |
+
parser.add_argument("--processes", type=int, default=1)
|
78 |
+
return parser
|
79 |
+
|
80 |
+
|
81 |
+
def get_parser():
|
82 |
+
parser = argparse.ArgumentParser(
|
83 |
+
description="Read a set of json files and allow to query them"
|
84 |
+
)
|
85 |
+
subparsers = parser.add_subparsers()
|
86 |
+
|
87 |
+
def add_subparser(function, arguments):
|
88 |
+
doc = function.__doc__.split("\n")[0]
|
89 |
+
p = subparsers.add_parser(function.__name__, help=doc, parents=[io_parser()])
|
90 |
+
p.set_defaults(command=function)
|
91 |
+
for k, v in arguments.items():
|
92 |
+
p.add_argument(k, **v)
|
93 |
+
|
94 |
+
add_subparser(
|
95 |
+
select,
|
96 |
+
{
|
97 |
+
"columns": dict(nargs="+", help="Extract the value of the given fields"),
|
98 |
+
"--skip_empty": dict(
|
99 |
+
action="store_true", help="Skip lines without the requested fields"
|
100 |
+
),
|
101 |
+
"--separator": dict(
|
102 |
+
default="\t", help="Separator to use between the different columns"
|
103 |
+
),
|
104 |
+
"--newline": dict(
|
105 |
+
default=NEWLINE,
|
106 |
+
help="Replace newlines found in the text by the given string",
|
107 |
+
),
|
108 |
+
},
|
109 |
+
)
|
110 |
+
|
111 |
+
add_subparser(
|
112 |
+
where,
|
113 |
+
{
|
114 |
+
"clauses": dict(nargs="+", help=""),
|
115 |
+
"--requires": dict(
|
116 |
+
action="append", help="Python module required by the clauses code."
|
117 |
+
),
|
118 |
+
},
|
119 |
+
)
|
120 |
+
|
121 |
+
add_subparser(
|
122 |
+
merge,
|
123 |
+
{
|
124 |
+
"columns": dict(nargs="+", help=""),
|
125 |
+
"--separator": dict(
|
126 |
+
default="\t", help="Separator to use between the different columns"
|
127 |
+
),
|
128 |
+
"--newline": dict(
|
129 |
+
default=NEWLINE, help="Replace the given string by actual newlines"
|
130 |
+
),
|
131 |
+
},
|
132 |
+
)
|
133 |
+
|
134 |
+
add_subparser(
|
135 |
+
describe,
|
136 |
+
{
|
137 |
+
"columns": dict(nargs="*", help=""),
|
138 |
+
"--bins": dict(
|
139 |
+
default="auto", help="Number of bins for computing the histograms"
|
140 |
+
),
|
141 |
+
"--cumulative": dict(
|
142 |
+
action="store_true", help="Compute cumulative histograms"
|
143 |
+
),
|
144 |
+
"--weights": dict(type=str, help="Column used to weight histograms"),
|
145 |
+
},
|
146 |
+
)
|
147 |
+
|
148 |
+
add_subparser(split, {"--pattern": dict(type=str)})
|
149 |
+
add_subparser(shard, {})
|
150 |
+
return parser
|
151 |
+
|
152 |
+
|
153 |
+
def _split_array(array, sep):
|
154 |
+
last = 0
|
155 |
+
for i, x in enumerate(array):
|
156 |
+
if x != sep:
|
157 |
+
continue
|
158 |
+
yield array[last:i]
|
159 |
+
last = i + 1
|
160 |
+
if last != len(array):
|
161 |
+
yield array[last:]
|
162 |
+
|
163 |
+
|
164 |
+
def main(raw_args):
|
165 |
+
parser = get_parser()
|
166 |
+
pipeline = []
|
167 |
+
file = "-"
|
168 |
+
output = "-"
|
169 |
+
processes = 1
|
170 |
+
|
171 |
+
for args_group in _split_array(raw_args, "--"):
|
172 |
+
args = vars(parser.parse_args(args_group))
|
173 |
+
command = args.pop("command")
|
174 |
+
file = args.pop("file") or file
|
175 |
+
output = args.pop("output") or output
|
176 |
+
processes = args.pop("processes") or processes
|
177 |
+
pipeline.append(as_pipe(command, args))
|
178 |
+
|
179 |
+
if not pipeline:
|
180 |
+
parser.print_help()
|
181 |
+
return
|
182 |
+
|
183 |
+
run_pipes(*pipeline, file=Path(file), output=Path(output), processes=processes)
|
184 |
+
|
185 |
+
|
186 |
+
class Transformer:
|
187 |
+
"""
|
188 |
+
Wrapper around functions transforming documents.
|
189 |
+
|
190 |
+
This allows `run_pipes` to automatically parallelize the pipeline.
|
191 |
+
Provides:
|
192 |
+
* Automatic logging. Logging can be changed with the `summary` method.
|
193 |
+
Loggin frequency with _log_freq (in second) or $JSONQL_LOG_FREQ env variable.
|
194 |
+
* Automatic parallelization without pickling. The transformers are shared
|
195 |
+
across processes, and the object is usually not pickled.
|
196 |
+
* Basic pickling / unpickling in case it's still needed.
|
197 |
+
By default will only pickle the arguments passed to the constructor.
|
198 |
+
* Delayed initialization. Internal state which is not pickable should be set
|
199 |
+
inside the `_prepare` function.
|
200 |
+
"""
|
201 |
+
|
202 |
+
parallelisable: bool = True
|
203 |
+
expect_json: bool = False
|
204 |
+
warn_when_pickling: bool = False
|
205 |
+
ready: bool = False
|
206 |
+
|
207 |
+
def __init_subclass__(cls, expect_json: bool = None):
|
208 |
+
"""Detects if the subclass expects json as input."""
|
209 |
+
spec = inspect.getfullargspec(cls.do)
|
210 |
+
if expect_json is None:
|
211 |
+
expect_json = spec.annotations.get(spec.args[1], None) == dict
|
212 |
+
|
213 |
+
cls.expect_json = expect_json
|
214 |
+
|
215 |
+
def __new__(cls, *args, **kwargs):
|
216 |
+
"""Creates the transformer and save the arguments passed to the constructor."""
|
217 |
+
t = super().__new__(cls)
|
218 |
+
Transformer.__init__(t, args, kwargs)
|
219 |
+
return t
|
220 |
+
|
221 |
+
def __init__(self, state_args: tuple = None, state_kwargs: dict = None):
|
222 |
+
"""
|
223 |
+
Init the transformer counters.
|
224 |
+
|
225 |
+
If state_args/state_kwargs are set they will override whatever was
|
226 |
+
originally passed to the subclass constructor.
|
227 |
+
"""
|
228 |
+
if state_args is not None:
|
229 |
+
self.__args = state_args
|
230 |
+
if state_kwargs is not None:
|
231 |
+
self.__kwargs = state_kwargs
|
232 |
+
|
233 |
+
self.start_time = time.time()
|
234 |
+
self.__last_log = self.start_time
|
235 |
+
self.processed = 0
|
236 |
+
# Log every 5 min unless specified other wise.
|
237 |
+
self._log_freq = int(os.environ.get("JSONQL_LOG_FREQ", 5 * 60))
|
238 |
+
self.__cls = type(self)
|
239 |
+
self._logger = logging.getLogger(self.__cls.__name__)
|
240 |
+
|
241 |
+
def __call__(self, x):
|
242 |
+
assert self.ready, f"{self} is not ready."
|
243 |
+
if x is None:
|
244 |
+
return
|
245 |
+
y = self.do(x)
|
246 |
+
self.processed += 1
|
247 |
+
if time.time() - self.__last_log > self._log_freq:
|
248 |
+
self.log_summary()
|
249 |
+
return y
|
250 |
+
|
251 |
+
def do(self, x):
|
252 |
+
raise NotImplementedError(f"'do' not implemented in {type(self)}")
|
253 |
+
|
254 |
+
def summary(self) -> List[str]:
|
255 |
+
return [self.speed_summary()]
|
256 |
+
|
257 |
+
def speed_summary(self) -> str:
|
258 |
+
delay = time.time() - self.start_time
|
259 |
+
h = delay / 3600
|
260 |
+
s = self.processed / delay
|
261 |
+
return f"Processed {self.processed:_} documents in {h:.2}h ({s:5.1f} doc/s)."
|
262 |
+
|
263 |
+
def log(self, message):
|
264 |
+
self._logger.info(message)
|
265 |
+
|
266 |
+
def log_summary(self) -> None:
|
267 |
+
if not self.ready:
|
268 |
+
self.log("Not ready.")
|
269 |
+
return
|
270 |
+
summ = self.summary() or []
|
271 |
+
for line in summ:
|
272 |
+
self.log(line)
|
273 |
+
self.__last_log = time.time()
|
274 |
+
|
275 |
+
def map(self, source: Iterable) -> Iterator:
|
276 |
+
if self.ready:
|
277 |
+
for x in source:
|
278 |
+
yield self(x)
|
279 |
+
# since we have been prepared by caller,
|
280 |
+
# caller is also responsible for calling `close`.
|
281 |
+
return
|
282 |
+
else:
|
283 |
+
with self:
|
284 |
+
for x in source:
|
285 |
+
yield self(x)
|
286 |
+
|
287 |
+
def __getstate__(self) -> Tuple[tuple, dict, bool]:
|
288 |
+
return (self.__args, self.__kwargs, self.expect_json)
|
289 |
+
|
290 |
+
def __setstate__(self, state: Tuple[tuple, dict, bool]):
|
291 |
+
if self.warn_when_pickling:
|
292 |
+
warnings.warn(f"Unpickling transformer: {type(self)}. This can be slow.")
|
293 |
+
(args, kwargs, expect_json) = state
|
294 |
+
# When unpickling `__new__` isn't called so we have to doit ourselves.
|
295 |
+
Transformer.__init__(self, state_args=args, state_kwargs=kwargs)
|
296 |
+
type(self).__init__(self, *args, **kwargs)
|
297 |
+
assert self.expect_json == expect_json
|
298 |
+
# __setstate__ is called by multiprocessing right before calling
|
299 |
+
# the object so we need to initialize everything.
|
300 |
+
self.__enter__()
|
301 |
+
|
302 |
+
def _prepare(self) -> None:
|
303 |
+
pass
|
304 |
+
|
305 |
+
def __enter__(self) -> "Transformer":
