applied-ai-018 commited on
Commit
dd4da36
·
verified ·
1 Parent(s): 4c0b64e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. cc-multilingual-main/README.md +56 -0
  2. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__init__.py +0 -0
  3. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/__init__.cpython-310.pyc +0 -0
  4. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/__init__.cpython-38.pyc +0 -0
  5. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/document.cpython-310.pyc +0 -0
  6. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/document.cpython-38.pyc +0 -0
  7. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/exceptions.cpython-38.pyc +0 -0
  8. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/worker.cpython-310.pyc +0 -0
  9. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/worker.cpython-38.pyc +0 -0
  10. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/constants.py +2 -0
  11. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/data_types.py +45 -0
  12. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/document.py +178 -0
  13. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/exceptions.py +18 -0
  14. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__init__.py +0 -0
  15. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/__init__.cpython-310.pyc +0 -0
  16. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/__init__.cpython-38.pyc +0 -0
  17. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/base.cpython-310.pyc +0 -0
  18. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/base.cpython-38.pyc +0 -0
  19. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/classifiers.cpython-310.pyc +0 -0
  20. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/classifiers.cpython-38.pyc +0 -0
  21. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/content.cpython-310.pyc +0 -0
  22. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/content.cpython-38.pyc +0 -0
  23. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/importance_weights.cpython-310.pyc +0 -0
  24. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/importance_weights.cpython-38.pyc +0 -0
  25. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/lines.cpython-310.pyc +0 -0
  26. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/lines.cpython-38.pyc +0 -0
  27. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/natural_language.cpython-310.pyc +0 -0
  28. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/natural_language.cpython-38.pyc +0 -0
  29. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/repetitions.cpython-310.pyc +0 -0
  30. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/repetitions.cpython-38.pyc +0 -0
  31. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/base.py +30 -0
  32. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/classifiers.py +114 -0
  33. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/content.py +189 -0
  34. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/importance_weights.py +303 -0
  35. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/lines.py +153 -0
  36. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/natural_language.py +197 -0
  37. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/repetitions.py +205 -0
  38. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__init__.py +0 -0
  39. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  40. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/__init__.cpython-38.pyc +0 -0
  41. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/classifiers.cpython-310.pyc +0 -0
  42. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/classifiers.cpython-38.pyc +0 -0
  43. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/content.cpython-310.pyc +0 -0
  44. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/content.cpython-38.pyc +0 -0
  45. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/dsir.cpython-310.pyc +0 -0
  46. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/dsir.cpython-38.pyc +0 -0
  47. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/stop_words.cpython-310.pyc +0 -0
  48. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/stop_words.cpython-38.pyc +0 -0
  49. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/classifiers.py +15 -0
  50. cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/content.py +39 -0
cc-multilingual-main/README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # cc-multilingual
2
+ Downloading and dedup indic multi-lingual from CommonCrawl
3
+ ### Installation for cc_net
4
+ ```sh
5
+ cd cc_net/
6
+ make install .
7
+ ```
8
+ ### Choose a snapshot: snapshot-id
9
+
10
+ #### Step 1: Edit the config.myconfig.json file
11
+ ```json
12
+ "dump": "snapshot-id",
13
+ "num_shards": 1600,
14
+ "lang_whitelist": ["as","bn","gu","kn","hi","ml","mr","ne","or","pb","sa","sd","ta","ur","te","ks","sat","mai","mni","kok","doi","brx"],
15
+ "mine_num_processes": 16,
16
+ "pipeline": [
17
+ "lid",
18
+ "keep_lang",
19
+ "pp_bucket",
20
+ "split_by_lang"
21
+ ],
22
+ "target_size": "100M",
23
+ "output_dir": "data",
24
+ "mined_dir": "mined",
25
+ "cache_dir": "wet_cache"
26
+ ```
27
+
28
+ #### Step 2: (Optional) Download data into cache
29
+ ```sh
30
+ wget wet_file_path
31
+ python3 script.py wet.paths.gz 90 wet_cache/2023-40/
32
+ ```
33
+ #### Step 3: Run the pipeline
34
+ ```sh
35
+ python3 -m cc_net --config config/myconfig.json
36
+ ```
37
+
38
+ ## Deduplication
39
+ ```
40
+ pip install app/requirements.txt
41
+ ```
42
+ #### Step1: Add list of files downloaded from cc_net to listings/file.txt in format lang_shard.json.gz
43
+
44
+ #### Step 2: Computing minhash signatures
45
+ ```
46
+ python3 app/src/pipeline.py --input_base_uri "file://path/to/ccnet/data" --output_base_uri "/path/to/output" --artifacts_dir "file:///path/to/empty/artifacts" --input /path/to/listings/file.txt --cc_snapshot_id 2023-50 --langs "hi" --inputs_per_process 5 --minhash_num_permutations 128 --minhash_ngram_size 13
47
+ ```
48
+
49
+ #### Step 3: Applying bloomfilter
50
+ ```
51
+ python3 app/src/bloomfilter.py --listings /path/to/listings/file.txt --input_base_uri "file://path/to/ccnet/data" --output_dir "/path/to/output" --parallel_readers 32 --batch_size 10
52
+ ```
53
+ #### Step 4: Running LSH
54
+ ```
55
+ python3 app/src/run_lsh.py --listings "/path/to/minhash-signature/listings/file.txt" --input_base_uri "file:///path/to/minhash-signature/files" --output_dir "/path/to/output" --similarity "0.8" --num_perm "128"
56
+ ```
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__init__.py ADDED
File without changes
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (203 Bytes). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (156 Bytes). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/document.cpython-310.pyc ADDED
Binary file (5.42 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/document.cpython-38.pyc ADDED
Binary file (5.46 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/exceptions.cpython-38.pyc ADDED
Binary file (1.29 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/worker.cpython-310.pyc ADDED
Binary file (9.47 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/__pycache__/worker.cpython-38.pyc ADDED
Binary file (9.32 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/constants.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ PRECISION = 8
2
+ CCNET_LABEL = "__label__cc"
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/data_types.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from msgspec import Struct
3
+
4
+ from typing import List, Tuple, Optional, Dict
5
+ from typing_extensions import TypeAlias
6
+
7
+ ScoreType: TypeAlias = Tuple[int, int, Optional[float]]
8
+ SignalType: TypeAlias = List[ScoreType]
9
+
10
+
11
+ @dataclass
12
+ class TextSlice:
13
+ text: str
14
+ start: int
15
+ end: int
16
+
17
+ def __len__(self):
18
+ return len(self.text)
19
+
20
+
21
+ class InputSpec(Struct):
22
+ raw_content: str
23
+ url: str
24
+ nlines: int
25
+ # original_nlines: int
26
+ source_domain: str
27
+ length: int
28
+ # original_length: int
29
+ language: str
30
+ language_score: float
31
+ # perplexity: float
32
+ bucket: str
33
+ digest: str
34
+ cc_segment: str
35
+ date_download: str
36
+
37
+
38
+ class OutputSpec(Struct):
39
+ id: str
40
+ id_int: int
41
+ metadata: Dict[str, str]
42
+ quality_signals: Dict[str, List[Tuple[int, int, Optional[float]]]]
43
+
44
+
45
+
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/document.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from nltk.tokenize import WordPunctTokenizer
2
+ import re
3
+ from typing import Optional, Tuple, Callable
4
+
5
+ from utilities.text import normalize, form_ngrams
6
+ from core.data_types import TextSlice
7
+ from core.quality_signals.utils.dsir import hash_feature
8
+
9
+ _word_tokenizer = WordPunctTokenizer()
10
+
11
+
12
+ def _compute_ngrams(text_seq, n):
13
+ return tuple(form_ngrams(iter(text_seq), n))
14
+
15
+
16
+ def split_paragraphs(
17
+ text: str, normalizer: Callable[[str], str], remove_empty: bool = True
18
+ ) -> Tuple[TextSlice]:
19
+ """
20
+ This function is adapted from dolma: https://github.com/allenai/dolma
21
+
22
+ Split a string into paragraphs. A paragraph is defined as a sequence of
23
+ zero or more characters, followed by a newline character, or a sequence
24
+ of one or more characters, followed by the end of the string.
