applied-ai-018's picture
Add files using upload-large-folder tool
f1316e7 verified
raw
history blame
5.75 kB
import os
import json
import gzip
import pandas as pd
from tqdm import tqdm
from multiprocessing import Pool, TimeoutError
import signal
import sys
def process_file(file_info):
input_path, output_path, clusters_file, bloom_file = file_info
# Read line numbers to avoid from clusters file
try:
clusters_df = pd.read_parquet(clusters_file)
except FileNotFoundError:
with open("temp.txt", "a+") as f:
f.write(clusters_file + '\n')
clusters_df = pd.DataFrame()
clusters_df['id'] = []
clusters_df['id_int'] = []
clusters_df['clusters_id'] = []
clusters_df['line_number'] = clusters_df['id'].apply(lambda x: int(x.split('/')[-1]))
duplicate_docs = set()
if(bloom_file != "None"):
bloom_df = pd.read_parquet(bloom_file)
curr_file = input_path.split('/')[-1]
for _, row in bloom_df.iterrows():
if(curr_file == row["doc_id"].split('/')[0]):
duplicate_docs.add(int(row["doc_id"].split('/')[1]))
for _, row in clusters_df.iterrows():
if(row['id_int'] != row['cluster_id']):
duplicate_docs.add(int(row['id'].split('/')[-1]))
# Read JSON objects and filter them
with gzip.open(input_path, 'rt') as input_file:
try:
filtered_documents = [json.loads(line) for idx, line in enumerate(input_file) if idx not in duplicate_docs]
except:
print(input_file)
return
# Write filtered JSON objects to new file
with gzip.open(output_path, 'wt') as output_file:
for doc in filtered_documents:
output_file.write(json.dumps(doc, ensure_ascii=False) + '\n')
# def process_file_with_timeout(arg):
# def handler(signum, frame):
# raise TimeoutError("end of time")
# signal.signal(signal.SIGALRM, handler)
# signal.alarm(500)
# try:
# process_file(arg)
# except TimeoutError:
# print("timeout")
# return
def filter_json_files(input_folder, output_folder, clusters_folder, bloom_folder):
# Create output folder if it doesn't exist
if not os.path.exists(output_folder):
os.makedirs(output_folder)
file_infos = []
# Iterate through each JSON file in the input folder
for filename in sorted(os.listdir(input_folder)):
if filename.endswith(".json.gz"):
input_path = os.path.join(input_folder, filename)
output_path = os.path.join(output_folder, filename)
# Determine the corresponding clusters file
clusters_file = os.path.join(clusters_folder, filename.split('_')[0], f"{filename.split('_')[-1].split('.')[0]}.clusters.parquet")
try:
bloom_file = os.path.join(bloom_folder, filename.split('_')[0], [x for x in os.listdir(os.path.join(bloom_folder, filename.split('_')[0])) if x.endswith(".parquet")][-1])
except FileNotFoundError:
bloom_file = "None"
# print((input_path, output_path, clusters_file))
file_infos.append((input_path, output_path, clusters_file, bloom_file))
# Initialize tqdm with the total number of files
with tqdm(total=len(file_infos)) as pbar:
# Create a pool of workers
with Pool(processes=160) as pool:
# Use tqdm as a context manager to automatically close the pool and update the progress bar
for _ in pool.imap_unordered(process_file, file_infos):
pbar.update()
print("Filtering done for ", input_folder.split('/')[-1])
# snapshots = {}
# snapshots[0] = ["2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", "2019-04", "2019-09", "2019-13", "2019-18"]
# snapshots[0] = ["2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", "2019-04", "2019-09", "2019-13", "2019-18"]
# snapshots[1] = ["2019-22", "2019-26", "2019-30", "2019-35", "2019-39", "2019-43", "2019-47", "2019-51", "2020-05", "2020-10", "2020-16", "2020-24"]
# snapshots[2] = ["2020-29", "2020-34", "2020-40", "2020-45", "2020-50", "2021-04", "2021-10", "2021-17", "2021-21", "2021-25", "2021-31", "2021-39"]
# snapshots[3] = ["2021-43", "2021-49", "2022-05", "2022-21", "2022-27", "2022-33", "2022-40", "2022-49", "2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"]
# snapshots = ["2020-05", "2020-10", "2020-16", "2020-24", "2020-29", "2020-34", "2020-40", "2020-45", "2020-50", "2021-04", "2021-10", "2021-17", "2021-21", "2021-25", "2021-31", "2021-39", "2021-43", "2021-49", "2022-05", "2022-21", "2022-27", "2022-33", "2022-40", "2022-49", "2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"]
# snapshots = ["2019-51"]
snapshots = ["2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", "2019-04", "2019-09", "2019-13", "2019-18", "2019-22", "2019-26", "2019-30", "2019-35", "2019-39", "2019-43", "2019-47", "2019-51", "2020-05", "2020-10", "2020-16", "2020-24", "2020-29", "2020-34", "2020-40", "2020-45", "2020-50", "2021-04", "2021-10", "2021-17", "2021-21", "2021-25", "2021-31", "2021-39", "2021-43", "2021-49", "2022-05", "2022-21", "2022-27", "2022-33", "2022-40", "2022-49", "2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"]
snapshots = [sys.argv[1]]
for snap in snapshots:
input_folder = f"/mnt/weka/peacock/wet-data/output/mined/{snap}"
output_folder = f"/mnt/weka/peacock/wet-data/output/local_filtered/{snap}"
clusters_folder = f"/mnt/weka/peacock/wet-data/output/fuzzy-clusters/{snap}"
bloom_folder = f"/mnt/weka/peacock/wet-data/output/bloomfilter/{snap}"
filter_json_files(input_folder, output_folder, clusters_folder, bloom_folder)