|
306 |
+
# In multiprocessing __enter__ is always called twice, so we are idempotent.
|
307 |
+
# Because we call __enter__ when deserializing this transformer and
|
308 |
+
# also when the parent transformer is deserialized.
|
309 |
+
self.start_time = time.time()
|
310 |
+
if self.ready:
|
311 |
+
return self
|
312 |
+
self._prepare()
|
313 |
+
self.ready = True
|
314 |
+
return self
|
315 |
+
|
316 |
+
def __exit__(self, *args) -> None:
|
317 |
+
self.close()
|
318 |
+
self.log_summary()
|
319 |
+
|
320 |
+
def close(self) -> None:
|
321 |
+
pass
|
322 |
+
|
323 |
+
|
324 |
+
def as_pipe(transformer, kwargs):
|
325 |
+
if isinstance(transformer, type):
|
326 |
+
return transformer(**kwargs)
|
327 |
+
return lambda source: transformer(source, **kwargs)
|
328 |
+
|
329 |
+
|
330 |
+
def compose(fns: List[Transformer]) -> Transformer:
|
331 |
+
if len(fns) == 1:
|
332 |
+
return fns[0]
|
333 |
+
return MultiTransformer(fns)
|
334 |
+
|
335 |
+
|
336 |
+
class MultiTransformer(Transformer):
|
337 |
+
def __init__(self, transformers: List[Transformer]):
|
338 |
+
super().__init__()
|
339 |
+
self.transformers = transformers
|
340 |
+
|
341 |
+
def __repr__(self) -> str:
|
342 |
+
pipeline = " | ".join(type(t).__name__ for t in self.transformers)
|
343 |
+
return f"<{pipeline}>"
|
344 |
+
|
345 |
+
def do(self, x):
|
346 |
+
for t in self.transformers:
|
347 |
+
x = t(x)
|
348 |
+
return x
|
349 |
+
|
350 |
+
def _prepare(self):
|
351 |
+
for t in self.transformers:
|
352 |
+
t.__enter__()
|
353 |
+
return self
|
354 |
+
|
355 |
+
def __exit__(self, *args):
|
356 |
+
for t in self.transformers:
|
357 |
+
t.__exit__(*args)
|
358 |
+
|
359 |
+
def summary(self):
|
360 |
+
return itertools.chain(*(t.summary() for t in self.transformers))
|
361 |
+
|
362 |
+
|
363 |
+
class Mapper(Transformer):
|
364 |
+
def __init__(self, fn):
|
365 |
+
super().__init__()
|
366 |
+
self.fn = fn
|
367 |
+
|
368 |
+
def do(self, x):
|
369 |
+
return self.fn(x)
|
370 |
+
|
371 |
+
|
372 |
+
def run_pipe(
|
373 |
+
command,
|
374 |
+
kwargs: dict = None,
|
375 |
+
file: ReadableFileLike = None,
|
376 |
+
output: WritableFileLike = None,
|
377 |
+
):
|
378 |
+
kwargs = kwargs or {}
|
379 |
+
if isinstance(kwargs, argparse.ArgumentParser):
|
380 |
+
kwargs = vars(kwargs.parse_args())
|
381 |
+
file = file or Path(kwargs.pop("file", "-"))
|
382 |
+
output = output or Path(kwargs.pop("output", "-"))
|
383 |
+
|
384 |
+
return run_pipes(as_pipe(command, kwargs), file=file, output=output)
|
385 |
+
|
386 |
+
|
387 |
+
def run_pipes(
|
388 |
+
*fns: Union[Transformer, Callable[[Iterable], Iterable]],
|
389 |
+
inputs: Iterable[dict] = None,
|
390 |
+
file: ReadableFileLike = None,
|
391 |
+
output: WritableFileLike = None,
|
392 |
+
processes: int = 1,
|
393 |
+
chunksize: int = 10_000,
|
394 |
+
):
|
395 |
+
"""
|
396 |
+
Run full document processing pipeline.
|
397 |
+
|
398 |
+
- fns: list of functions to run over the documents. Can be:
|
399 |
+
* `Iterable -> Iterable` function
|
400 |
+
* jsonql.Transformer instance
|
401 |
+
Using transformers allow the pipeline to process documents in parallel.
|
402 |
+
- inputs: iterable to read the documents from
|
403 |
+
- file: if inputs is not given, will read documents from this file.
|
404 |
+
- output: writable file like.
|
405 |
+
- processes: number of processes to use. -1 means all CPU available.
|
406 |
+
- chunksize: chunksize for multiprocessing.Pool.imap_unordered
|
407 |
+
"""
|
408 |
+
expect_json = len(fns) and isinstance(fns[0], Transformer) and fns[0].expect_json
|
409 |
+
if expect_json and inputs is None:
|
410 |
+
fns = (JsonReader(),) + fns
|
411 |
+
transformers = []
|
412 |
+
for t in fns:
|
413 |
+
if not isinstance(t, Transformer):
|
414 |
+
break
|
415 |
+
if not t.parallelisable:
|
416 |
+
break
|
417 |
+
transformers.append(t)
|
418 |
+
pipes = fns[len(transformers) :]
|
419 |
+
|
420 |
+
log = logging.getLogger(__name__).info
|
421 |
+
if inputs is None:
|
422 |
+
data: Iterable = open_read(file)
|
423 |
+
else:
|
424 |
+
data = inputs
|
425 |
+
|
426 |
+
if processes == -1:
|
427 |
+
processes = os.cpu_count() or 0
|
428 |
+
|
429 |
+
with contextlib.suppress(BrokenPipeError), contextlib.ExitStack() as stack:
|
430 |
+
if transformers:
|
431 |
+
log(f"preparing {transformers}")
|
432 |
+
transform = stack.enter_context(compose(transformers))
|
433 |
+
if processes <= 1:
|
434 |
+
data = transform.map(data)
|
435 |
+
else:
|
436 |
+
p = multiprocessing.current_process()
|
437 |
+
log(f"Will start {processes} processes from {p.name}, Pid: {p.pid}")
|
438 |
+
pool = stack.enter_context(
|
439 |
+
multiprocessing.Pool(
|
440 |
+
processes=processes,
|
441 |
+
initializer=_set_global_transformer,
|
442 |
+
initargs=(transform,),
|
443 |
+
)
|
444 |
+
)
|
445 |
+
data = pool.imap_unordered(
|
446 |
+
_global_transformer, data, chunksize=chunksize
|
447 |
+
)
|
448 |
+
|
449 |
+
for fn in pipes:
|
450 |
+
if isinstance(fn, Transformer):
|
451 |
+
data = fn.map(data)
|
452 |
+
else:
|
453 |
+
data = fn(data)
|
454 |
+
|
455 |
+
write_jsons(data, output)
|
456 |
+
|
457 |
+
|
458 |
+
# Allows to share transformer acroos subprocess.
|
459 |
+
# Used by `run_pipes`
|
460 |
+
_GLOBAL_TRANSFORMER: Optional[Transformer] = None
|
461 |
+
|
462 |
+
|
463 |
+
def _set_global_transformer(transformer: Transformer):
|
464 |
+
global _GLOBAL_TRANSFORMER
|
465 |
+
p = multiprocessing.current_process()
|
466 |
+
logging.info(
|
467 |
+
f"Started subprocess {p.name}:{p.pid} from {os.getppid()} for {transformer}"
|
468 |
+
)
|
469 |
+
assert transformer.ready, f"{transformer} isn't ready"
|
470 |
+
_GLOBAL_TRANSFORMER = transformer
|
471 |
+
|
472 |
+
|
473 |
+
def _global_transformer(document: str) -> Optional[dict]:
|
474 |
+
assert _GLOBAL_TRANSFORMER is not None
|
475 |
+
return _GLOBAL_TRANSFORMER(document)
|
476 |
+
|
477 |
+
|
478 |
+
def lines(file: ReadableFileLike) -> Iterator[str]:
|
479 |
+
return (line.strip("\n") for line in open_read(file))
|
480 |
+
|
481 |
+
|
482 |
+
def read_jsons(file: ReadableFileLike, strict=False) -> Iterator[dict]:
|
483 |
+
reader = JsonReader(strict=strict)
|
484 |
+
lines = open_read(file)
|
485 |
+
for line in lines:
|
486 |
+
if line is None:
|
487 |
+
continue
|
488 |
+
yield reader(line)
|
489 |
+
|
490 |
+
reader.log_summary()
|
491 |
+
|
492 |
+
|
493 |
+
def write_jsons(source: Iterable[dict], file: WritableFileLike) -> None:
|
494 |
+
eol = os.linesep
|
495 |
+
with open_write(file) as o:
|
496 |
+
for res in source:
|
497 |
+
if res is None:
|
498 |
+
continue
|
499 |
+
if isinstance(res, dict):
|
500 |
+
json.dump(res, o, ensure_ascii=False)
|
501 |
+
o.write(eol)
|
502 |
+
continue
|
503 |
+
if isinstance(res, str):
|
504 |
+
res = res.rstrip("\n")
|
505 |
+
print(res, file=o)
|
506 |
+
|
507 |
+
|
508 |
+
class JsonReader(Transformer):
|
509 |
+
def __init__(self, strict: bool = False):
|
510 |
+
super().__init__()
|
511 |
+
self.ready = True
|
512 |
+
self.strict = strict
|
513 |
+
self.num_errors = 0
|
514 |
+
|
515 |
+
def do(self, line: str) -> Optional[dict]:
|
516 |
+
if line is None:
|
517 |
+
return None
|
518 |
+
if isinstance(line, dict):
|
519 |
+
return line
|
520 |
+
line = line.rstrip("\n")
|
521 |
+
if not line:
|
522 |
+
return None
|
523 |
+
try:
|
524 |
+
return json.loads(line)
|
525 |
+
except json.decoder.JSONDecodeError as e:
|
526 |
+
self.log_error(e)
|
527 |
+
if self.strict:
|
528 |
+
raise
|
529 |
+
return None
|
530 |
+
|
531 |
+
def log_error(self, e: json.decoder.JSONDecodeError):
|
532 |
+
self.num_errors += 1
|
533 |
+
if self.num_errors > 10:
|
534 |
+
return
|
535 |
+
|
536 |
+
MAX_LEN = 80
|
537 |
+
snippet, snippet_len = e.doc, len(e.doc)
|
538 |
+
col = e.pos
|
539 |
+
if snippet_len > MAX_LEN:
|
540 |
+
if col < MAX_LEN:
|
541 |
+
start = 0
|
542 |
+
elif snippet_len - col < MAX_LEN:
|
543 |
+
start = snippet_len - MAX_LEN
|
544 |
+
else:
|
545 |
+
start = col - MAX_LEN // 2
|
546 |
+
snippet = e.doc[start : start + MAX_LEN]
|
547 |
+
col = col - start
|
548 |
+
logging.warning(
|
549 |
+
"\n".join(
|
550 |
+
[
|
551 |
+
f"Invalid json (length={len(e.doc)}) {e}",
|
552 |
+
snippet,
|
553 |
+
" " * (col - 1) + "^",
|
554 |
+
]
|
555 |
+
)
|
556 |
+
)
|
557 |
+
|
558 |
+
def summary(self):
|
559 |
+
summ = super().summary()
|
560 |
+
if self.num_errors > 0:
|
561 |
+
summ.append(f"Skipped {self.num_errors} invalid json.")
|
562 |
+
return summ
|
563 |
+
|
564 |
+
|
565 |
+
def compile_column(column, newline):
|
566 |
+
if callable(column):
|
567 |
+
return column
|
568 |
+
|
569 |
+
if column == "*":
|
570 |
+
return json.dumps
|
571 |
+
|
572 |
+
if re.match(r"[_a-z][_a-z0-9]*", column):
|
573 |
+
|
574 |
+
def extract_col(doc):
|
575 |
+
v = doc.get(column, "")
|
576 |
+
if isinstance(v, str) and newline != "\n":
|
577 |
+
v = v.rstrip("\n").replace("\n", newline)
|
578 |
+
return v
|
579 |
+
|
580 |
+
return extract_col
|
581 |
+
|
582 |
+
return compile_expr(column)
|
583 |
+
|
584 |
+
|
585 |
+
def select(lines, columns, skip_empty=False, separator="\t", newline="\n"):
|
586 |
+
"""Yields the content of the requested columns."""
|
587 |
+
column_parsers = [compile_column(c, newline) for c in columns]
|
588 |
+
for doc in read_jsons(lines):
|
589 |
+
values = []
|
590 |
+
empty = True
|
591 |
+
for parse_col in column_parsers:
|
592 |
+
v = parse_col(doc)
|
593 |
+
values.append(str(v) or "")
|
594 |
+
empty = empty and v is None
|
595 |
+
|
596 |
+
if skip_empty and empty:
|
597 |
+
continue
|
598 |
+
|
599 |
+
yield separator.join(values)
|
600 |
+
|
601 |
+
|
602 |
+
def compile_expr(clause: Union[str, FilterFn], requires: List[str] = None):
|
603 |
+
if not isinstance(clause, str):
|
604 |
+
return clause
|
605 |
+
|
606 |
+
args_re = r"(?i:\{([_a-z][_a-z0-9]*)\})"
|
607 |
+
args_list = list(re.findall(args_re, clause))
|
608 |
+
if not args_list:
|
609 |
+
# This is only a warning because you may want to have eg random sampling
|
610 |
+
# that doesn't depend on the document.
|
611 |
+
logging.warn(
|
612 |
+
f"Warning: No variable found in expression: <{clause}>\n"
|
613 |
+
"Variables should be written inside braces, eg: {language}=='en'"
|
614 |
+
)
|
615 |
+
python_like = re.sub(args_re, r"doc.get('\1', None)", clause)
|
616 |
+
requires = requires or []
|
617 |
+
modules = {r: importlib.import_module(r) for r in requires}
|
618 |
+
return eval(f"lambda doc: {python_like}", modules)
|
619 |
+
|
620 |
+
|
621 |
+
class where(Transformer):
|
622 |
+
"""Filters the data using python code.
