File size: 5,109 Bytes
f1316e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
import json
import gzip
import re
from tqdm import tqdm
from multiprocessing import Pool
langs = ["as", "bn", "gu", "kn", "hi", "ml", "mr", "ne", "or", "sa", "sd", "ta", "ur", "te", "mai"]
language_characters = {
"as": {"range": (0x0980, 0x09FF)}, # Assamese
"bn": {"range": (0x0980, 0x09FF)}, # Bengali
"gu": {"range": (0x0A80, 0x0AFF)}, # Gujarati
"kn": {"range": (0x0C80, 0x0CFF)}, # Kannada
"hi": {"range": (0x0900, 0x097F)}, # Hindi
"ml": {"range": (0x0D00, 0x0D7F)}, # Malayalam
"mr": {"range": (0x0900, 0x097F)}, # Marathi
"ne": {"range": (0x0900, 0x097F)}, # Nepali
"or": {"range": (0x0B00, 0x0B7F)}, # Oriya
"sa": {"range": (0x0900, 0x097F)}, # Sanskrit
"sd": {"range": (0x0600, 0x06FF)}, # Sindhi
"ta": {"range": (0x0B80, 0x0BFF)}, # Tamil
"ur": {"range": (0x0600, 0x06FF)}, # Urdu
"te": {"range": (0x0C00, 0x0C7F)}, # Telugu
"mai": {"range": (0x0900, 0x097F)} # Maithili
}
language_percentage = 40
num_of_words = 4
def check_language_percentage(text, language):
unicode_range = language_characters.get(language)
language_character_count = sum(unicode_range["range"][0] <= ord(char) <= unicode_range["range"][1] for char in text)
# Calculate the percentage of characters belonging to the specified language
percentage = (language_character_count / len(text)) * 100
# Check if the percentage meets the threshold of 30%
if percentage >= language_percentage:
return True
else:
return False
def valid(json_obj, lang):
content = json_obj["raw_content"]
sentences = content.split('\n')
filtered_sentences = []
for sentence in sentences:
end_of_sentence_pattern = r'[।?!]+'
lines = re.split(end_of_sentence_pattern, sentence)
lines = [line for line in lines if line != ""]
filtered_lines = []
for i in range(len(lines)):
if(not(lines[i] == "।" or lines[i] == "?" or lines[i] == "!")):
if(check_language_percentage(lines[i], lang) and len(lines[i].split()) >= num_of_words):
filtered_lines.append(lines[i])
i += 1
if(i+1 < len(lines)):
filtered_lines.append(lines[i])
else:
i += 1
# else:
# filtered_lines.append(lines[i])
filtered_sentences.append("".join(filtered_lines))
json_obj["raw_content"] = re.sub(r'\n+', '\n', "\n".join(filtered_sentences))
return json_obj
def process_file(file_info):
input_path, output_path = file_info
lang = input_path.split('/')[-1].split('_')[0]
filtered_documents = []
# Read JSON objects and filter them
with gzip.open(input_path, 'rt') as input_file:
for line in input_file:
json_obj = json.loads(line)
new_obj = valid(json_obj, lang)
if(len(new_obj["raw_content"].split()) >= 50):
filtered_documents.append(new_obj)
# Write filtered JSON objects to new file
with gzip.open(output_path, 'wt') as output_file:
for doc in filtered_documents:
output_file.write(json.dumps(doc, ensure_ascii=False) + '\n')
def filter_json_files(input_folder, output_folder):
# Create output folder if it doesn't exist
if not os.path.exists(output_folder):
os.makedirs(output_folder)
file_infos = []
# Iterate through each JSON file in the input folder
for filename in sorted(os.listdir(input_folder)):
if filename.endswith(".json.gz"):
input_path = os.path.join(input_folder, filename)
output_path = os.path.join(output_folder, filename)
file_infos.append((input_path, output_path))
# Initialize tqdm with the total number of files
with tqdm(total=len(file_infos)) as pbar:
# Create a pool of workers
with Pool(processes=160) as pool:
# Use tqdm as a context manager to automatically close the pool and update the progress bar
for _ in pool.imap_unordered(process_file, file_infos):
pbar.update()
print("Filtering done for ", input_folder.split('/')[-1])
snapshots = ["2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", "2019-04", "2019-09", "2019-13", "2019-18", "2019-22", "2019-26", "2019-30", "2019-35", "2019-39", "2019-43", "2019-47", "2019-51", "2020-05", "2020-10", "2020-16", "2020-24", "2020-29", "2020-34", "2020-40", "2020-45", "2020-50", "2021-04", "2021-10", "2021-17", "2021-21", "2021-25", "2021-31", "2021-39", "2021-43", "2021-49", "2022-05", "2022-21", "2022-27", "2022-33", "2022-40", "2022-49", "2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"]
for snap in snapshots:
input_folder = f"/mnt/weka/peacock/wet-data/output/global_filtered_without_bloom_new/{snap}"
output_folder = f"/mnt/weka/peacock/wet-data/output/heuristic_filtered_without_bloom_new/{snap}"
filter_json_files(input_folder, output_folder)
|