25
+ """
26
+ text_slices = tuple(
27
+ TextSlice(normalizer(text[match.start():match.end()]), match.start(),
28
+ match.end())
29
+ for match in re.finditer(r"([^\n]*\n|[^\n]+$)", text)
30
+ )
31
+
32
+ if remove_empty is True:
33
+ text_slices = tuple(
34
+ text_slice for text_slice in text_slices if text_slice[0].strip()
35
+ )
36
+
37
+ return text_slices
38
+
39
+
40
+ class Document:
41
+ __slots__ = (
42
+ "_raw_content", "_normalized_content", "_raw_lines",
43
+ "_normalized_lines", "_raw_words", "_normalized_words",
44
+ "_num_raw_words", "_num_normalized_words", "_domain", "_raw_2grams",
45
+ "_raw_3grams", "_norm_2grams", "_norm_3grams", "_norm_4grams",
46
+ "_hash_features"
47
+ )
48
+
49
+ def __init__(
50
+ self, content: str, domain: Optional[str],
51
+ precompute_ngrams: bool = False,
52
+ precompute_hash_features: bool = False,
53
+ dsir_buckets: Optional[int] = None
54
+ ):
55
+ self._raw_content = content
56
+ self._domain = domain
57
+
58
+ # the normalized content: lowercased and punctuation removed
59
+ self._normalized_content = normalize(content)
60
+
61
+ # the lines of the document (split by newline)
62
+ self._raw_lines: Tuple[TextSlice] = split_paragraphs(
63
+ text=content, normalizer=lambda x: x, remove_empty=False
64
+ )
65
+
66
+ # the lines of the document (split by newline), normalized
67
+ self._normalized_lines: Tuple[TextSlice] = split_paragraphs(
68
+ text=content, normalizer=normalize, remove_empty=False
69
+ )
70
+
71
+ # the words of the document after normalization
72
+ self._raw_words = tuple(_word_tokenizer.tokenize(self._raw_content))
73
+
74
+ # the normalized words of the document (split by whitespace)
75
+ self._normalized_words = tuple(self._normalized_content.split())
76
+
77
+ # get number of words before and after normalization
78
+ self._num_raw_words = len(self._raw_words)
79
+ self._num_normalized_words = len(self._normalized_words)
80
+
81
+ # precompute ngrams
82
+ if precompute_ngrams:
83
+ # raw grams
84
+ self._raw_2grams = _compute_ngrams(self._raw_words, 2)
85
+ self._raw_3grams = _compute_ngrams(self._raw_words, 3)
86
+
87
+ # normalized grams
88
+ self._norm_2grams = _compute_ngrams(self._normalized_words, 2)
89
+ self._norm_3grams = _compute_ngrams(self._normalized_words, 3)
90
+ self._norm_4grams = _compute_ngrams(self._normalized_words, 4)
91
+ else:
92
+ self._raw_2grams = None
93
+ self._raw_3grams = None
94
+ self._norm_2grams = None
95
+ self._norm_3grams = None
96
+ self._norm_4grams = None
97
+
98
+ # precomupte hash features
99
+ if precompute_hash_features:
100
+ bigrams = self._raw_2grams or _compute_ngrams(self._raw_words, 2)
101
+ self._hash_features = hash_feature(
102
+ unigrams=self._raw_words,
103
+ bigrams=bigrams,
104
+ buckets=dsir_buckets
105
+ )
106
+ else:
107
+ self._hash_features = None
108
+
109
+ def __len__(self):
110
+ return len(self._raw_content)
111
+
112
+ @property
113
+ def raw_content(self):
114
+ return self._raw_content
115
+
116
+ @property
117
+ def normalized_content(self):
118
+ return self._normalized_content
119
+
120
+ @property
121
+ def raw_lines(self):
122
+ return self._raw_lines
123
+
124
+ @property
125
+ def normalized_lines(self):
126
+ return self._normalized_lines
127
+
128
+ @property
129
+ def raw_words(self):
130
+ return self._raw_words
131
+
132
+ @property
133
+ def normalized_words(self):
134
+ return self._normalized_words
135
+
136
+ @property
137
+ def num_raw_words(self):
138
+ return self._num_raw_words
139
+
140
+ @property
141
+ def num_normalized_words(self):
142
+ return self._num_normalized_words
143
+
144
+ @property
145
+ def domain(self):
146
+ return self._domain
147
+
148
+ @property
149
+ def raw_1grams(self):
150
+ return self._raw_words
151
+
152
+ @property
153
+ def raw_2grams(self):
154
+ return self._raw_2grams
155
+
156
+ @property
157
+ def raw_3grams(self):
158
+ return self._raw_3grams
159
+
160
+ @property
161
+ def norm_1grams(self):
162
+ return self._normalized_words
163
+
164
+ @property
165
+ def norm_2grams(self):
166
+ return self._norm_2grams
167
+
168
+ @property
169
+ def norm_3grams(self):
170
+ return self._norm_3grams
171
+
172
+ @property
173
+ def norm_4grams(self):
174
+ return self._norm_4grams
175
+
176
+ @property
177
+ def hash_features(self):
178
+ return self._hash_features
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/exceptions.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class S3ReadError(Exception):
2
+ def __init__(self, message):
3
+ super().__init__(message)
4
+
5
+
6
+ class S3WriteError(Exception):
7
+ def __init__(self, message):
8
+ super().__init__(message)
9
+
10
+
11
+ class LocalReadError(Exception):
12
+ def __init__(self, message):
13
+ super().__init__(message)
14
+
15
+
16
+ class UnknownReadError(Exception):
17
+ def __init__(self, message):
18
+ super().__init__(message)
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__init__.py ADDED
File without changes
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (219 Bytes). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (172 Bytes). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/base.cpython-310.pyc ADDED
Binary file (1.38 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/base.cpython-38.pyc ADDED
Binary file (1.35 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/classifiers.cpython-310.pyc ADDED
Binary file (4.16 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/classifiers.cpython-38.pyc ADDED
Binary file (4.25 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/content.cpython-310.pyc ADDED
Binary file (7.3 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/content.cpython-38.pyc ADDED
Binary file (7.29 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/importance_weights.cpython-310.pyc ADDED
Binary file (8.45 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/importance_weights.cpython-38.pyc ADDED
Binary file (8.84 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/lines.cpython-310.pyc ADDED
Binary file (6.51 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/lines.cpython-38.pyc ADDED
Binary file (6.86 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/natural_language.cpython-310.pyc ADDED
Binary file (7.77 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/natural_language.cpython-38.pyc ADDED
Binary file (7.84 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/repetitions.cpython-310.pyc ADDED
Binary file (7.02 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/__pycache__/repetitions.cpython-38.pyc ADDED
Binary file (7.27 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/base.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from core.document import Document
2
+ from core.data_types import SignalType
3
+
4
+
5
+ class RPSBase:
6
+ r""" Base class for RP signal functions. Each child class must implement
7
+ the __call__ method. The __call__ method takes a document as input and
8
+ returns a score. """
9
+ DATA_TYPE = SignalType
10
+
11
+ RPS_PREFIX: str = "RPS_"
12
+
13
+ __slots__ = ["__field_name"]
14
+
15
+ def __init__(self, *args, **kwargs): # noqa
16
+ # make sure all classes start with RPS_; this is to ensure that
17
+ # the get_rule_based_signals function works correctly when new signal
18
+ # functions are added
19
+ assert self.__class__.__name__.startswith(self.RPS_PREFIX), \
20
+ f"Name of signal function must" \
21
+ f" start with {self.RPS_PREFIX}; got {self.__class__.__name__}"
22
+
23
+ self.__field_name = self.__class__.__name__.lower()
24
+
25
+ def __call__(self, document: Document):
26
+ raise NotImplementedError
27
+
28
+ @property
29
+ def field_name(self):
30
+ return self.__field_name
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/classifiers.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from typing import List, Tuple, Type
3
+ import fasttext
4
+
5
+ from core.constants import PRECISION, CCNET_LABEL
6
+ from core.quality_signals.base import RPSBase
7
+ from core.document import Document
8
+ from core.data_types import SignalType
9
+ from core.quality_signals.utils.classifiers import \
10
+ preprocess_quality_classifier
11
+ from utilities.register.registry_utils import *
12
+
13
+ __all__ = [
14
+ "register_classifier_callables", "classifier_schema"
15
+ ]
16
+
17
+
18
+ def classifier_schema() -> List[Tuple[str, Type]]:
19
+ r""" Returns a list of signal names and their data types """
20
+ return signal_schema(module=sys.modules[__name__])
21
+
22
+
23
+ def register_classifier_callables(
24
+ wikiref_model: str,
25
+ palm_model: str,
26
+ wikipedia_model: str
27
+ ) -> List[RPSBase]:
28
+ r""" Returns a list of signal functions (i.e., RPSBase instances) that
29
+ are used to extract content signals from a document.