|
623 |
+
|
624 |
+
Ex: `jsonql where 'len({text}) > 100'`
|
625 |
+
"""
|
626 |
+
|
627 |
+
def __init__(
|
628 |
+
self, clauses: Sequence[Union[str, FilterFn]], requires: List[str] = []
|
629 |
+
):
|
630 |
+
super().__init__()
|
631 |
+
self.raw_clauses = clauses
|
632 |
+
self.requires = requires
|
633 |
+
self.n_selected = 0
|
634 |
+
self.clauses: List[FilterFn] = []
|
635 |
+
|
636 |
+
def _prepare(self):
|
637 |
+
self.clauses = [compile_expr(c, self.requires) for c in self.raw_clauses]
|
638 |
+
|
639 |
+
def do(self, doc: dict) -> Optional[dict]:
|
640 |
+
assert self.clauses
|
641 |
+
if not doc or not all((c(doc) for c in self.clauses)):
|
642 |
+
return None
|
643 |
+
self.n_selected += 1
|
644 |
+
return doc
|
645 |
+
|
646 |
+
def summary(self):
|
647 |
+
n_selected, n_docs = self.n_selected, self.processed
|
648 |
+
selectivity = n_selected / n_docs if n_docs else 0
|
649 |
+
return [f"Selected {n_selected} documents out of {n_docs} ({selectivity:5.1%})"]
|
650 |
+
|
651 |
+
|
652 |
+
def merge(lines, columns, separator="\t", newline=NEWLINE):
|
653 |
+
"""Reads tab separated columns and output a json using the given headers.
|
654 |
+
|
655 |
+
Headers are of form {key}[%{type}]
|
656 |
+
{type} can be one of {"f": float, "i": int, "b": bool, "s": string}.
|
657 |
+
Default type is string.
|
658 |
+
A special header "_" means interpret this column as json, and append all other
|
659 |
+
columns to it. Must appear only once and on last position.
|
660 |
+
|
661 |
+
Ex:
|
662 |
+
`echo '1\thello' | jsonql merge n t` --> `{"n": "1", "t": "hello"}`
|
663 |
+
`echo '1\thello" | jsonql merge n%i t` --> `{"n": 1, "t": "hello"}`
|
664 |
+
`echo '1\thello\t{"f": "bar"}' | jsonql merge n%i t _` --> `{"n": 1, "t": "hello", "f": "bar"}`
|
665 |
+
"""
|
666 |
+
handle_newlines = lambda s: s.replace(newline, "\n")
|
667 |
+
type_mapping: Dict[str, Callable] = {
|
668 |
+
"f": float,
|
669 |
+
"i": int,
|
670 |
+
"b": bool,
|
671 |
+
"s": handle_newlines,
|
672 |
+
}
|
673 |
+
type_parsing = [
|
674 |
+
type_mapping.get(f.split("%")[-1], handle_newlines) for f in columns
|
675 |
+
]
|
676 |
+
columns = [f.split("%")[0] for f in columns]
|
677 |
+
doc_index = columns.index("_") if "_" in columns else -1
|
678 |
+
read_json = JsonReader()
|
679 |
+
|
680 |
+
def parse(line):
|
681 |
+
parts = line.split(separator, len(columns) - 1)
|
682 |
+
doc: Dict[str, tp.Any] = {}
|
683 |
+
for i, value in enumerate(parts):
|
684 |
+
if columns[i] == "_":
|
685 |
+
doc.update(read_json(parts[doc_index]))
|
686 |
+
else:
|
687 |
+
try:
|
688 |
+
doc[columns[i]] = type_parsing[i](value)
|
689 |
+
except ValueError:
|
690 |
+
logging.error(
|
691 |
+
f"Error when parsing column {i} of line: {line[:100]}..."
|
692 |
+
)
|
693 |
+
return doc
|
694 |
+
|
695 |
+
for line in lines:
|
696 |
+
yield json.dumps(parse(line))
|
697 |
+
|
698 |
+
|
699 |
+
class split(Transformer):
|
700 |
+
"""Split a files in several smaller files based on the value of a field."""
|
701 |
+
|
702 |
+
# Not parallelisable since we are writing to files.
|
703 |
+
parallelisable = False
|
704 |
+
|
705 |
+
def __init__(
|
706 |
+
self,
|
707 |
+
pattern: Union[Path, str] = None,
|
708 |
+
split_fn: Callable[[dict], str] = None,
|
709 |
+
mkdir: bool = False,
|
710 |
+
):
|
711 |
+
super().__init__()
|
712 |
+
assert not (
|
713 |
+
pattern and split_fn
|
714 |
+
), "split can't have both a pattern and a split_fn"
|
715 |
+
if split_fn is not None:
|
716 |
+
self.split_fn = split_fn
|
717 |
+
else:
|
718 |
+
assert pattern, "split need either a pattern or a split_fn"
|
719 |
+
self.split_fn = self.make_split_fn(str(pattern))
|
720 |
+
self.mkdir = mkdir
|
721 |
+
self.o: dict = {}
|
722 |
+
|
723 |
+
def make_split_fn(self, pattern: str) -> Callable[[dict], str]:
|
724 |
+
candidates = list(re.findall(r"(?i:\{([_a-z][_a-z0-9]*)\})", pattern))
|
725 |
+
return lambda doc: pattern.format(**{c: doc[c] for c in candidates})
|
726 |
+
|
727 |
+
def do(self, doc):
|
728 |
+
filename = self.split_fn(doc)
|
729 |
+
if not filename:
|
730 |
+
return
|
731 |
+
o = self.o.get(filename, None)
|
732 |
+
if o is None:
|
733 |
+
if self.mkdir:
|
734 |
+
Path(filename).parent.mkdir(parents=True, exist_ok=True)
|
735 |
+
self.o[filename] = open_write(filename)
|
736 |
+
print(json.dumps(doc, ensure_ascii=False), file=self.o[filename], flush=True)
|
737 |
+
|
738 |
+
def summary(self):
|
739 |
+
summ = super().summary()
|
740 |
+
summ.append(f"Found {len(self.o)} splits.")
|
741 |
+
return summ
|
742 |
+
|
743 |
+
def close(self):
|
744 |
+
for file in self.o.values():
|
745 |
+
file.close()
|
746 |
+
|
747 |
+
|
748 |
+
def histogram(values, bins, weights):
|
749 |
+
hist, bins = np.histogram(values, bins=bins)
|
750 |
+
# n_bins = len(hist)
|
751 |
+
|
752 |
+
if weights is not None:
|
753 |
+
# Bins can't be auto-determined if weights is supplied.
|
754 |
+
# So we first compute the bins without the weights then recompute
|
755 |
+
# the histogram with the weights.
|
756 |
+
hist, bins = np.histogram(values, bins=bins, weights=weights)
|
757 |
+
# cumsum = np.cumsum(hist)
|
758 |
+
# total = cumsum[-1]
|
759 |
+
|
760 |
+
# for i in range(n_bins - 1):
|
761 |
+
# if cumsum[i] / total > 0.9:
|
762 |
+
# useful_range = np.linspace(bins[0], bins[i + 1], n_bins)
|
763 |
+
# new_bins = np.append(useful_range, [bins[-1]])
|
764 |
+
# return np.histogram(values, bins=new_bins, weights=weights)
|
765 |
+
|
766 |
+
return hist, bins
|
767 |
+
|
768 |
+
|
769 |
+
def _parse_bins(bins):
|
770 |
+
try:
|
771 |
+
if isinstance(bins, str):
|
772 |
+
if "," in bins:
|
773 |
+
bins = [int(b) for b in bins.split(",")]
|
774 |
+
else:
|
775 |
+
bins = int(bins)
|
776 |
+
except ValueError:
|
777 |
+
pass
|
778 |
+
return bins
|
779 |
+
|
780 |
+
|
781 |
+
ALL_DOCUMENTS = "<ALL_DOCUMENTS>"
|
782 |
+
MAX_LABEL_LEN = 100
|
783 |
+
|
784 |
+
|
785 |
+
def bar_chart(hist, bins):
|
786 |
+
n = sum(hist)
|
787 |
+
max_h = max(hist)
|
788 |
+
out = []
|
789 |
+
for i, h in enumerate(hist):
|
790 |
+
h_size = 80 * h // max_h
|
791 |
+
dh_size = 80 * (h - hist[i - 1]) // max_h
|
792 |
+
if h_size == 0 or dh_size == 0:
|
793 |
+
continue
|
794 |
+
bar = "█" * h_size
|
795 |
+
out.append(f"{bins[i]:8.3f} {bar:80} ({h:5d}, {h / n:5.1%}) {bins[i+1]:8.3f}")
|
796 |
+
out.append(f"{bins[-1]:8.3f}")
|
797 |
+
return out
|
798 |
+
|
799 |
+
|
800 |
+
def display_stats(stats, key, weights=None, bins="auto", cumulative=False):
|
801 |
+
out = []
|
802 |
+
documents = stats[ALL_DOCUMENTS]
|
803 |
+
count = stats.get(key, 0)
|
804 |
+
r = count / documents if documents else 0
|
805 |
+
out.append(f"Field {key} saw {count} times ({r:5.1%})")
|
806 |
+
|
807 |
+
length = stats.get(key + ".length", None)
|
808 |
+
avg_length = length // count if length else 0
|
809 |
+
if length is not None:
|
810 |
+
out[-1] += f", average length is {length // count}"
|
811 |
+
|
812 |
+
values = stats.get(key + ".val", None)
|
813 |
+
if values:
|
814 |
+
out[-1] += f", histogram is: (bins={bins})"
|
815 |
+
if weights:
|
816 |
+
if weights not in stats:
|
817 |
+
logging.warn(f"Warning: weights column {weights} not found.")
|
818 |
+
if weights + ".val" not in stats:
|
819 |
+
logging.warn(
|
820 |
+
f"Warning: weights column {weights} is not a numeric column."
|
821 |
+
)
|
822 |
+
weights = stats.get(weights + ".val")
|
823 |
+
hist, bins = histogram(values, _parse_bins(bins), weights)
|
824 |
+
if cumulative:
|
825 |
+
hist = np.cumsum(hist)
|
826 |
+
out += bar_chart(hist, bins)
|
827 |
+
|
828 |
+
cnt = stats.get(key + ".cnt", None)
|
829 |
+
if avg_length < MAX_LABEL_LEN and cnt and max(cnt.values()) > 1:
|
830 |
+
cnt = sorted(cnt.items(), key=lambda kv: kv[1], reverse=True)
|
831 |
+
out[-1] += ", top 100 labels:"
|
832 |
+
for label, n in cnt[:100]:
|
833 |
+
if n < 5:
|
834 |
+
continue
|
835 |
+
out.append(f"{label:25}: {n:6} ({n / count:5.1%})")
|
836 |
+
|
837 |
+
return out
|
838 |
+
|
839 |
+
|
840 |
+
def describe(source, columns=None, weights=None, **kwargs):
|
841 |
+
"""Compute some statistics about a dataset.
|
842 |
+
|
843 |
+
Stats can be restricted to a subset of columns."""
|
844 |
+
MAX_HIST_SIZE = 100_000_000
|
845 |
+
MAX_CNT_SIZE = 1000
|
846 |
+
stats = {ALL_DOCUMENTS: 0}
|
847 |
+
needed = columns + [weights] if columns else None
|
848 |
+
|
849 |
+
for doc in read_jsons(source):
|
850 |
+
stats[ALL_DOCUMENTS] += 1
|
851 |
+
for k, v in doc.items():
|
852 |
+
if needed and k not in needed:
|
853 |
+
continue
|
854 |
+
stats[k] = get_or_set(stats, k, 0) + 1
|
855 |
+
if isinstance(v, str):
|
856 |
+
stats[k + ".length"] = get_or_set(stats, k + ".length", 0) + len(v)
|
857 |
+
if len(v) > MAX_LABEL_LEN: # Don't treat too long string as labels
|
858 |
+
continue
|
859 |
+
cnt = get_or_set(stats, k + ".cnt", collections.defaultdict(int))
|
860 |
+
if v in cnt or len(cnt) < MAX_CNT_SIZE:
|
861 |
+
cnt[v] += 1
|
862 |
+
elif type(v) in (int, float):
|
863 |
+
values = get_or_set(stats, k + ".val", [])
|
864 |
+
if len(values) < MAX_HIST_SIZE:
|
865 |
+
values.append(v)
|
866 |
+
elif type(v) is list and len(v) and type(v[0]) in (int, float):
|
867 |
+
values = get_or_set(stats, k + ".val", [])
|
868 |
+
if len(values) < MAX_HIST_SIZE:
|
869 |
+
values += v
|
870 |
+
elif type(v) is dict:
|
871 |
+
cnt = get_or_set(stats, k + ".cnt", collections.defaultdict(int))
|
872 |
+
for label in v:
|
873 |
+
if label in cnt or len(cnt) < MAX_CNT_SIZE:
|
874 |
+
cnt[label] += 1
|
875 |
+
|
876 |
+
documents = stats[ALL_DOCUMENTS]
|
877 |
+
yield f"Stats computed on {documents} documents:"
|
878 |
+
for k in stats:
|
879 |
+
if columns and k not in columns:
|
880 |
+
continue
|
881 |
+
if "." in k or k == ALL_DOCUMENTS:
|
882 |
+
continue
|
883 |
+
for line in display_stats(stats, k, weights=weights, **kwargs):
|
884 |
+
yield line
|
885 |
+
|
886 |
+
|
887 |
+
def shard(lines):
|
888 |
+
"""Shard a file in several smaller ones."""
|
889 |
+
# The creation of the shard is handle in a generic way. Do we need this ?
|
890 |
+
return lines
|
891 |
+
|
892 |
+
|
893 |
+
# *** Utils ***
|
894 |
+
|
895 |
+
|
896 |
+
def get_or_set(dictionary, key, default):
|
897 |
+
if key not in dictionary:
|
898 |
+
dictionary[key] = default
|
899 |
+
return dictionary[key]
|
900 |
+
|
901 |
+
|
902 |
+
class SimpleIO(Protocol):
|
903 |
+
"""A subset of methods from TextIO."""
|
904 |
+
|
905 |
+
def close(self) -> None:
|
906 |
+
...
|
907 |
+
|
908 |
+
def write(self, line: str) -> int:
|
909 |
+
...
|
910 |
+
|
911 |
+
def __enter__(self) -> "SimpleIO":
|
912 |
+
...
|
913 |
+
|
914 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
915 |
+
...
|
916 |
+
|
917 |
+
|
918 |
+
def open_read(filename: ReadableFileLike) -> Iterable[str]:
|
919 |
+
"""Open the given file, list of files or files matching the given glob and read lines.
|
920 |
+
|
921 |
+
`filename` is None or "-" -> reads from stdin
|
922 |
+
`filename` is a Path / str -> interprets filename as a glob and open files matching it
|
923 |
+
`filename` is a list -> opens sequentially all files from the list using `open_read`
|
924 |
+
`filename` is something else -> returns the object wrapped in a `nullcontext`
|
925 |
+
This allows to pass already openened files or iterables.
|
926 |
+
|
927 |
+
`open_read` will decompress gzip files, given they have ".gz" suffix.
|
928 |
+
"""
|
929 |
+
if filename is None:
|
930 |
+
return sys.stdin
|
931 |
+
|
932 |
+
if isinstance(filename, list):
|
933 |
+
assert isinstance(filename[0], Path)
|
934 |
+
if len(filename) == 0:
|
935 |
+
return []
|
936 |
+
if len(filename) > 1:
|
937 |
+
return _yield_from(filename)
|
938 |
+
filename = tp.cast(Path, filename[0])
|
939 |
+
if isinstance(filename, str):
|
940 |
+
if filename.startswith("http://") or filename.startswith("https://"):
|
941 |
+
return open_remote_file(filename)
|
942 |
+
|
943 |
+
filename = Path(filename)
|
944 |
+
if not isinstance(filename, Path):
|
945 |
+
# we might have received an iterable, return it unmodified.
|
946 |
+
return filename # type: ignore
|
947 |
+
|
948 |
+
# Expand glob patterns only when reading
|
949 |
+
files = [Path(f) for f in sorted(glob.glob(str(filename)))]
|
950 |
+
if len(files) > 1:
|
951 |
+
return _yield_from(files)
|
952 |
+
if len(files) == 1:
|
953 |
+
filename = files[0]
|
954 |
+
|
955 |
+
assert isinstance(filename, Path)
|
956 |
+
|
957 |
+
if filename.name.endswith("]"):
|
958 |
+
return block_reader(filename)
|
959 |
+
|
960 |
+
logging.getLogger(__name__).info(f"Opening {filename} with mode 'rt'")
|
961 |
+
if filename.suffix == ".gz":
|
962 |
+
file: TextIO = gzip.open(filename, "rt") # type: ignore
|
963 |
+
else:
|
964 |
+
file = open(filename, "rt")
|
965 |
+
|
966 |
+
return _close_when_exhausted(file)
|
967 |
+
|
968 |
+
|
969 |
+
def _close_when_exhausted(file: TextIO) -> Iterable[str]:
|
970 |
+
with file:
|
971 |
+
yield from file
|
972 |
+
|
973 |
+
|
974 |
+
def _yield_from(files: list) -> Iterable[str]:
|
975 |
+
for file in files:
|
976 |
+
yield from open_read(file)
|
977 |
+
|
978 |
+
|
979 |
+
def open_write(
|
980 |
+
filename: WritableFileLike, max_size: str = "4G"
|
981 |
+
) -> tp.ContextManager[TextIO]:
|
982 |
+
"""Open the given file, list of files or files matching the given glob.
|
983 |
+
|
984 |
+
The return value is a ContextManager meant to be used inside a `with` block:
|
985 |
+
```
|
986 |
+
with open_write("foo.txt") as o:
|
987 |
+
...
|
988 |
+
|
989 |
+
Write mode:
|
990 |
+
replaces "?" from filename by numbers ranging from 0 to 9, generatings files of size `max_size`.
|
991 |
+
If filename ends with ".gz", creates a blocked gzip file with random access.
|
992 |
+
"""
|
993 |
+
if filename is None:
|
994 |
+
return contextlib.nullcontext(sys.stdout)
|
995 |
+
|
996 |
+
if isinstance(filename, list):
|
997 |
+
if len(filename) > 1:
|
998 |
+
return MultiFile(filename, "w", max_size)
|
999 |
+
else:
|
1000 |
+
filename = tp.cast(Path, filename[0])
|
1001 |
+
if isinstance(filename, str):
|
1002 |
+
filename = Path(filename)
|
1003 |
+
if not isinstance(filename, Path):
|
1004 |
+
assert hasattr(filename, "write"), f"{filename} doesn't have a .write method."
|
1005 |
+
# We return a 'TextIO' even though we only check for `.write` method,
|
1006 |
+
# this works better with eg `print`.
|
1007 |
+
return contextlib.nullcontext(tp.cast(TextIO, filename))
|
1008 |
+
|
1009 |
+
mode = "wt"
|
1010 |
+
if "?" in filename.name:
|
1011 |
+
return sharded_file(filename, mode, max_size)
|
1012 |
+
|
1013 |
+
logging.getLogger(__name__).info(f"Opening {filename} with mode {mode}")
|
1014 |
+
# TODO: should we use another format ?
|
1015 |
+
if filename.suffix == ".gz":
|
1016 |
+
return BlockedGzipWriter(Path(filename), mode, block_size="64M")
|
1017 |
+
|
1018 |
+
return open(filename, "wt")
|
1019 |
+
|
1020 |
+
|
1021 |
+
def parse_size(size):
|
1022 |
+
unit_map = {"B": 1, "K": 1024, "M": 1024 ** 2, "G": 1024 ** 3}
|
1023 |
+
unit = size[-1].upper()
|
1024 |
+
assert (
|
1025 |
+
unit in unit_map
|
1026 |
+
), f"Unsupported size unit for {size}. Use one of: {unit_map.keys()}."
|
1027 |
+
return int(size[:-1]) * unit_map[unit]
|
1028 |
+
|
1029 |
+
|
1030 |
+
class MultiFile(SimpleIO):
|
1031 |
+
def __init__(self, files: Iterable[Path], mode="w", max_size="4G"):
|
1032 |
+
self.name = str(files)
|
1033 |
+
self.mode = mode
|
1034 |
+
self.files = iter(files)
|
1035 |
+
self.max_size = parse_size(max_size)
|
1036 |
+
self.current_handle: Optional[TextIO] = None
|
1037 |
+
self.current_block_size = 0
|
1038 |
+
self._open_next_handle() # Opening 1st handle allows to write directly.
|
1039 |
+
|
1040 |
+
def write(self, content) -> int:
|
1041 |
+
# Avoid splitting newlines to a new file.
|
1042 |
+
# use current_block_size since it's faster than `tell()`
|
1043 |
+
if content != "\n" and self.current_block_size >= self.max_size:
|
1044 |
+
self._open_next_handle()
|
1045 |
+
if self.current_handle is None:
|
1046 |
+
raise Exception("No more files to write to...")
|
1047 |
+
|
1048 |
+
written = self.current_handle.write(content)
|
1049 |
+
self.current_block_size += written
|
1050 |
+
return written
|
1051 |
+
|
1052 |
+
def _open_next_handle(self) -> bool:
|
1053 |
+
self.close()
|
1054 |
+
file = next(self.files, None)
|
1055 |
+
if file is None:
|
1056 |
+
return False
|
1057 |
+
|
1058 |
+
self.current_handle = open_write(file).__enter__()
|
1059 |
+
self.current_block_size = 0
|
1060 |
+
return True
|
1061 |
+
|
1062 |
+
def __enter__(self):
|
1063 |
+
return self
|
1064 |
+
|
1065 |
+
def __exit__(self, *exc_info):
|
1066 |
+
self.close()
|
1067 |
+
|
1068 |
+
@property
|
1069 |
+
def closed(self):
|
1070 |
+
return self.current_handle is None
|
1071 |
+
|
1072 |
+
def close(self):
|
1073 |
+
if self.current_handle is None:
|
1074 |
+
return
|
1075 |
+
|
1076 |
+
# log("Closing", self.current_handle.name, "with mode", self.current_handle.mode)
|
1077 |
+
self.current_handle.__exit__(None, None, None)
|
1078 |
+
self.current_handle = None
|
1079 |
+
|
1080 |
+
|
1081 |
+
# not sure it helps since connections are reseted anyway.
|
1082 |
+
_session = functools.lru_cache()(requests.Session)
|
1083 |
+
|
1084 |
+
|
1085 |
+
def request_get_content(url: str, n_retry: int = 3) -> bytes:
|
1086 |
+
"""Retrieve the binary content at url.