30
+
31
+ Args:
32
+ wikiref_model: A fasttext model trained on Wikipedia references.
33
+ palm_model: A fasttext model trained on ccnet vs
34
+ {books, openwebtext, wikipedia}.
35
+ wikipedia_model: A fasttext model trained on Wikipedia articles.
36
+
37
+ Returns:
38
+ A list of signal function class instances.
39
+ """
40
+ return list(map(
41
+ lambda cls: cls(
42
+ wikiref_model=wikiref_model,
43
+ palm_model=palm_model,
44
+ wikipedia_model=wikipedia_model,
45
+ ),
46
+ get_callables_from_module(module=sys.modules[__name__])
47
+ ))
48
+
49
+
50
+ class BaseMLSignal(RPSBase):
51
+ __slots__ = "_ft_model"
52
+
53
+ def __init__(self, ft_model_file: str):
54
+ super(BaseMLSignal, self).__init__()
55
+ if ft_model_file is None:
56
+ self._ft_model = None
57
+ else:
58
+ self._ft_model = fasttext.load_model(str(ft_model_file))
59
+
60
+ def __call__(self, document: Document) -> SignalType:
61
+ if self._ft_model is None:
62
+ return [(0, len(document), None)]
63
+
64
+ if len(document.raw_content) == 0:
65
+ return [(0, len(document), None)]
66
+
67
+ text = preprocess_quality_classifier(document=document)
68
+ pred = self._ft_model.predict(text=text)
69
+
70
+ (pred_label, pred_prob) = pred
71
+ pred_label = pred_label[0]
72
+ pred_prob = pred_prob[0]
73
+
74
+ if pred_label == CCNET_LABEL:
75
+ high_quality_score = 1 - pred_prob
76
+ else:
77
+ high_quality_score = pred_prob
78
+
79
+ score = round(float(high_quality_score), PRECISION)
80
+ return [(0, len(document), score)]
81
+
82
+
83
+ class RPS_Doc_ML_Wikiref_Score(BaseMLSignal): # noqa
84
+ r""" Fasttext classifier prediction for the document being a Wikipedia
85
+ reference. This is the same fasttext model as in the RedPajama-1T
86
+ dataset."""
87
+ __slots__ = ()
88
+
89
+ def __init__(self, wikiref_model: str, *args, **kwargs): # noqa
90
+ super(RPS_Doc_ML_Wikiref_Score, self).__init__(
91
+ ft_model_file=wikiref_model
92
+ )
93
+
94
+
95
+ class RPS_Doc_ML_Palm_Score(BaseMLSignal): # noqa
96
+ r""" Fasttext classifier prediction for the document being a Wikipedia
97
+ article, OpenWebText sample or a RedPajama-V1 book."""
98
+ __slots__ = ()
99
+
100
+ def __init__(self, palm_model: str, *args, **kwargs): # noqa
101
+ super(RPS_Doc_ML_Palm_Score, self).__init__(
102
+ ft_model_file=palm_model
103
+ )
104
+
105
+
106
+ class RPS_Doc_ML_Wikipedia_Score(BaseMLSignal): # noqa
107
+ r""" Fasttext classifier prediction for the document being a Wikipedia
108
+ article."""
109
+ __slots__ = ()
110
+
111
+ def __init__(self, wikipedia_model: str, *args, **kwargs): # noqa
112
+ super(RPS_Doc_ML_Wikipedia_Score, self).__init__(
113
+ ft_model_file=wikipedia_model
114
+ )
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/content.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import sys
3
+ import operator
4
+ from pathlib import Path
5
+ from typing import List, Tuple, Type
6
+
7
+ from core.constants import PRECISION
8
+ from core.quality_signals.base import RPSBase
9
+ from core.quality_signals.utils.stop_words import get_stop_words
10
+ from core.document import Document
11
+ from core.data_types import SignalType
12
+ from core.quality_signals.utils.content import \
13
+ load_bad_words, load_bad_urls_index
14
+ from utilities.register.registry_utils import *
15
+ from utilities.text import form_ngrams
16
+
17
+ __all__ = ["register_content_callables", "content_schema"]
18
+
19
+
20
+ def content_schema() -> List[Tuple[str, Type]]:
21
+ r""" Returns a list of signal names and their data types """
22
+ return signal_schema(module=sys.modules[__name__])
23
+
24
+
25
+ def register_content_callables(
26
+ language: str, bad_urls_dir: str, bad_words_dir: str
27
+ ) -> List[RPSBase]:
28
+ r""" Returns a list of signal functions (i.e., RPSBase instances) that
29
+ are used to extract content signals from a document.
30
+
31
+ Args:
32
+ language: The language of the document.
33
+ bad_urls_dir: directory containing the UT1 blacklist.
34
+ bad_words_dir: directory containing the LDNOOBW blacklist.
35
+
36
+ Returns:
37
+ A list of signal function class instances.
38
+ """
39
+ return list(map(
40
+ lambda cls: cls(
41
+ language=language,
42
+ bad_urls_dir=bad_urls_dir,
43
+ bad_words_dir=bad_words_dir
44
+ ),
45
+ get_callables_from_module(module=sys.modules[__name__])
46
+ ))
47
+
48
+
49
+ class RPS_Doc_LDNOOBW_Words(RPSBase): # noqa
50
+ r""" The number of sequences of words that are contained in the
51
+ List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words blocklist. The
52
+ blocklist is obtained from
53
+ https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
54
+ """
55
+ __slots__ = ["_block_words", "_gram_vals"]
56
+
57
+ def __init__(
58
+ self, bad_words_dir: str, language: str, *args, **kwargs # noqa
59
+ ):
60
+ super(RPS_Doc_LDNOOBW_Words, self).__init__()
61
+ self._block_words = load_bad_words(
62
+ bad_words_dir=Path(bad_words_dir), lang=language
63
+ )
64
+
65
+ # cache the number of words in each block list entry
66
+ self._gram_vals = set(map(
67
+ lambda w: 1 + operator.countOf(w, " "), self._block_words
68
+ ))
69
+
70
+ def __call__(self, document: Document) -> SignalType:
71
+ if len(document.normalized_content) == 0:
72
+ return [(0, len(document), .0)]
73
+
74
+ num_dirty = 0
75
+
76
+ # for each ngram value, count the number of ngrams in the document
77
+ # which are also in the block words list
78
+ for n in self._gram_vals:
79
+ if n == 1:
80
+ num_dirty += sum(
81
+ 1 for _ in filter(
82
+ lambda w: w in self._block_words,
83
+ document.normalized_words
84
+ )
85
+ )
86
+ continue
87
+
88
+ num_dirty += sum(
89
+ 1 for _ in filter(
90
+ lambda t: " ".join(t) in self._block_words,
91
+ # try to fetch the cached ngrams, otherwise compute them
92
+ # on the fly
93
+ getattr(document, f"norm_{n}grams", None)
94
+ or
95
+ form_ngrams(iter(document.normalized_words), n)
96
+ )
97
+ )
98
+
99
+ score = float(num_dirty)
100
+ return [(0, len(document), score)]
101
+
102
+
103
+ class RPS_Doc_Lorem_Ipsum(RPSBase): # noqa
104
+ r""" The ratio between the number of occurences of 'lorem ipsum'
105
+ and the number of characters in the text after normalization. Text is
106
+ normalized by lowercasing and removing punctuation. """
107
+ SEARCH_TEXT = "lorem ipsum"
108
+ SEARCH_REGEX = re.compile(r"lorem ipsum", re.IGNORECASE)
109
+
110
+ __slots__ = ()
111
+
112
+ def __call__(self, document: Document) -> SignalType:
113
+ if len(document.normalized_content) == 0:
114
+ return [(0, len(document), 0.0)]
115
+
116
+ if self.SEARCH_TEXT not in document.normalized_content:
117
+ return [(0, len(document), .0)]
118
+
119
+ num_occurences = len(self.SEARCH_REGEX.findall(
120
+ document.normalized_content
121
+ ))
122
+
123
+ score = float(num_occurences) / len(document.normalized_content)
124
+ score = round(score, PRECISION)
125
+
126
+ return [(0, len(document), score)]
127
+
128
+
129
+ class RPS_Doc_Curly_Bracket(RPSBase): # noqa
130
+ r""" The ratio between the number of occurences of '{' or '}' and the
131
+ number of characters in the raw text. """
132
+ SEARCH_TEXT = ("{", "}")
133
+ __slots__ = ()
134
+
135
+ def __call__(self, document: Document) -> SignalType:
136
+ if len(document.raw_content) == 0:
137
+ return [(0, len(document), .0)]
138
+
139
+ if all(map(lambda x: x not in document.raw_content, self.SEARCH_TEXT)):
140
+ return [(0, len(document), .0)]
141
+
142
+ num_occurences = sum(
143
+ map(lambda x: operator.countOf(document.raw_content, x),
144
+ self.SEARCH_TEXT)
145
+ )
146
+
147
+ score = float(num_occurences) / len(document.raw_content)
148
+ score = round(score, PRECISION)
149
+
150
+ return [(0, len(document), score)]
151
+
152
+
153
+ class RPS_Doc_UT1_Blacklist(RPSBase): # noqa
154
+ r""" An categorical id of the list of categories of the domain of the
155
+ document. Categories are obtained from the UT1 blacklist.