|
1087 |
+
|
1088 |
+
Retry on connection errors.
|
1089 |
+
"""
|
1090 |
+
t0 = time.time()
|
1091 |
+
logging.info(f"Starting download of {url}")
|
1092 |
+
for i in range(1, n_retry + 1):
|
1093 |
+
try:
|
1094 |
+
r = _session().get(url)
|
1095 |
+
r.raise_for_status()
|
1096 |
+
break
|
1097 |
+
except requests.exceptions.RequestException as e:
|
1098 |
+
# Sleep and try again on error, unless it's a 404.
|
1099 |
+
message = e.args[0] if isinstance(e.args[0], str) else ""
|
1100 |
+
if i == n_retry or "Client Error" in message:
|
1101 |
+
raise e
|
1102 |
+
warnings.warn(
|
1103 |
+
f"Swallowed error {e} while downloading {url} ({i} out of {n_retry})"
|
1104 |
+
)
|
1105 |
+
time.sleep(10 * 2 ** i)
|
1106 |
+
dl_time = time.time() - t0
|
1107 |
+
dl_speed = len(r.content) / dl_time / 1024
|
1108 |
+
logging.info(
|
1109 |
+
f"Downloaded {url} [{r.status_code}] took {dl_time:.0f}s ({dl_speed:.1f}kB/s)"
|
1110 |
+
)
|
1111 |
+
return r.content
|
1112 |
+
|
1113 |
+
|
1114 |
+
def open_remote_file(url: str, cache: Path = None) -> Iterable[str]:
|
1115 |
+
"""Download the files at the given url to memory and opens it as a file.
|
1116 |
+
Assumes that the file is small, and fetch it when this function is called.
|
1117 |
+
"""
|
1118 |
+
if cache and cache.exists():
|
1119 |
+
return open_read(cache)
|
1120 |
+
|
1121 |
+
# TODO: open the remote file in streaming mode.
|
1122 |
+
# The hard part is that we need to write the content on disk at the same time,
|
1123 |
+
# to implement disk caching.
|
1124 |
+
raw_bytes = request_get_content(url)
|
1125 |
+
content = io.BytesIO(raw_bytes)
|
1126 |
+
if url.endswith(".gz"):
|
1127 |
+
f: TextIO = gzip.open(content, mode="rt") # type: ignore
|
1128 |
+
else:
|
1129 |
+
f = io.TextIOWrapper(content)
|
1130 |
+
|
1131 |
+
if cache and not cache.exists():
|
1132 |
+
# The file might have been created while downloading/writing.
|
1133 |
+
tmp_cache = _tmp(cache)
|
1134 |
+
tmp_cache.write_bytes(raw_bytes)
|
1135 |
+
if not cache.exists():
|
1136 |
+
tmp_cache.replace(cache)
|
1137 |
+
else:
|
1138 |
+
tmp_cache.unlink()
|
1139 |
+
|
1140 |
+
return _close_when_exhausted(f)
|
1141 |
+
|
1142 |
+
|
1143 |
+
def sharded_file(file_pattern: Path, mode: str, max_size: str = "4G") -> MultiFile:
|
1144 |
+
folder, name = file_pattern.parent, file_pattern.name
|
1145 |
+
assert "?" in name, f"Can't expand give file_pattern: {file_pattern}"
|
1146 |
+
|
1147 |
+
n = name.count("?")
|
1148 |
+
assert 0 < n < 8
|
1149 |
+
assert "?" * n in name, f"The '?' need to be adjacents in {file_pattern}"
|
1150 |
+
assert "r" not in mode
|
1151 |
+
files = (folder / name.replace("?" * n, f"%0{n}d" % i) for i in range(10 ** n))
|
1152 |
+
|
1153 |
+
return MultiFile(files, mode, max_size)
|
1154 |
+
|
1155 |
+
|
1156 |
+
class SplitFile:
|
1157 |
+
def __init__(self, filename: Path, chunk: int, n_chunks: int, mode: str = "r"):
|
1158 |
+
assert mode == "r"
|
1159 |
+
size = os.path.getsize(filename)
|
1160 |
+
self.handle = open(filename, mode)
|
1161 |
+
start = chunk * size // n_chunks
|
1162 |
+
self.end: int = (chunk + 1) * size // n_chunks
|
1163 |
+
|
1164 |
+
if start > 0:
|
1165 |
+
self.handle.seek(start - 1)
|
1166 |
+
# Skip incomplete line. This avoid crashing when reading eg the middle
|
1167 |
+
# of a unicode char. `self.handle.buffer` is a binary file reader.
|
1168 |
+
self.handle.buffer.readline() # type: ignore
|
1169 |
+
|
1170 |
+
def __enter__(self):
|
1171 |
+
return self
|
1172 |
+
|
1173 |
+
def __iter__(self):
|
1174 |
+
while True:
|
1175 |
+
line = self.handle.readline()
|
1176 |
+
if not line:
|
1177 |
+
return
|
1178 |
+
|
1179 |
+
yield line
|
1180 |
+
if self.handle.tell() >= self.end:
|
1181 |
+
return
|
1182 |
+
|
1183 |
+
def readlines(self):
|
1184 |
+
return list(self.__iter__())
|
1185 |
+
|
1186 |
+
def close(self):
|
1187 |
+
self.handle.close()
|
1188 |
+
|
1189 |
+
def __exit__(self, *args):
|
1190 |
+
self.close()
|
1191 |
+
|
1192 |
+
|
1193 |
+
def get_block_readers(filename: Path, n_readers, mode="t"):
|
1194 |
+
index_filename = filename.parent / (filename.name + ".index")
|
1195 |
+
if not index_filename.exists():
|
1196 |
+
return [gzip.open(filename, "r" + mode)]
|
1197 |
+
index: List[int] = np.load(index_filename)
|
1198 |
+
n_chunks = len(index)
|
1199 |
+
chunk_per_reader = int(np.ceil(n_chunks / n_readers))
|
1200 |
+
n_readers = int(np.ceil(n_chunks / chunk_per_reader))
|
1201 |
+
|
1202 |
+
start = 0
|
1203 |
+
readers = []
|
1204 |
+
for i in range(n_readers):
|
1205 |
+
end = index[min((i + 1) * chunk_per_reader - 1, n_chunks - 1)]
|
1206 |
+
r = _blocked_gzip_reader(filename, start, end, mode)
|
1207 |
+
readers.append(r)
|
1208 |
+
start = end
|
1209 |
+
return readers
|
1210 |
+
|
1211 |
+
|
1212 |
+
def block_reader(filename: Path) -> Iterable[str]:
|
1213 |
+
root, pattern = str(filename)[:-1].split("[", 1)
|
1214 |
+
assert root.endswith(".gz"), "Can only read block of a .gz file for now."
|
1215 |
+
|
1216 |
+
ii, nn = pattern.strip().split("/")
|
1217 |
+
i, n_readers = int(ii), int(nn)
|
1218 |
+
|
1219 |
+
index_filename = root + ".index"
|
1220 |
+
assert os.path.exists(
|
1221 |
+
index_filename
|
1222 |
+
), f"Index {index_filename} not found for {filename}"
|
1223 |
+
index: List[int] = np.load(index_filename)
|
1224 |
+
n_chunks = len(index)
|
1225 |
+
chunk_per_reader = int(np.ceil(n_chunks / n_readers))
|
1226 |
+
n_readers = int(np.ceil(n_chunks / chunk_per_reader))
|
1227 |
+
# I'm not sure how to handle the case where there is less reader than expected.
|
1228 |
+
# Currently we return empty readers.
|
1229 |
+
|
1230 |
+
start = 0
|
1231 |
+
if i > 0:
|
1232 |
+
start = index[min((i - 1) * chunk_per_reader, n_chunks - 1)]
|
1233 |
+
end = index[min(i * chunk_per_reader, n_chunks - 1)]
|
1234 |
+
return _blocked_gzip_reader(root, start, end, mode="t")
|
1235 |
+
|
1236 |
+
|
1237 |
+
def _blocked_gzip_reader(filename, start, end, mode="t") -> Iterable[str]:
|
1238 |
+
handle = gzip.open(filename, "r" + mode)
|
1239 |
+
handle.seek(start)
|
1240 |
+
try:
|
1241 |
+
while handle.tell() < end:
|
1242 |
+
line = handle.readline()
|
1243 |
+
if not line:
|
1244 |
+
break
|
1245 |
+
yield line
|
1246 |
+
finally:
|
1247 |
+
handle.close()
|
1248 |
+
|
1249 |
+
|
1250 |
+
class BlockedGzipWriter(MultiFile):
|
1251 |
+
"""Writes a Gzip files which can be read by block.
|
1252 |
+
|
1253 |
+
Decreasing the block size may hurt compression, but provides more split points.
|
1254 |
+
"""
|
1255 |
+
|
1256 |
+
def __init__(self, filename: Path, mode: str, block_size: str = "256M"):
|
1257 |
+
assert "w" in mode
|
1258 |
+
self.filename = Path(filename)
|
1259 |
+
self.index: List[int] = []
|
1260 |
+
self.zipfile: Optional[gzip.GzipFile] = None
|
1261 |
+
super().__init__([], mode, block_size)
|
1262 |
+
|
1263 |
+
def _open_next_handle(self) -> bool:
|
1264 |
+
"""Here we never actually close/open handles,
|
1265 |
+
we just write the end of block sequence."""
|
1266 |
+
if not self.current_handle:
|
1267 |
+
mode = self.mode + "t"
|
1268 |
+
self.current_handle = tp.cast(TextIO, gzip.open(self.filename, mode))
|
1269 |
+
assert isinstance(self.current_handle.buffer, gzip.GzipFile)
|
1270 |
+
self.zipfile = self.current_handle.buffer
|
1271 |
+
return True
|
1272 |
+
|
1273 |
+
# Use Z_FULL_FLUSH to allow random access:
|
1274 |
+
# https://github.com/madler/zlib/blob/cacf7f1d4e3d44d871b605da3b647f07d718623f/zlib.h#L313
|
1275 |
+
self.current_handle.buffer.flush(zlib_mode=zlib.Z_FULL_FLUSH) # type: ignore
|
1276 |
+
self.index.append(self.current_handle.tell())
|
1277 |
+
self.current_block_size = 0
|
1278 |
+
return True
|
1279 |
+
|
1280 |
+
def flush(self):
|
1281 |
+
assert self.current_handle is not None
|
1282 |
+
self.current_handle.flush()
|
1283 |
+
|
1284 |
+
def close(self):
|
1285 |
+
if self.current_handle is None:
|
1286 |
+
return
|
1287 |
+
self.current_handle.flush()
|
1288 |
+
self.index.append(self.current_handle.tell())
|
1289 |
+
self.current_handle.close()
|
1290 |
+
self.current_handle = None
|
1291 |
+
index = np.array(self.index, dtype=np.uint64)
|
1292 |
+
with open(str(self.filename) + ".index", "wb") as o:
|
1293 |
+
np.save(o, index)
|
1294 |
+
|
1295 |
+
|
1296 |
+
def grouper(iterable, n):
|
1297 |
+
group = []
|
1298 |
+
for x in iterable:
|
1299 |
+
group.append(x)
|
1300 |
+
if len(group) == n:
|
1301 |
+
yield group
|
1302 |
+
group = []
|
1303 |
+
if group:
|
1304 |
+
yield group
|
1305 |
+
|
1306 |
+
|
1307 |
+
PROCESS = psutil.Process()
|
1308 |
+
|
1309 |
+
|
1310 |
+
def mem_footprint_gb(pid=None):
|
1311 |
+
rss = PROCESS.memory_info().rss
|
1312 |
+
return rss / 1_000_000_000
|
1313 |
+
|
1314 |
+
|
1315 |
+
def _tmp(output: Path) -> Path:
|
1316 |
+
suffix = "".join(output.suffixes)
|
1317 |
+
suffix = ".tmp" + suffix
|
1318 |
+
prefix = output.name[: -len(suffix)]
|
1319 |
+
_, tmp_path = tempfile.mkstemp(dir=output.parent, prefix=prefix, suffix=suffix)
|
1320 |
+
return Path(tmp_path)
|
1321 |
+
|
1322 |
+
|
1323 |
+
@functools.lru_cache()
|
1324 |
+
def _tmp_dir() -> Path:
|
1325 |
+
job_id = os.environ.get("SLURM_JOB_ID")
|
1326 |
+
if job_id:
|
1327 |
+
return Path("/scratch/slurm_tmpdir") / job_id
|
1328 |
+
|
1329 |
+
checkpoint = Path("/checkpoint") / os.environ.get("USER", "")
|
1330 |
+
if checkpoint.exists():
|
1331 |
+
tmp = checkpoint / "tmp"
|
1332 |
+
tmp.mkdir(exist_ok=True)
|
1333 |
+
return tmp
|
1334 |
+
|
1335 |
+
return Path("/tmp")
|
1336 |
+
|
1337 |
+
|
1338 |
+
if __name__ == "__main__":
|
1339 |
+
multiprocessing.set_start_method("fork")
|
1340 |
+
main(sys.argv[1:])
|
cc-multilingual-main/cc_net/cc_net/mine.py
ADDED
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
|
7 |
+
"""
|
8 |
+
Main script to download a CC dump, remove duplicates, split by language and
|
9 |
+
filter the documents.
|
10 |
+
|
11 |
+
The pipeline parameters are described in the `Config` class.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import hashlib
|
15 |
+
import json
|
16 |
+
import time
|
17 |
+
import warnings
|
18 |
+
from argparse import ArgumentParser
|
19 |
+
from collections import defaultdict
|
20 |
+
from itertools import repeat
|
21 |
+
from pathlib import Path
|
22 |
+
from typing import Any, Dict, Iterable, List, NamedTuple, Optional, Sequence, Tuple
|
23 |
+
|
24 |
+
import func_argparse
|
25 |
+
|
26 |
+
# Local scripts
|
27 |
+
from cc_net import dedup, execution, jsonql, minify, perplexity, process_wet_file
|
28 |
+
from cc_net import regroup as regroup_module
|
29 |
+
from cc_net import split_by_lang
|
30 |
+
from cc_net.execution import Executor
|
31 |
+
|
32 |
+
# Constant
|
33 |
+
FILE_DIR = Path(__file__).parent
|
34 |
+
CUTOFF_CSV = FILE_DIR / "data" / "cutoff.csv"
|
35 |
+
|
36 |
+
DEFAULT_PIPELINE = [
|
37 |
+
# "dedup",
|
38 |
+
"lid",
|
39 |
+
"keep_lang",
|
40 |
+
"sp",
|
41 |
+
"lm",
|
42 |
+
"pp_bucket",
|
43 |
+
"drop",
|
44 |
+
"split_by_lang",
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
class Config(NamedTuple):
|
49 |
+
"""
|
50 |
+
Mine Common Crawl with the given settings.
|
51 |
+
|
52 |
+
config_name
|
53 |
+
dump: CC dump id
|
54 |
+
output_dir: working directory
|
55 |
+
mined_dir: name of the destination folder, full path will be {ouput_dir}/{mined_dir}/{dump_id}
|
56 |
+
execution: chose how to parallelize the execution
|
57 |
+
num_shards: number of shards to split the dump
|
58 |
+
num_segments_per_shard: allow to download a small portion of CC (eg for tests)
|
59 |
+
min_len: remove documents shorter than this (in chars)
|
60 |
+
hashes_in_mem: number of shards hashes to use for dedup
|
61 |
+
lang_whitelist: only treat those languages
|
62 |
+
lang_blacklist: ignore those languages
|
63 |
+
lang_threshold: remove docs whose top language score is lower than this
|
64 |
+
keep_bucket: keep only those perplexity bucket chose from (head, middle, tail, all)
|
65 |
+
lm_dir: folder containing LMs
|
66 |
+
lm_languages: only use LMs for the following languages
|
67 |
+
cutoff: cutoff file to use for split in head/middle/tail
|
68 |
+
mine_num_processes: number of processes to use for mining
|
69 |
+
target_size: size of finals files produce during `regroup` stage
|
70 |
+
cleanup_after_regroup: delete intermediary files after regroup
|
71 |
+
task_parallelism: max number of task to run in parallel
|
72 |
+
pipeline: restricts the mining pipeline to the given steps. Order is important !
|
73 |
+
experiments: (HACK) enable specific experiments in the code
|
74 |
+
"""
|
75 |
+
|
76 |
+
config_name: str = "base"
|
77 |
+
dump: str = "2017-51"
|
78 |
+
output_dir: Path = Path("data")
|
79 |
+
mined_dir: str = "mined"
|
80 |
+
execution: str = "auto"
|
81 |
+
num_shards: int = 1600
|
82 |
+
num_segments_per_shard: int = -1
|
83 |
+
metadata: Optional[str] = None
|
84 |
+
min_len: int = 300
|
85 |
+
hash_in_mem: int = 50
|
86 |
+
lang_whitelist: Sequence[str] = ['hi']
|
87 |
+
lang_blacklist: Sequence[str] = []
|
88 |
+
lang_threshold: float = 0.5
|
89 |
+
keep_bucket: Sequence[str] = []
|
90 |
+
lm_dir: Path = Path("data/lm_sp")
|
91 |
+
cutoff: Path = CUTOFF_CSV
|
92 |
+
lm_languages: Optional[Sequence[str]] = None
|
93 |
+
mine_num_processes: int = 16
|
94 |
+
target_size: str = "4G"
|
95 |
+
cleanup_after_regroup: bool = False
|
96 |
+
task_parallelism: int = -1
|
97 |
+
pipeline: Sequence[str] = DEFAULT_PIPELINE
|
98 |
+
experiments: Sequence[str] = []
|
99 |
+
cache_dir: Optional[Path] = None
|
100 |
+
|
101 |
+
def get_executor(
|
102 |
+
self, name: str, timeout_hour: int = 1, mem_gb: int = 1, cpus: int = 1
|
103 |
+
) -> Executor:
|
104 |
+
name = "_".join((name, self.config_name, *self.experiments))
|
105 |
+
return execution.get_executor(
|
106 |
+
name,
|
107 |
+
self.output_dir / "logs",
|
108 |
+
self.execution,
|
109 |
+
timeout_hour=timeout_hour,
|
110 |
+
mem_gb=mem_gb,
|
111 |
+
cpus=cpus,
|
112 |
+
task_parallelism=self.task_parallelism,
|
113 |
+
)
|
114 |
+
|
115 |
+
def get_cc_shard(self, shard: int) -> process_wet_file.CCShardReader:
|
116 |
+
dump_cache: Optional[Path] = None
|
117 |
+
if self.cache_dir:
|
118 |
+
self.cache_dir.mkdir(exist_ok=True)
|
119 |
+
dump_cache = self.cache_dir / self.dump
|
120 |
+
dump_cache.mkdir(exist_ok=True)
|
121 |
+
|
122 |
+
return process_wet_file.CCShardReader(
|
123 |
+
self.dump,
|
124 |
+
shard=shard,
|
125 |
+
num_shards=self.num_shards,
|
126 |
+
num_segments_per_shard=self.num_segments_per_shard,
|
127 |
+
min_len=self.min_len,
|
128 |
+
cache_dir=dump_cache,
|
129 |
+
)
|
130 |
+
|
131 |
+
@classmethod
|
132 |
+
def from_json(cls, json_file: Path) -> "Config":
|
133 |
+
raw_lines = json_file.read_text().splitlines()
|
134 |
+
raw_lines = [l for l in raw_lines if not l.strip().startswith("//")]
|
135 |
+
json_config = json.loads("".join(raw_lines))
|
136 |
+
path_keys = ["cache_dir", "lm_dir", "output_dir"]
|
137 |
+
for key in path_keys:
|
138 |
+
if key in json_config:
|
139 |
+
json_config[key] = Path(json_config[key])
|
140 |
+
return Config(**json_config)
|
141 |
+
|
142 |
+
@property
|
143 |
+
def will_split(self) -> bool:
|
144 |
+
return "split_by_lang" in self.pipeline or "split_by_segment" in self.pipeline
|
145 |
+
|
146 |
+
def get_lm_languages(self) -> Sequence[str]:
|
147 |
+
if self.lm_languages is not None:
|
148 |
+
return self.lm_languages
|
149 |
+
|
150 |
+
if self.lang_whitelist:
|
151 |
+
return self.lang_whitelist
|
152 |
+
|
153 |
+
languages = [m.name.split(".")[0] for m in self.lm_dir.glob("*.arpa.bin")]
|
154 |
+
if self.lang_blacklist:
|
155 |
+
languages = [l for l in languages if l not in self.lang_blacklist]
|
156 |
+
return languages
|
157 |
+
|
158 |
+
def get_mined_dir(self, regroup: bool = False) -> Path:
|
159 |
+
if self.will_split and not regroup:
|
160 |
+
return self.output_dir / f"{self.mined_dir}_split" / self.dump
|
161 |
+
return self.output_dir / self.mined_dir / self.dump
|
162 |
+
|
163 |
+
|
164 |
+
BASE_CONFIG = Config()
|
165 |
+
|
166 |
+
BYLANG_CONFIG = Config(
|
167 |
+
config_name="by_lang",
|
168 |
+
mined_dir="mined_by_lang",
|
169 |
+
pipeline=list(BASE_CONFIG.pipeline[:-1]) + ["split_by_lang"],
|
170 |
+
)
|
171 |
+
|
172 |
+
REPRODUCE_CONFIG = Config(
|
173 |
+
config_name="reproduce",
|
174 |
+
dump="2019-09",
|
175 |
+
mined_dir="reproduce",
|
176 |
+
pipeline=["fetch_metadata", "keep_lang", "keep_bucket", "split_by_lang"],
|
177 |
+
metadata="https://dl.fbaipublicfiles.com/cc_net/1.0.0",
|
178 |
+
# Optional filtering:
|
179 |
+
# It won't change much the execution speed, but decreases the disk requirement.
|
180 |
+
# Restrict languages
|
181 |
+
lang_whitelist=["fr"],
|
182 |
+
# Restrict perplexity buckets
|
183 |
+
# Top languages have been split in perplexity buckets according
|
184 |
+
# to a Wikipedia trained LM.
|
185 |
+
# The buckets from low perplexity (good) to high (bad) are:
|
186 |
+
# ["head", "middle", "tail"]
|
187 |
+
# Languages without a LM have only one bucket "all".
|
188 |
+
# It won't change much the execution speed, but decreases the disk requirement.
|
189 |
+
keep_bucket=["head", "all"],
|
190 |
+
mine_num_processes=1,
|
191 |
+
)
|
192 |
+
|
193 |
+
TEST_CONFIG = BASE_CONFIG._replace(
|
194 |
+
config_name="test",
|
195 |
+
dump="2019-09",
|
196 |
+
output_dir=Path("test_data"),
|
197 |
+
execution="local",
|
198 |
+
num_shards=4,
|
199 |
+
num_segments_per_shard=1,
|
200 |
+
hash_in_mem=2,
|
201 |
+
mine_num_processes=2,
|
202 |
+
lang_whitelist=["de", "it", "fr"],
|
203 |
+
target_size="32M",
|
204 |
+
cleanup_after_regroup=False,
|
205 |
+
cache_dir=Path("test_data/wet_cache"),
|
206 |
+
)
|
207 |
+
|
208 |
+
PREDEF_CONFIGS = {
|
209 |
+
"base": BASE_CONFIG,
|
210 |
+
"by_lang": BYLANG_CONFIG,
|
211 |
+
"test": TEST_CONFIG,
|
212 |
+
"test_slurm": TEST_CONFIG._replace(execution="slurm,partition=dev"),
|
213 |
+
"debug": TEST_CONFIG._replace(config_name="debug", mine_num_processes=0),
|
214 |
+
"reproduce": REPRODUCE_CONFIG,
|
215 |
+
"augment": BASE_CONFIG._replace(
|
216 |
+
config_name="augment", dump="2019-13", lang_blacklist=["en"]
|
217 |
+
),
|
218 |
+
}
|
219 |
+
|
220 |
+
|
221 |
+
def tmp(output: Path) -> Path:
|
222 |
+
return output.parent / (output.stem + ".tmp" + output.suffix)
|
223 |
+
|
224 |
+
|
225 |
+
def finalize(tmp_output: Path, output: Path) -> None:
|
226 |
+
if not tmp_output.exists():
|
227 |
+
warnings.warn(f"Targeted tmp output {tmp_output} doesn't exists.")