156
+ """
157
+ __slots__ = ["_ut1_mapping"]
158
+
159
+ def __init__(self, bad_urls_dir: str, *args, **kwargs): # noqa
160
+ super(RPS_Doc_UT1_Blacklist, self).__init__()
161
+ # self._ut1_mapping = load_bad_urls_index(Path(bad_urls_dir))
162
+ self._ut1_mapping = {}
163
+
164
+ def __call__(self, document: Document) -> SignalType:
165
+ score: int = self._ut1_mapping.get(document.domain, None)
166
+ return [(0, len(document), score)]
167
+
168
+
169
+ class RPS_Doc_Stop_Word_Fraction(RPSBase): # noqa
170
+ r""" The ratio between the number of stop words and the number of words in
171
+ the document. """
172
+ __slots__ = ["_stop_words"]
173
+
174
+ def __init__(self, language: str, *args, **kwargs): # noqa
175
+ super(RPS_Doc_Stop_Word_Fraction, self).__init__()
176
+ self._stop_words = get_stop_words(language)
177
+
178
+ def __call__(self, document: Document) -> SignalType:
179
+ if len(document.normalized_words) == 0:
180
+ return [(0, len(document), .0)]
181
+
182
+ num_stop_words = sum(
183
+ map(lambda w: w in self._stop_words, document.raw_words)
184
+ )
185
+
186
+ score = float(num_stop_words) / document.num_raw_words
187
+ score = round(score, PRECISION)
188
+
189
+ return [(0, len(document), score)]
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/importance_weights.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import scipy.stats as stats
3
+ import sys
4
+ from typing import List, Tuple, Type, Optional
5
+ from pathlib import Path
6
+
7
+ from core.constants import PRECISION
8
+ from core.quality_signals.base import RPSBase
9
+ from core.quality_signals.utils.dsir import hash_feature
10
+ from core.document import Document
11
+ from core.data_types import SignalType
12
+
13
+ from utilities.register.registry_utils import *
14
+ from utilities.text import form_ngrams
15
+
16
+ __all__ = [
17
+ "register_importance_weights_callables",
18
+ "importance_weights_schema"
19
+ ]
20
+
21
+
22
+ def importance_weights_schema() -> List[Tuple[str, Type]]:
23
+ r""" Returns a list of signal names and their data types """
24
+ return signal_schema(module=sys.modules[__name__])
25
+
26
+
27
+ def register_importance_weights_callables(
28
+ source_fps: Optional[Tuple[str]],
29
+ wiki_fps: Optional[Tuple[str]],
30
+ openwebtext_fps: Optional[Tuple[str]],
31
+ books_fps: Optional[Tuple[str]],
32
+ language: str
33
+ ) -> List[RPSBase]:
34
+ r""" Returns a list of signal functions (i.e., RPSBase instances) that
35
+ are used to extract content signals from a document.
36
+
37
+ Returns:
38
+ A list of signal function class instances.
39
+ """
40
+ return list(map(
41
+ lambda cls: cls(
42
+ language=language,
43
+ source_fps=source_fps,
44
+ wiki_fps=wiki_fps,
45
+ openwebtext_fps=openwebtext_fps,
46
+ books_fps=books_fps
47
+ ),
48
+ get_callables_from_module(module=sys.modules[__name__])
49
+ ))
50
+
51
+
52
+ class Base_Importance(RPSBase): # noqa
53
+ r""" Base class for functions which return the log ratio of the likelihood
54
+ of the document's features with respect to the target domain
55
+ versus the source domain. """
56
+
57
+ __slots__ = (
58
+ "_log_diff_dist", "_feature_dim", "_target_lambda",
59
+ "_source_lambda", "_length_correction"
60
+ )
61
+
62
+ def __init__(
63
+ self,
64
+ target_fps: Tuple[str, str],
65
+ source_fps: Tuple[str, str],
66
+ language: str,
67
+ length_correction: bool = False
68
+ ):
69
+ super(Base_Importance, self).__init__()
70
+ self._length_correction = length_correction
71
+
72
+ if target_fps is None or source_fps is None:
73
+ self._log_diff_dist = None
74
+ self._feature_dim = None
75
+ return
76
+
77
+ target_count_fp, target_lambbda_fp = target_fps
78
+ source_count_fp, source_lambda_fp = source_fps
79
+
80
+ assert language == Path(target_count_fp).stem.split(".")[1], \
81
+ f"Language mismatch between {target_count_fp} and {language}"
82
+
83
+ assert language == Path(source_count_fp).stem.split(".")[1], \
84
+ f"Language mismatch between {target_count_fp} and {language}"
85
+
86
+ # load hash counts
87
+ target_counts = np.load(target_count_fp)
88
+ target_dist = target_counts / target_counts.sum()
89
+ source_counts = np.load(source_count_fp)
90
+ source_dist = source_counts / source_counts.sum()
91
+
92
+ if length_correction:
93
+ self._target_lambda = np.load(target_lambbda_fp)
94
+ self._source_lambda = np.load(source_lambda_fp)
95
+ else:
96
+ self._target_lambda = None
97
+ self._source_lambda = None
98
+
99
+ # compute log diff dist
100
+ self._feature_dim = target_counts.shape[0]
101
+ self._log_diff_dist = np.array(
102
+ np.log(target_dist + 1e-8) - np.log(source_dist + 1e-8)
103
+ )
104
+
105
+ def __call__(self, document: Document) -> SignalType:
106
+ if self._log_diff_dist is None:
107
+ return [(0, len(document), None)]
108
+
109
+ doc_len = len(document)
110
+
111
+ if doc_len == 0:
112
+ return [(0, doc_len, None)]
113
+
114
+ # try to fetch cached features, if not compute them
115
+ features = (
116
+ document.hash_features
117
+ if document.hash_features is not None
118
+ else
119
+ hash_feature(
120
+ unigrams=document.raw_words,
121
+ # fetch cached bigrams, otherwise comptue them
122
+ bigrams=(
123
+ document.raw_2grams
124
+ or
125
+ tuple(form_ngrams(iter(document.raw_words), 2))
126
+ ),
127
+ buckets=self._feature_dim
128
+ )
129
+ )
130
+
131
+ logratio = np.inner(features, self._log_diff_dist)
132
+ score = float(logratio)
133
+
134
+ if not self._length_correction:
135
+ score = round(score, PRECISION)
136
+ return [(0, doc_len, score)]
137
+
138
+ # correct for the length assuming a Poisson distribution
139
+ return self.__add_length_penalty(score, doc_len)
140
+
141
+ def __add_length_penalty(self, score, doc_len):
142
+ # correct for the length assuming a Poisson distribution
143
+ len_prob_source = stats.poisson.pmf(doc_len, self._source_lambda)
144
+ len_prob_target = stats.poisson.pmf(doc_len, self._target_lambda)
145
+
146
+ len_correction = np.log(len_prob_target + 1e-8) - \
147
+ np.log(len_prob_source + 1e-8)
148
+
149
+ score += float(len_correction)
150
+ score = round(score, PRECISION)
151
+ return [(0, doc_len, score)]
152
+
153
+
154
+ class RPS_Doc_Wikipedia_Importance(Base_Importance): # noqa
155
+ r""" Given a bag of {1,2}-wordgram model trained on Wikipedia articles p,
156
+ and a model trained on the source domain q. This is the logarithm of the
157
+ ratio p(doc)/q(doc). If length_correction is enabled, then the length of
158
+ score is adjusted by adding the term log(p_poisson(len) / q_poisson(len))
159
+ to the final score.
160
+ """
161
+ __slots__ = ()
162
+
163
+ def __init__(
164
+ self,
165
+ wiki_fps: Tuple[str, str],
166
+ source_fps: Tuple[str, str],
167
+ language: str,
168
+ *args, **kwargs # noqa
169
+ ):
170
+ super(RPS_Doc_Wikipedia_Importance, self).__init__(
171
+ target_fps=wiki_fps,
172
+ source_fps=source_fps,
173
+ language=language,
174
+ length_correction=False
175
+ )
176
+
177
+
178
+ class RPS_Doc_Wikipedia_Importance_Length_Correction( # noqa
179
+ Base_Importance
180
+ ):
181
+ r""" Given a bag of {1,2}-wordgram model trained on Wikipedia articles p,
182
+ and a model trained on the source domain q. This is the logarithm of the
183
+ ratio p(doc)/q(doc). If length_correction is enabled, then the length of
184
+ score is adjusted by adding the term log(p_poisson(len) / q_poisson(len))
185
+ to the final score. Corrects for length by adding a length penalty term.
186
+ """
187
+ __slots__ = ()
188
+
189
+ def __init__(
190
+ self,
191
+ wiki_fps: Tuple[str, str],
192
+ source_fps: Tuple[str, str],
193
+ language: str,
194
+ *args, **kwargs # noqa
195
+ ):
196
+ super(RPS_Doc_Wikipedia_Importance_Length_Correction,
197
+ self).__init__(
198
+ target_fps=wiki_fps,
199
+ source_fps=source_fps,
200
+ language=language,
201
+ length_correction=True
202
+ )
203
+
204
+
205
+ class RPS_Doc_Books_Importance(Base_Importance): # noqa
206
+ r""" Given a bag of {1,2}-wordgram model trained on Books p,
207
+ and a model trained on the source domain q. This is the logarithm of the
208
+ ratio p(doc)/q(doc). If length_correction is enabled, then the length of
209
+ score is adjusted by adding the term log(p_poisson(len) / q_poisson(len))
210
+ to the final score.
211
+ """
212
+ __slots__ = ()
213
+
214
+ def __init__(
215
+ self,
216
+ books_fps: Tuple[str, str],
217
+ source_fps: Tuple[str, str],
218
+ language: str,
219
+ *args, **kwargs # noqa
220
+ ):
221
+ super(RPS_Doc_Books_Importance, self).__init__(
222
+ target_fps=books_fps,
223
+ source_fps=source_fps,
224
+ language=language,
225
+ length_correction=False
226
+ )
227
+
228
+
229
+ class RPS_Doc_Books_Importance_Length_Correction( # noqa
230
+ Base_Importance
231
+ ): # noqa
232
+ r""" Given a bag of {1,2}-wordgram model trained on Books p,
233
+ and a model trained on the source domain q. This is the logarithm of the
234
+ ratio p(doc)/q(doc). If length_correction is enabled, then the length of
235
+ score is adjusted by adding the term log(p_poisson(len) / q_poisson(len))
236
+ to the final score. Corrects for length by adding a length penalty term.
237
+ """
238
+ __slots__ = ()
239
+
240
+ def __init__(
241
+ self,
242
+ books_fps: Tuple[str, str],
243
+ source_fps: Tuple[str, str],
244
+ language: str,
245
+ *args, **kwargs # noqa
246
+ ):
247
+ super(RPS_Doc_Books_Importance_Length_Correction, self).__init__(
248
+ target_fps=books_fps,
249
+ source_fps=source_fps,
250
+ language=language,
251
+ length_correction=True
252
+ )
253
+
254
+
255
+ class RPS_Doc_OpenWebText_Importance(Base_Importance): # noqa
256
+ r""" Given a bag of {1,2}-wordgram model trained on OpenWebText p,
257
+ and a model trained on the source domain q. This is the logarithm of the
258
+ ratio p(doc)/q(doc). If length_correction is enabled, then the length of
259
+ score is adjusted by adding the term log(p_poisson(len) / q_poisson(len))
260
+ to the final score.
261
+ """
262
+ __slots__ = ()
263
+
264
+ def __init__(
265
+ self,
266
+ openwebtext_fps: Tuple[str, str],
267
+ source_fps: Tuple[str, str],
268
+ language: str,
269
+ *args, **kwargs # noqa
270
+ ):
271
+ super(RPS_Doc_OpenWebText_Importance, self).__init__(
272
+ target_fps=openwebtext_fps,
273
+ source_fps=source_fps,
274
+ language=language,
275
+ length_correction=False
276
+ )
277
+
278
+
279
+ class RPS_Doc_OpenWebText_Importance_Length_Correction( # noqa
280
+ Base_Importance): # noqa
281
+ r""" Given a bag of {1,2}-wordgram model trained on OpenWebText p,
282
+ and a model trained on the source domain q. This is the logarithm of the
283
+ ratio p(doc)/q(doc). If length_correction is enabled, then the length of
284
+ score is adjusted by adding the term log(p_poisson(len) / q_poisson(len))
285
+ to the final score. Corrects for length by adding a length penalty term.
286
+ """
287
+ __slots__ = ()
288
+
289
+ def __init__(
290
+ self,
291
+ openwebtext_fps: Tuple[str, str],
292
+ source_fps: Tuple[str, str],
293
+ language: str,
294
+ *args, **kwargs # noqa
295
+ ):
296
+ super(
297
+ RPS_Doc_OpenWebText_Importance_Length_Correction, self
298
+ ).__init__(
299
+ target_fps=openwebtext_fps,
300
+ source_fps=source_fps,
301
+ language=language,
302
+ length_correction=True
303
+ )
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/lines.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from typing import List, Tuple, Type
3
+
4
+ from core.constants import PRECISION
5
+ from core.quality_signals.base import RPSBase
6
+ from core.data_types import SignalType, ScoreType, TextSlice
7
+ from core.document import Document
8
+ from utilities.register.registry_utils import *
9
+
10
+ __all__ = [
11
+ "register_lines_callables", "lines_schema"
12
+ ]
13
+
14
+
15
+ def lines_schema() -> List[Tuple[str, Type]]:
16
+ r""" Returns a list of signal names and their data types """
17
+ return signal_schema(module=sys.modules[__name__])
18
+
19
+
20
+ def register_lines_callables() -> List[RPSBase]:
21
+ r""" Returns a list of signal functions (i.e., RPSBase instances) that
22
+ are used to extract line signals from a document.
23
+
24
+ Returns:
25
+ A list of signal function class instances.