|
228 |
+
return
|
229 |
+
|
230 |
+
tmp_index = tmp_output.parent / (tmp_output.name + ".index")
|
231 |
+
tmp_output.rename(output)
|
232 |
+
|
233 |
+
if tmp_index.exists():
|
234 |
+
tmp_index.rename(output.parent / (output.name + ".index"))
|
235 |
+
|
236 |
+
|
237 |
+
def _transpose(iterable: Sequence[Tuple[Any, ...]], n=-1) -> Tuple[List, ...]:
|
238 |
+
if n < 0:
|
239 |
+
n = len(iterable[0])
|
240 |
+
columns: tuple = tuple([] for _ in range(n))
|
241 |
+
for row in iterable:
|
242 |
+
assert len(row) == n, f"Found tuple of len({len(row)}, expected {n}: {row}"
|
243 |
+
for i in range(n):
|
244 |
+
columns[i].append(row[i])
|
245 |
+
|
246 |
+
return columns
|
247 |
+
|
248 |
+
|
249 |
+
def hashes(conf: Config) -> List[Path]:
|
250 |
+
"""Computes hashes for each shard."""
|
251 |
+
|
252 |
+
hashes_dir = conf.output_dir / "hashes" / conf.dump
|
253 |
+
outputs = [hashes_dir / f"{shard:04d}.bin" for shard in range(conf.num_shards)]
|
254 |
+
missing_outputs = [(shard, o) for shard, o in enumerate(outputs) if not o.exists()]
|
255 |
+
|
256 |
+
if not missing_outputs:
|
257 |
+
return outputs
|
258 |
+
|
259 |
+
hashes_dir.mkdir(parents=True, exist_ok=True)
|
260 |
+
# With FlatHashSet we need ~2Gb of RAM / shard, but we need to account for
|
261 |
+
# overhead due to how the dynamic allocation works.
|
262 |
+
ex = conf.get_executor(f"hashes_{conf.dump}", mem_gb=4, timeout_hour=6, cpus=2)
|
263 |
+
ex(_hashes_shard, repeat(conf), *_transpose(missing_outputs))
|
264 |
+
|
265 |
+
# Wait a bit so that files appears on the disk.
|
266 |
+
time.sleep(20)
|
267 |
+
assert all(o.exists() for o in outputs)
|
268 |
+
return outputs
|
269 |
+
|
270 |
+
|
271 |
+
def _hashes_shard(conf: Config, shard: int, output: Path):
|
272 |
+
tmp_output = tmp(output)
|
273 |
+
jsonql.run_pipes(
|
274 |
+
dedup.HashesCollector(field="raw_content", output=tmp_output),
|
275 |
+
inputs=conf.get_cc_shard(shard),
|
276 |
+
)
|
277 |
+
finalize(tmp_output, output)
|
278 |
+
return f"Hashed {output}"
|
279 |
+
|
280 |
+
|
281 |
+
HASHES_IN_MEM = [0, 1, 2, 5, 10, 20, 50, 100, 200, 400]
|
282 |
+
|
283 |
+
|
284 |
+
def mine(conf: Config) -> List[Path]:
|
285 |
+
"""Remove dups, run LID and LMs, and split by lang and quality."""
|
286 |
+
mined_dir = conf.get_mined_dir()
|
287 |
+
if conf.will_split:
|
288 |
+
# Give a directories when splitting
|
289 |
+
outputs = [mined_dir / f"{shard:04d}" for shard in range(conf.num_shards)]
|
290 |
+
else:
|
291 |
+
# Files otherwise
|
292 |
+
outputs = [
|
293 |
+
mined_dir / f"{shard:04d}.json.gz" for shard in range(conf.num_shards)
|
294 |
+
]
|
295 |
+
|
296 |
+
if "mini_again" in conf.experiments:
|
297 |
+
mined_dir = conf.output_dir / "mini_again" / conf.dump
|
298 |
+
outputs = [mined_dir / f"{shard:04d}" for shard in range(conf.num_shards)]
|
299 |
+
|
300 |
+
# TODO: try to reduce this / make it a function of "hash_in_mem" / num_langs
|
301 |
+
mem_gb = 60 + 1 * conf.hash_in_mem
|
302 |
+
timeout_hour = 5
|
303 |
+
if "hashes" in conf.experiments:
|
304 |
+
# HACK: used for generating paper figures
|
305 |
+
outputs = [
|
306 |
+
conf.output_dir / f"hashes_exp/{conf.dump}_0000_dedup{h:03d}.json.gz"
|
307 |
+
for h in HASHES_IN_MEM
|
308 |
+
]
|
309 |
+
mem_gb = int(max(HASHES_IN_MEM) * 1.2)
|
310 |
+
timeout_hour = 8
|
311 |
+
|
312 |
+
missing_outputs = [(shard, o) for shard, o in enumerate(outputs) if not o.exists()]
|
313 |
+
|
314 |
+
if "mini_again" in conf.experiments:
|
315 |
+
missing_outputs = [
|
316 |
+
(shard, o)
|
317 |
+
for shard, o in enumerate(outputs)
|
318 |
+
if shard in [5, 139] and not o.exists()
|
319 |
+
]
|
320 |
+
|
321 |
+
if not missing_outputs:
|
322 |
+
return outputs
|
323 |
+
|
324 |
+
mined_dir.mkdir(parents=True, exist_ok=True)
|
325 |
+
ex = conf.get_executor(
|
326 |
+
f"mine_{conf.dump}",
|
327 |
+
mem_gb=mem_gb,
|
328 |
+
timeout_hour=timeout_hour,
|
329 |
+
cpus=conf.mine_num_processes + 1,
|
330 |
+
)
|
331 |
+
|
332 |
+
# Compute hashes firsts.
|
333 |
+
if "dedup" in conf.pipeline:
|
334 |
+
hashes_groups = list(jsonql.grouper(hashes(conf), conf.hash_in_mem))
|
335 |
+
hashes_files: Iterable[List[Path]] = [
|
336 |
+
hashes_groups[shard // conf.hash_in_mem] for shard, o in missing_outputs
|
337 |
+
]
|
338 |
+
else:
|
339 |
+
hashes_files = repeat([])
|
340 |
+
|
341 |
+
ex(_mine_shard, repeat(conf), hashes_files, *_transpose(missing_outputs))
|
342 |
+
|
343 |
+
assert all(o.exists() for o in outputs)
|
344 |
+
return outputs
|
345 |
+
|
346 |
+
|
347 |
+
def _get_segment(tmp_output: Path, doc: dict) -> str:
|
348 |
+
segment: str = doc["cc_segment"].split("/")[-1]
|
349 |
+
return str(tmp_output / segment.replace(".warc.wet.gz", ".json.gz"))
|
350 |
+
|
351 |
+
|
352 |
+
def _mine_shard(conf: Config, hashes: List[Path], shard: int, output: Path) -> str:
|
353 |
+
assert conf.pipeline
|
354 |
+
tmp_output = tmp(output)
|
355 |
+
if "hashes" in conf.experiments:
|
356 |
+
# HACK: used for generating paper figures
|
357 |
+
hashes_in_mem = shard
|
358 |
+
hashes = hashes[: HASHES_IN_MEM[hashes_in_mem]]
|
359 |
+
shard = 0
|
360 |
+
cc_shard = conf.get_cc_shard(shard)
|
361 |
+
|
362 |
+
steps: Dict[str, Optional[jsonql.Transformer]] = {}
|
363 |
+
lang_id = Path("bin") / "lid.bin"
|
364 |
+
steps["lid_before_dedup"] = split_by_lang.Classifier(
|
365 |
+
model=lang_id, field="raw_content", out_field="lid_before_dedup", top=5
|
366 |
+
)
|
367 |
+
steps["dedup"] = dedup.DuplicatesRemover(field="raw_content", hashes_files=hashes)
|
368 |
+
|
369 |
+
steps["lid"] = split_by_lang.Classifier(
|
370 |
+
model=lang_id,
|
371 |
+
field="raw_content",
|
372 |
+
out_field="language",
|
373 |
+
top=1,
|
374 |
+
threshold=conf.lang_threshold,
|
375 |
+
)
|
376 |
+
steps["lid_after_dedup"] = split_by_lang.Classifier(
|
377 |
+
model=lang_id, field="raw_content", out_field="lid_after_dedup", top=5
|
378 |
+
)
|
379 |
+
|
380 |
+
if conf.lang_blacklist:
|
381 |
+
steps["keep_lang"] = jsonql.where(
|
382 |
+
[lambda doc: doc.get("language") not in set(conf.lang_blacklist)]
|
383 |
+
)
|
384 |
+
elif conf.lang_whitelist:
|
385 |
+
steps["keep_lang"] = jsonql.where(
|
386 |
+
[lambda doc: doc.get("language") in set(conf.lang_whitelist)]
|
387 |
+
)
|
388 |
+
else:
|
389 |
+
steps["keep_lang"] = None
|
390 |
+
|
391 |
+
tok_field = "tokenized"
|
392 |
+
steps["sp"] = perplexity.MultiSentencePiece(
|
393 |
+
{l: conf.lm_dir / f"{l}.sp.model" for l in conf.get_lm_languages()},
|
394 |
+
field="raw_content",
|
395 |
+
output_field=tok_field,
|
396 |
+
normalize=True,
|
397 |
+
)
|
398 |
+
steps["lm"] = perplexity.DocLM(
|
399 |
+
{l: conf.lm_dir / f"{l}.arpa.bin" for l in conf.get_lm_languages()},
|
400 |
+
field=tok_field,
|
401 |
+
output_field="perplexity",
|
402 |
+
normalize=False, # Normalization is done before SentencePiece
|
403 |
+
# load_method=kenlm.LoadMethod.PARALLEL_READ,
|
404 |
+
)
|
405 |
+
steps["pp_bucket"] = perplexity.PerplexityBucket(CUTOFF_CSV)
|
406 |
+
steps["drop"] = perplexity.DropKeys(tok_field)
|
407 |
+
|
408 |
+
steps["keep_bucket"] = None
|
409 |
+
if conf.keep_bucket:
|
410 |
+
steps["keep_bucket"] = jsonql.where(
|
411 |
+
[lambda doc: doc.get("bucket", "all") in conf.keep_bucket]
|
412 |
+
)
|
413 |
+
|
414 |
+
if "fetch_metadata" in conf.pipeline:
|
415 |
+
# TODO: better default
|
416 |
+
assert conf.metadata is not None
|
417 |
+
steps["fetch_metadata"] = minify.MetadataFetcher(
|
418 |
+
f"{conf.metadata}/{conf.dump}/"
|
419 |
+
)
|
420 |
+
|
421 |
+
steps["minify"] = minify.Minifier()
|
422 |
+
|
423 |
+
pattern = str(tmp_output / "{language}_{bucket}.json.gz")
|
424 |
+
steps["split_by_lang"] = jsonql.split(pattern=str(pattern), mkdir=True)
|
425 |
+
|
426 |
+
steps["split_by_segment"] = jsonql.split(
|
427 |
+
split_fn=lambda doc: _get_segment(tmp_output, doc), mkdir=True
|
428 |
+
)
|
429 |
+
|
430 |
+
pipeline = filter(None, (steps[s] for s in conf.pipeline))
|
431 |
+
|
432 |
+
jsonql.run_pipes(
|
433 |
+
*pipeline,
|
434 |
+
inputs=cc_shard,
|
435 |
+
processes=conf.mine_num_processes,
|
436 |
+
chunksize=100,
|
437 |
+
# The splitter takes care of writing to files.
|
438 |
+
output=tmp_output if not conf.will_split else None,
|
439 |
+
)
|
440 |
+
finalize(tmp_output, output)
|
441 |
+
return f"Mined {output}"
|
442 |
+
|
443 |
+
|
444 |
+
def regroup(conf: Config, all_dirs: List[Path]) -> Path:
|
445 |
+
"""Reshards each language/quality after 'mine'."""