26
+ """
27
+ return list(map(
28
+ lambda cls: cls(),
29
+ get_callables_from_module(module=sys.modules[__name__])
30
+ ))
31
+
32
+
33
+ class RPS_Lines_Javascript_Counts(RPSBase): # noqa
34
+ r""" The number of occurences of the word "javascript" in each line. """
35
+ SEARCH_TEXT = "javascript"
36
+ __slots__ = ()
37
+
38
+ def _process_line(self, text_slice: TextSlice) -> ScoreType:
39
+ if len(text_slice.text) == 0:
40
+ return tuple((text_slice.start, text_slice.end, 0.0))
41
+
42
+ score = float(sum(
43
+ 1 for w in text_slice.text.split() if w == self.SEARCH_TEXT
44
+ ))
45
+
46
+ return tuple((text_slice.start, text_slice.end, score))
47
+
48
+ def __call__(self, document: Document) -> SignalType:
49
+ return list(map(self._process_line, document.normalized_lines))
50
+
51
+
52
+ class RPS_Lines_Ending_With_Terminal_Punctution_Mark(RPSBase): # noqa
53
+ r""" A list of integers indicating whether (1) or not (0) a line ends with
54
+ a terminal punctuation mark. A terminal punctation mark is defined as
55
+ one of the following: ".", "!", "?", "”" """
56
+ TERMINAL_PUNCTUATION_MARKS = (".", "!", "?", "”")
57
+ __slots__ = ()
58
+
59
+ def _process_line(self, text_slice: TextSlice) -> ScoreType:
60
+ score = text_slice.text.rstrip().endswith(
61
+ self.TERMINAL_PUNCTUATION_MARKS
62
+ )
63
+ score = float(score)
64
+ return tuple((text_slice.start, text_slice.end, score))
65
+
66
+ def __call__(self, document: Document) -> SignalType:
67
+ return list(map(self._process_line, document.raw_lines))
68
+
69
+
70
+ class RPS_Lines_Num_Words(RPSBase): # noqa
71
+ r""" The number of words in each line. This is computed based on the
72
+ normalied text. Normalization is done by lowercasing the text and
73
+ removing punctuation."""
74
+ __slots__ = ()
75
+
76
+ def _process_line(self, text_slice: TextSlice) -> ScoreType: # noqa
77
+ score = len(text_slice.text.split())
78
+ return tuple((text_slice.start, text_slice.end, score))
79
+
80
+ def __call__(self, document: Document) -> SignalType:
81
+ return list(map(self._process_line, document.normalized_lines))
82
+
83
+
84
+ class RPS_Lines_Uppercase_Letter_Fraction(RPSBase): # noqa
85
+ r""" The ratio between number of uppercase letters and total number of
86
+ characters in each line. This is based on the raw text. """
87
+ __slots__ = ()
88
+
89
+ def _process_line(self, text_slice: TextSlice) -> ScoreType: # noqa
90
+ if len(text_slice) == 0:
91
+ return tuple((text_slice.start, text_slice.end, 0.0))
92
+
93
+ score = sum(map(str.isupper, text_slice.text)) / len(text_slice)
94
+ score = round(score, PRECISION)
95
+ return tuple((text_slice.start, text_slice.end, score))
96
+
97
+ def __call__(self, document: Document) -> SignalType:
98
+ return list(map(self._process_line, document.raw_lines))
99
+
100
+
101
+ class RPS_Lines_Numerical_Chars_Fraction(RPSBase): # noqa
102
+ r""" The ratio between number of numerical characters and total number of
103
+ characters in each line. This is based on text after lowercasing and
104
+ removing punctuation."""
105
+ __slots__ = ()
106
+
107
+ def _process_line(self, text_slice: TextSlice) -> ScoreType: # noqa
108
+ if len(text_slice) == 0:
109
+ return tuple((text_slice.start, text_slice.end, 0.0))
110
+
111
+ score = sum(map(str.isnumeric, text_slice.text)) / len(text_slice)
112
+ score = round(score, PRECISION)
113
+ return tuple((text_slice.start, text_slice.end, score))
114
+
115
+ def __call__(self, document: Document) -> SignalType:
116
+ return list(map(self._process_line, document.normalized_lines))
117
+
118
+
119
+ class RPS_Lines_Start_With_Bulletpoint(RPSBase): # noqa
120
+ r""" Whether the lines that start with a bullet point symbol. The
121
+ following set of unicodes are considered a bullet point:
122
+ \u2022 (bullet point), \u2023 (triangular bullet point), \u25B6 (black
123
+ right pointing triangle), \u25C0 (black left pointing triangle),
124
+ \u25E6 (white bullet point), \u25A0 (black square), \u25A1 (white
125
+ square), \u25AA (black small square), \u25AB (white small square),
126
+ \u2013 (en dash)."""
127
+ BULLET_POINT_SYMBOLS = (
128
+ "\u2022", # bullet point
129
+ "\u2023", # triangular bullet point
130
+ "\u25B6", # black right pointing triangle
131
+ "\u25C0", # black left pointing triangle
132
+ "\u25E6", # white bullet point
133
+ "\u25A0", # black square
134
+ "\u25A1", # white square
135
+ "\u25AA", # black small square
136
+ "\u25AB", # white small square
137
+ "\u2013", # en dash
138
+ )
139
+
140
+ __slots__ = ()
141
+
142
+ def _process_line(self, text_slice: TextSlice) -> ScoreType: # noqa
143
+ score = text_slice.text.lstrip().startswith(self.BULLET_POINT_SYMBOLS)
144
+ score = float(score)
145
+ return tuple((text_slice.start, text_slice.end, score))
146
+
147
+ def __call__(self, document: Document) -> SignalType:
148
+ num_lines = len(document.raw_lines)
149
+
150
+ if num_lines == 0:
151
+ return [(0, len(document), None)]
152
+
153
+ return list(map(self._process_line, document.raw_lines))
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/natural_language.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import Counter
2
+ import math
3
+ import re
4
+ import sys
5
+ from typing import List, Tuple, Type
6
+
7
+ from core.constants import PRECISION
8
+ from core.data_types import SignalType
9
+ from core.quality_signals.base import RPSBase
10
+ from core.document import Document
11
+ from utilities.register.registry_utils import *
12
+
13
+ __all__ = [
14
+ "register_natural_language_callables",
15
+ "natural_language_schema"
16
+ ]
17
+
18
+
19
+ def natural_language_schema() -> List[Tuple[str, Type]]:
20
+ r""" Returns a list of signal names and their data types """
21
+ return signal_schema(module=sys.modules[__name__])
22
+
23
+
24
+ def register_natural_language_callables() -> List[RPSBase]:
25
+ r""" Returns a list of signal functions (i.e., RPSBase instances) that
26
+ are used to extract natural language signals from a document.
27
+
28
+ Returns:
29
+ A list of signal function class instances.
30
+ """
31
+ return list(map(
32
+ lambda cls: cls(),
33
+ get_callables_from_module(module=sys.modules[__name__])
34
+ ))
35
+
36
+
37
+ class RPS_Doc_Num_Sentences(RPSBase): # noqa
38
+ r""" The number of sentences in the content. This is calculated using
39
+ the regex r'\b[^.!?]+[.!?]*' """
40
+ SENT_PATTERN = re.compile(r'\b[^.!?]+[.!?]*', flags=re.UNICODE)
41
+
42
+ __slots__ = ()
43
+
44
+ def __call__(self, document: Document) -> SignalType:
45
+ r""" count the number of sentences in the content using regex"""
46
+ score = float(len(self.SENT_PATTERN.findall(document.raw_content)))
47
+ return [(0, len(document), score)]
48
+
49
+
50
+ class RPS_Doc_Word_Count(RPSBase): # noqa
51
+ r""" The number of words in the content after normalization. """
52
+ __slots__ = ()
53
+
54
+ def __call__(self, document: Document) -> SignalType:
55
+ return [(0, len(document), document.num_normalized_words)]
56
+
57
+
58
+ class RPS_Doc_Mean_Word_Length(RPSBase): # noqa
59
+ r""" The mean length of words in the content normalization. """
60
+ __slots__ = ()
61
+
62
+ def __call__(self, document: Document) -> SignalType:
63
+ if document.num_normalized_words == 0:
64
+ return [(0, len(document), None)]
65
+
66
+ num_chars = float(sum(map(len, document.normalized_words)))
67
+ score = num_chars / document.num_normalized_words
68
+ score = round(score, PRECISION)
69
+ return [(0, len(document), score)]
70
+
71
+
72
+ class RPS_Doc_Symbol_To_Word_Ratio(RPSBase): # noqa
73
+ r""" The ratio of symbols to words in the content. This is analogous to
74
+ the signal used in Gopher. Symbols are defined "#", "...", and "…". """
75
+ SYMBOLS = ("#", "...", "…")
76
+
77
+ __slots__ = ()
78
+
79
+ def __call__(self, document: Document) -> SignalType:
80
+ num_words = document.num_raw_words
81
+
82
+ if num_words == 0:
83
+ return [(0, len(document), None)]
84
+
85
+ # count the number of symbols in the content
86
+ num_symbols = float(sum(
87
+ document.raw_content.count(x) for x in self.SYMBOLS
88
+ ))
89
+
90
+ score = num_symbols / num_words
91
+ score = round(score, PRECISION)
92
+ return [(0, len(document), score)]
93
+
94
+
95
+ class RPS_Doc_Frac_Lines_End_With_Ellipsis(RPSBase): # noqa
96
+ r""" The fraction of lines that end with an ellipsis, where an ellipsis
97
+ is defined as either "..." or "…". """
98
+ ELLIPSIS_SYMBOLS = ("...", "…")
99
+
100
+ __slots__ = ()
101
+
102
+ def __call__(self, document: Document) -> SignalType:
103
+ num_lines = len(document.raw_lines)
104
+
105
+ if num_lines == 0:
106
+ return [(0, len(document), None)]
107
+
108
+ total_ellipsis_lines = float(sum(
109
+ text_slice.text.rstrip().endswith(self.ELLIPSIS_SYMBOLS)
110
+ for text_slice in document.raw_lines
111
+ ))
112
+
113
+ score = total_ellipsis_lines / num_lines
114
+ score = round(score, PRECISION)
115
+ return [(0, len(document), score)]
116
+
117
+
118
+ class RPS_Doc_Frac_No_Alph_Words(RPSBase): # noqa
119
+ r""" The fraction of words that contain no alphabetical character.
120
+ This is based on the raw content. """
121
+ ALPH_REGEX = re.compile(r"[a-zA-Z]")
122
+
123
+ __slots__ = ()
124
+
125
+ def __call__(self, document: Document) -> SignalType:
126
+ num_words = document.num_raw_words
127
+
128
+ if num_words == 0:
129
+ return [(0, len(document), None)]
130
+
131
+ num_words_with_alpha = float(sum(
132
+ int(self.ALPH_REGEX.search(word) is not None)
133
+ for word in document.raw_words
134
+ ))
135
+
136
+ score = 1.0 - num_words_with_alpha / num_words
137
+ score = round(score, PRECISION)
138
+ return [(0, len(document), score)]
139
+
140
+
141
+ class RPS_Doc_Frac_Unique_Words(RPSBase): # noqa
142
+ r""" The fraction of unique words in the content. This is also known as
143
+ the degeneracy of a text sample. Calculated based on the normalized
144
+ content. """
145
+ __slots__ = ()
146
+
147
+ def __call__(self, document: Document) -> SignalType:
148
+ num_words = document.num_normalized_words
149
+
150
+ if num_words == 0:
151
+ return [(0, len(document), None)]
152
+
153
+ score = float(len(set(document.normalized_words))) / num_words
154
+ score = round(score, PRECISION)
155
+ return [(0, len(document), score)]
156
+
157
+
158
+ class RPS_Doc_Unigram_Entropy(RPSBase): # noqa
159
+ r""" The entropy of the unigram distribution of the
160
+ content. This measures the diversity of the content and is computed
161
+ using sum(-x / total * log(x / total)) where the sum is taken over
162
+ over counts of unique words in the noramlized (punctuation removed,
163
+ lowercased) content."""
164
+ __slots__ = ()
165
+
166
+ def __call__(self, document: Document) -> SignalType:
167
+ if len(document.normalized_words) == 0:
168
+ return [(0, len(document), None)]
169
+
170
+ # count the number of times each word appears in the content
171
+ counter = Counter(document.normalized_words)
172
+
173
+ # calculate the entropy of the unigram distribution
174
+ total = sum(counter.values())
175
+ entropy = sum(map(
176
+ lambda x: -x / total * math.log(x / total) if x > 0 else 0.0,
177
+ counter.values()
178
+ ))
179
+
180
+ score = round(entropy, PRECISION)
181
+ return [(0, len(document), score)]
182
+
183
+
184
+ class RPS_Doc_Frac_All_Caps_Words(RPSBase): # noqa
185
+ r""" The fraction of words in the content that only conist of uppercase
186
+ letters. This is based on the raw content."""
187
+ __slots__ = ()
188
+
189
+ def __call__(self, document: Document) -> SignalType:
190
+ num_words = document.num_raw_words
191
+
192
+ if num_words == 0:
193
+ return [(0, len(document), None)]
194
+
195
+ score = float(sum(map(str.isupper, document.raw_words))) / num_words
196
+ score = round(score, PRECISION)
197
+ return [(0, len(document), score)]
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/repetitions.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import Counter
2
+ import numpy as np
3
+ import sys
4
+ from typing import List, Tuple, Type
5
+
6
+ from core.constants import PRECISION
7
+ from core.quality_signals.base import RPSBase
8
+ from core.document import Document
9
+ from core.data_types import SignalType
10
+ from utilities.register.registry_utils import *
11
+ from utilities.text import form_ngrams
12
+
13
+ __all__ = [
14
+ "register_repetitions_callables",
15
+ "repetitions_schema"
16
+ ]
17
+
18
+
19
+ def repetitions_schema() -> List[Tuple[str, Type]]:
20
+ r""" Returns a list of signal names and their data types """
21
+ return signal_schema(module=sys.modules[__name__])
22
+
23
+
24
+ def register_repetitions_callables() -> List[RPSBase]:
25
+ r""" Returns a list of signal functions (i.e., RPSBase instances) that
26
+ are used to extract repetition related signals from a document.
27
+
28
+ Returns:
29
+ A list of signal function class instances.
30
+ """
31
+ return list(map(
32
+ lambda cls: cls(),
33
+ get_callables_from_module(module=sys.modules[__name__])
34
+ ))
35
+
36
+
37
+ class Base_RPS_Frac_Chars_In_Top_NGram(RPSBase): # noqa
38
+ r""" Base class for calculating the fraction of characters in the
39
+ top N-gram. This operates on the lower-cased, punctation removed
40
+ content."""
41
+ NGRAM_SIZE: int = None
42
+
43
+ __slots__ = []
44
+
45
+ def __call__(self, document: Document) -> SignalType:
46
+ if self.NGRAM_SIZE is None:
47
+ raise NotImplementedError(
48
+ "NGRAM_SIZE must be set in the subclass"
49
+ )
50
+
51
+ # get the most common ngram
52
+ most_common_ngram = Counter(
53
+ # fetch the ngrams from the document if they exist, otherwise
54
+ # compute them
55
+ getattr(document, f"norm_{self.NGRAM_SIZE}grams", None)
56
+ or
57
+ form_ngrams(iter(document.normalized_words), self.NGRAM_SIZE)
58
+ ).most_common(1)
59
+
60
+ if len(most_common_ngram) == 0:
61
+ return [(0, len(document), 0.0)]
62
+
63
+ ngram, count = most_common_ngram[0]
64
+
65
+ if count <= 1:
66
+ return [(0, len(document), 0.0)]
67
+
68
+ total_chars = sum(len(w) for w in document.normalized_words)
69
+ score = sum(len(w) for w in ngram) * count / total_chars
70
+ score = round(score, PRECISION)
71
+ return [(0, len(document), score)]
72
+
73
+
74
+ class RPS_Doc_Frac_Chars_Top_2gram(Base_RPS_Frac_Chars_In_Top_NGram): # noqa
75
+ r""" The fraction of characters in the top word Bigram. Operates on the
76
+ lower-cased, punctation removed content."""
77
+ NGRAM_SIZE = 2
78
+ __slots__ = []
79
+
80
+
81
+ class RPS_Doc_Frac_Chars_Top_3gram(Base_RPS_Frac_Chars_In_Top_NGram): # noqa
82
+ r""" The fraction of characters in the top word Trigram. Operates on the
83
+ lower-cased, punctation removed content."""