|
446 |
+
regroup_dir = conf.get_mined_dir(regroup=True)
|
447 |
+
assert all_dirs
|
448 |
+
all_files = [f for d in all_dirs for f in d.glob("*.json.gz")]
|
449 |
+
if not all_files:
|
450 |
+
print(f"No .json.gz file found in {all_dirs[0]}")
|
451 |
+
|
452 |
+
splits: Dict[str, List[Path]] = defaultdict(list)
|
453 |
+
for f in all_files:
|
454 |
+
split = f.name.split(".")[0]
|
455 |
+
splits[split].append(f)
|
456 |
+
|
457 |
+
print(f"Identified {len(all_files)} files to regroup from {len(splits)} splits.")
|
458 |
+
inputs: List[List[Path]] = []
|
459 |
+
outputs: List[Path] = []
|
460 |
+
target_size = jsonql.parse_size(conf.target_size)
|
461 |
+
for split, files in splits.items():
|
462 |
+
cuts = list(regroup_module.determine_groups(files, target_size=target_size))
|
463 |
+
if not cuts:
|
464 |
+
continue
|
465 |
+
|
466 |
+
pattern = f"{split}_????.json.gz"
|
467 |
+
existing_outputs = sorted(regroup_dir.glob(pattern))
|
468 |
+
|
469 |
+
if not conf.cleanup_after_regroup:
|
470 |
+
# We still have all the inputs so it is safe to overwrite existing outputs.
|
471 |
+
assert len(existing_outputs) <= len(cuts)
|
472 |
+
existing_outputs = []
|
473 |
+
|
474 |
+
if len(existing_outputs) > 0 and len(cuts) == 1:
|
475 |
+
# append to existing file if size allows it.
|
476 |
+
new_size = (
|
477 |
+
sum(f.stat().st_size for f in cuts[0])
|
478 |
+
+ existing_outputs[-1].stat().st_size
|
479 |
+
)
|
480 |
+
if new_size < target_size:
|
481 |
+
print(f"Will append {cuts[0]} to {existing_outputs[-1]}")
|
482 |
+
cuts[0].insert(0, existing_outputs.pop(-1))
|
483 |
+
|
484 |
+
n_existing = len(existing_outputs)
|
485 |
+
for i, cut in enumerate(cuts):
|
486 |
+
# avoid overwriting existing files.
|
487 |
+
j = i + n_existing
|
488 |
+
output = regroup_dir / f"{split}_{j:04}.json.gz"
|
489 |
+
inputs.append(cut)
|
490 |
+
outputs.append(output)
|
491 |
+
print(
|
492 |
+
str(regroup_dir / pattern),
|
493 |
+
"->",
|
494 |
+
len(cuts),
|
495 |
+
f"shards ({n_existing} already there).",
|
496 |
+
)
|
497 |
+
|
498 |
+
ex = conf.get_executor(f"regroup_{conf.dump}", mem_gb=1, timeout_hour=12, cpus=2)
|
499 |
+
ex(_regroup, repeat(conf), inputs, outputs)
|
500 |
+
|
501 |
+
return regroup_dir
|
502 |
+
|
503 |
+
|
504 |
+
def _regroup(conf: Config, inputs: List[Path], output: Path) -> str:
|
505 |
+
output.parent.mkdir(parents=True, exist_ok=True)
|
506 |
+
regroup_module.fast_reshard(
|
507 |
+
inputs, output, tmp=tmp(output), rm_original=conf.cleanup_after_regroup
|
508 |
+
)
|
509 |
+
return f"Regrouped {output}"
|
510 |
+
|
511 |
+
|
512 |
+
def move_segments(conf: Config, all_dirs: Sequence[Path]) -> Path:
|
513 |
+
"""Reshards each language/quality after 'mine'."""
|
514 |
+
# check that mining is over.
|
515 |
+
regroup_dir = conf.get_mined_dir(regroup=True)
|
516 |
+
assert all_dirs, "Received no dirs to move"
|
517 |
+
assert all(
|
518 |
+
d.is_dir() for d in all_dirs
|
519 |
+
), f"move_segments was expecting dirs received files: {all_dirs[:10]}..."
|
520 |
+
|
521 |
+
regroup_dir.parent.mkdir(exist_ok=True)
|
522 |
+
regroup_dir.mkdir(exist_ok=True)
|
523 |
+
ex = conf.get_executor(f"moveseg_{conf.dump}", mem_gb=1, timeout_hour=1, cpus=2)
|
524 |
+
|
525 |
+
def _move_segments(subdir: Path, regroup_dir: Path) -> str:
|
526 |
+
n = 0
|
527 |
+
for f in subdir.iterdir():
|
528 |
+
if not f.is_file() or f.is_symlink():
|
529 |
+
continue
|
530 |
+
n += f.name.endswith(".json.gz")
|
531 |
+
new_name = regroup_dir / f.name
|
532 |
+
target = new_name.resolve()
|
533 |
+
assert f.resolve() != target
|
534 |
+
# this make the job idempotent.
|
535 |
+
f.rename(new_name)
|
536 |
+
f.symlink_to(target)
|
537 |
+
|
538 |
+
if n == 0:
|
539 |
+
return ""
|
540 |
+
|
541 |
+
return f"Moved {n} .json.gz files from {subdir} to {regroup_dir}"
|
542 |
+
|
543 |
+
ex(_move_segments, all_dirs, repeat(regroup_dir))
|
544 |
+
print(f"Results are in {regroup_dir}")
|
545 |
+
return regroup_dir
|
546 |
+
|
547 |
+
|
548 |
+
def _validate_test(conf: Config, output_dir: Path, generate: bool = False):
|
549 |
+
stats: Dict[str, dict] = {}
|
550 |
+
for file in sorted(output_dir.glob("*.json.gz")):
|
551 |
+
fname = "/".join((file.parent.name, file.name))
|
552 |
+
# The order of documents is not guaranteed inside a shard,
|
553 |
+
lines = sorted(jsonql.open_read(file))
|
554 |
+
content = "\n".join(lines)
|
555 |
+
size = len(content)
|
556 |
+
checksum = hashlib.sha1(bytes(content, encoding="utf-8")).hexdigest()
|
557 |
+
# first_document = json.loads(lines[0])
|
558 |
+
stats[fname] = {"size": size, "checksum": checksum}
|
559 |
+
|
560 |
+
def dump(x):
|
561 |
+
return json.dumps(x, indent=2, ensure_ascii=False)
|
562 |
+
|
563 |
+
print("*** Stats ***")
|
564 |
+
stats_raw = dump(stats)
|
565 |
+
stats_file = FILE_DIR / "data" / "test_stats.json"
|
566 |
+
if generate:
|
567 |
+
print("Saving stats to", stats_file)
|
568 |
+
stats_file.write_text(stats_raw)
|
569 |
+
return
|
570 |
+
|
571 |
+
expected_stats: Dict[str, dict] = {}
|
572 |
+
if stats_file.exists():
|
573 |
+
expected_stats = json.loads(stats_file.read_text())
|
574 |
+
|
575 |
+
if expected_stats == stats:
|
576 |
+
print("Everything looks good !")
|
577 |
+
return
|
578 |
+
|
579 |
+
stats_file.with_suffix(".actual.json").write_text(stats_raw)
|
580 |
+
print("*** Expected Stats ***")
|
581 |
+
print(dump(expected_stats))
|
582 |
+
|
583 |
+
print("*** Diff ***")
|
584 |
+
for fname in sorted(expected_stats.keys()):
|
585 |
+
print(fname)
|
586 |
+
assert fname in expected_stats, "missing file " + fname
|
587 |
+
if expected_stats[fname]["size"] != stats[fname]["size"]:
|
588 |
+
print(
|
589 |
+
" - Expected size",
|
590 |
+
expected_stats[fname]["size"],
|
591 |
+
", size",
|
592 |
+
stats[fname]["size"],
|
593 |
+
)
|
594 |
+
if expected_stats[fname]["checksum"] != stats[fname]["checksum"]:
|
595 |
+
print(
|
596 |
+
" - Expected checksum",
|
597 |
+
expected_stats[fname]["checksum"],
|
598 |
+
", checksum",
|
599 |
+
stats[fname]["checksum"],
|
600 |
+
)
|
601 |
+
|
602 |
+
|
603 |
+
def get_main_parser() -> ArgumentParser:
|
604 |
+
# Generates the 'main' parser by patching a 'Config' parser
|
605 |
+
p = func_argparse.func_argparser(Config)
|
606 |
+
|
607 |
+
# Override defaults value to None, so we know what was set by the user.
|
608 |
+
# Note that it will keep the original default values in the help message.
|
609 |
+
p.set_defaults(**{f: None for f in Config._fields})
|
610 |
+
p.add_argument("--config", type=str, default="base")
|
611 |
+
p.set_defaults(__command=main)
|
612 |
+
return p
|
613 |
+
|
614 |
+
|
615 |
+
def main(config: str = "base", **config_as_dict: Any) -> None:
|
616 |
+
# Use the given 'config' as default value.
|
617 |
+
config_base = config
|
618 |
+
if config_base in PREDEF_CONFIGS:
|
619 |
+
conf = PREDEF_CONFIGS[config_base]
|
620 |
+
elif Path(config_base).exists():
|
621 |
+
conf = Config.from_json(Path(config_base))
|
622 |
+
else:
|
623 |
+
raise ValueError(
|
624 |
+
f"Invalid value {config_base} for --config. "
|
625 |
+
f"Choose from ({', '.join(PREDEF_CONFIGS)}) or give an existing .json file."
|
626 |
+
)
|
627 |
+
conf = conf._replace(**{k: v for (k, v) in config_as_dict.items() if v is not None})
|
628 |
+
|
629 |
+
print(f"Will run cc_net.mine.main with the following config:", conf)
|
630 |
+
|
631 |
+
all_files = mine(conf)
|
632 |
+
if conf.will_split:
|
633 |
+
assert all_files
|
634 |
+
assert all(d.is_dir() for d in all_files)
|
635 |
+
all_dirs = all_files
|
636 |
+
if "split_by_lang" in conf.pipeline:
|
637 |
+
# Only try regrouping if we split the shards.
|
638 |
+
regroup(conf, all_dirs)
|
639 |
+
elif "split_by_segment" in conf.pipeline:
|
640 |
+
# If we split by segment then regrouping is trivial, since segments appear in only one shard.
|
641 |
+
move_segments(conf, all_dirs)
|
642 |
+
|
643 |
+
if conf.config_name == "test":
|
644 |
+
_validate_test(conf, conf.get_mined_dir(regroup=True))
|
645 |
+
|
646 |
+
|
647 |
+
if __name__ == "__main__":
|
648 |
+
func_argparse.parse_and_call(get_main_parser())
|