84
+ NGRAM_SIZE = 3
85
+ __slots__ = []
86
+
87
+
88
+ class RPS_Doc_Frac_Chars_Top_4gram(Base_RPS_Frac_Chars_In_Top_NGram): # noqa
89
+ r""" The fraction of characters in the top word 4gram. Operates on the
90
+ lower-cased, punctation removed content."""
91
+ NGRAM_SIZE = 4
92
+ __slots__ = []
93
+
94
+
95
+ class Base_RPS_Frac_Chars_In_Dupe_NGrams(RPSBase): # noqa
96
+ r""" Base class for calculating the fraction of characters in
97
+ duplicate word N-grams. This operates on the lower-cased, punctation
98
+ removed content. The function also ensures that characters in overlapping
99
+ ngrams are only counted once."""
100
+ NGRAM_SIZE: int = None
101
+ __slots__ = []
102
+
103
+ def __call__(self, document: Document) -> SignalType:
104
+ if self.NGRAM_SIZE is None:
105
+ raise NotImplementedError(
106
+ "NGRAM_SIZE must be set in the subclass"
107
+ )
108
+
109
+ if len(document.normalized_words) < self.NGRAM_SIZE:
110
+ return [(0, len(document), 0.0)]
111
+
112
+ # fetch the ngrams from the document if they exist, otherwise
113
+ # compute them
114
+ doc_n_grams = (
115
+ getattr(document, f"norm_{self.NGRAM_SIZE}grams", None)
116
+ or
117
+ tuple(form_ngrams(
118
+ iter(document.normalized_words), self.NGRAM_SIZE
119
+ ))
120
+ )
121
+
122
+ # keep only ngrams which occur at least twice
123
+ ngram_dupes = {
124
+ ngram for ngram, count in Counter(doc_n_grams).items() if count > 1
125
+ }
126
+
127
+ duplicated_grams = np.zeros(len(document.normalized_words), dtype=int)
128
+
129
+ i = 0
130
+ for ngram in doc_n_grams:
131
+ if ngram in ngram_dupes:
132
+ duplicated_grams[i: i + self.NGRAM_SIZE] = 1
133
+
134
+ i += 1
135
+
136
+ word_lengths = np.array(list(map(len, document.normalized_words)))
137
+ chars_duped = np.sum(word_lengths * duplicated_grams)
138
+ total_chars = np.sum(word_lengths)
139
+
140
+ if total_chars == 0:
141
+ return [(0, len(document), 0.0)]
142
+
143
+ score = float(chars_duped / total_chars)
144
+ score = round(score, PRECISION)
145
+ return [(0, len(document), score)]
146
+
147
+
148
+ class RPS_Doc_Frac_Chars_Dupe_5Grams( # noqa
149
+ Base_RPS_Frac_Chars_In_Dupe_NGrams
150
+ ):
151
+ r""" The fraction of characters in duplicate word 5grams. This operates on
152
+ the lower-cased, punctation removed content. It is also ensured that
153
+ characters in overlapping ngrams are only counted once. """
154
+ NGRAM_SIZE = 5
155
+ __slots__ = []
156
+
157
+
158
+ class RPS_Doc_Frac_Chars_Dupe_6Grams( # noqa
159
+ Base_RPS_Frac_Chars_In_Dupe_NGrams
160
+ ):
161
+ r""" The fraction of characters in duplicate word 6grams. This operates on
162
+ the lower-cased, punctation removed content. It is also ensured that
163
+ characters in overlapping ngrams are only counted once. """
164
+ NGRAM_SIZE = 6
165
+ __slots__ = []
166
+
167
+
168
+ class RPS_Doc_Frac_Chars_Dupe_7Grams( # noqa
169
+ Base_RPS_Frac_Chars_In_Dupe_NGrams
170
+ ):
171
+ r""" The fraction of characters in duplicate word 7grams. This operates on
172
+ the lower-cased, punctation removed content. It is also ensured that
173
+ characters in overlapping ngrams are only counted once. """
174
+ NGRAM_SIZE = 7
175
+ __slots__ = []
176
+
177
+
178
+ class RPS_Doc_Frac_Chars_Dupe_8Grams( # noqa
179
+ Base_RPS_Frac_Chars_In_Dupe_NGrams
180
+ ):
181
+ r""" The fraction of characters in duplicate word 8grams. This operates on
182
+ the lower-cased, punctation removed content. It is also ensured that
183
+ characters in overlapping ngrams are only counted once. """
184
+ NGRAM_SIZE = 8
185
+ __slots__ = []
186
+
187
+
188
+ class RPS_Doc_Frac_Chars_Dupe_9Grams( # noqa
189
+ Base_RPS_Frac_Chars_In_Dupe_NGrams
190
+ ):
191
+ r""" The fraction of characters in duplicate word 9grams. This operates on
192
+ the lower-cased, punctation removed content. It is also ensured that
193
+ characters in overlapping ngrams are only counted once. """
194
+ NGRAM_SIZE = 9
195
+ __slots__ = []
196
+
197
+
198
+ class RPS_Doc_Frac_Chars_Dupe_10Grams( # noqa
199
+ Base_RPS_Frac_Chars_In_Dupe_NGrams
200
+ ):
201
+ r""" The fraction of characters in duplicate word 10grams. This operates on
202
+ the lower-cased, punctation removed content. It is also ensured that
203
+ characters in overlapping ngrams are only counted once. """
204
+ NGRAM_SIZE = 10
205
+ __slots__ = []
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__init__.py ADDED
File without changes
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (225 Bytes). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (178 Bytes). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/classifiers.cpython-310.pyc ADDED
Binary file (684 Bytes). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/classifiers.cpython-38.pyc ADDED
Binary file (637 Bytes). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/content.cpython-310.pyc ADDED
Binary file (1.61 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/content.cpython-38.pyc ADDED
Binary file (1.51 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/dsir.cpython-310.pyc ADDED
Binary file (817 Bytes). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/dsir.cpython-38.pyc ADDED
Binary file (756 Bytes). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/stop_words.cpython-310.pyc ADDED
Binary file (34.3 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/__pycache__/stop_words.cpython-38.pyc ADDED
Binary file (56.4 kB). View file
 
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/classifiers.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from core.document import Document
2
+
3
+
4
+ def preprocess_quality_classifier(document: Document):
5
+ r""" Preprocesses a document for quality classification. This function
6
+ removes all newlines and trailing whitespaces from the document.
7
+
8
+ Args:
9
+ document: A document.
10
+
11
+ Returns:
12
+ A string.
13
+ """
14
+ # remove newlines and trailing and leading whitespaces
15
+ return " ".join(document.raw_content.splitlines()).strip()
cc-multilingual-main/dedup/RedPajama-Data/app/src/core/quality_signals/utils/content.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from pathlib import Path
3
+ from typing import Dict, Set
4
+
5
+ _DEFAULT_LANGS = ("en", "fr", "it", "es", "de")
6
+
7
+
8
+ def load_bad_urls_index(bad_urls_dir: Path) -> Dict[str, int]:
9
+ with open(bad_urls_dir / "domain_to_category_id.json", "r") as f:
10
+ domain_to_category_id = json.load(f)
11
+ return domain_to_category_id
12
+
13
+
14
+ def load_bad_words(bad_words_dir: Path, lang: str) -> Set[str]:
15
+ r""" load the LDNOOBW word list for a given language
16
+
17
+ Source:
18
+ https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
19
+
20
+ Args:
21
+ bad_words_dir (Path): The path to the resources directory where the
22
+ list is stored
23
+ lang (str): The language for which to fetch the word list
24
+
25
+ Returns:
26
+ A set of words
27
+ """
28
+ if lang not in _DEFAULT_LANGS:
29
+ return set()
30
+
31
+ ldnoobw_fp = bad_words_dir / f"{lang}.txt"
32
+
33
+ if not ldnoobw_fp.exists():
34
+ raise FileNotFoundError(f"LDNOOBW word list {ldnoobw_fp} not found!")
35
+
36
+ with open(ldnoobw_fp, 'r') as f:
37
+ data = set(ln.strip() for ln in f.readlines())
38
+
39
+ return data